
Mathematical

and Computational

Applications

Article

ROM-Based Inexact Subdivision Methods for PDE-Constrained
Multiobjective Optimization

Stefan Banholzer 1,†, Bennet Gebken 2,†, Lena Reichle 1,† and Stefan Volkwein 1,*,†

����������
�������

Citation: Banholzer, S.; Gebken, B.;

Reichle, L.; Volkwein, S. ROM-Based

Inexact Subdivision Methods for

PDE-Constrained Multiobjective

Optimization. Math. Comput. Appl.

2021, 26, 32. https://doi.org/

10.3390/mca26020032

Academic Editors: Oliver Junge,

Kathrin Padberg-Gehle, Sebastian

Peitz and Oliver Schütze

Received: 25 February 2021

Accepted: 13 April 2021

Published: 15 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: c© 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mathematics and Statistics, University of Konstanz, 78457 Konstanz, Germany;
Stefan.Banholzer@uni-konstanz.de (S.B.); Lena.Reichle@uni-konstanz.de (L.R.)

2 Faculty for Computer Science, Electrical Engineering and Mathematics, Paderborn University,
33098 Paderborn, Germany; bgebken@math.upb.de

* Correspondence: Stefan.Volkwein@uni-konstanz.de
† These authors contributed equally to this work.

Abstract: The goal in multiobjective optimization is to determine the so-called Pareto set. Our
optimization problem is governed by a parameter-dependent semi-linear elliptic partial differential
equation (PDE). To solve it, we use a gradient-based set-oriented numerical method. The numerical
solution of the PDE by standard discretization methods usually leads to high computational effort.
To overcome this difficulty, reduced-order modeling (ROM) is developed utilizing the reduced
basis method. These model simplifications cause inexactness in the gradients. For that reason, an
additional descent condition is proposed. Applying a modified subdivision algorithm, numerical
experiments illustrate the efficiency of our solution approach.

Keywords: multiobjective optimization; PDE-constrained optimization; reduced-order modeling;
set-oriented methods; inexact optimization

1. Introduction

Multiobjective optimization plays an important role in many applications, e.g., in
industry, medicine, or engineering. One of the mentioned examples is the minimization of
costs with simultaneous quality optimization in production or the minimization of CO2
emission in energy generation and simultaneous cost minimization. These problems lead
to multiobjective optimization problems (MOPs), where we want to achieve an optimal
compromise with respect to all given objectives at the same time. Normally, the different
objectives are contradictory such that there exists an infinite number of optimal compro-
mises. The set of these compromises is called the Pareto set. The goal is to approximate the
Pareto set in an efficient way, which turns out to be more expensive than solving a single
objective optimization problem.

As multiobjective optimization problems are of great importance, there exist several
algorithms to solve them. Among the most popular methods are scalarization meth-
ods, which transform MOPs into scalar problems. For example, in the weighted sum
method [1–4], convex combinations of the original objectives are optimized. Another popu-
lar approach is to use non-deterministic methods like evolutionary algorithms, cf., e.g., [5].
Furthermore, as multiobjective problems are generalizations of scalar problems, some
solution methods can be generalized from the scalar to the multiobjective case [6–8].

In addition to the classical methods above, there are set-based strategies for the so-
lution of MOPs. Continuation methods [9–11] use the fact that the Pareto set is typically
(the projection of) a smooth manifold. Subdivision methods [12–15] use tools from the area
of dynamical systems to generate a covering of the Pareto set via hypercubes. However,
especially when the objective functions and their gradients are expensive to evaluate, e.g.,
as an underlying PDE has to be solved for every evaluation, the computational time of
these methods can quickly become very large. In the presence of PDE constraints, surrogate

Math. Comput. Appl. 2021, 26, 32. https://doi.org/10.3390/mca26020032 https://www.mdpi.com/journal/mca

https://www.mdpi.com/journal/mca
https://www.mdpi.com
https://orcid.org/0000-0002-1930-1773
https://doi.org/10.3390/mca26020032
https://doi.org/10.3390/mca26020032
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/mca26020032
https://www.mdpi.com/journal/mca
https://www.mdpi.com/article/10.3390/mca26020032?type=check_update&version=2

Math. Comput. Appl. 2021, 26, 32 2 of 23

models offer a promising tool to reduce the computational effort significantly [16]. Exam-
ples are dimensional reduction techniques such as the Reduced Basis (RB) Method [17,18].
In an offline phase, a low-dimensional surrogate model of the PDE is constructed by using,
e.g., the greedy algorithm, cf. [17]. In the online phase, only the RB model is used to solve
the PDE, which saves a lot of computing time.

In this article, we combine an extension of the set-oriented method presented in [12]
based on inexact gradient evaluations of the objective functions with an RB approach and
a discrete empirical interpolation method (DEIM) [19,20] for semi-linear elliptic PDEs. In
order to deal with the inexactness introduced by the surrogate model, we combine the first-
order optimality conditions for multiobjective optimization problems with error estimates
for the RB-DEIM method and derive an additional condition for the descent direction [9] to
get a tight superset of the Pareto set. This approach allows us to better control the quality
of the result by controlling the errors for the objective functions independently. In order to
obtain an even tighter superset of the Pareto set, we update these error estimates in our
subdivision algorithm after each iteration step.

The article is organized as follows. In Section 2, we recall the basic concepts of
multiobjective optimization problems and review results on descent directions with exact
and inexact gradients. Furthermore, we develop a set-oriented method to solve these
problems, where only inexact gradient information is utilized. In Section 3, the PDE-
constrained multiobjective optimization problem and the underlying semi-linear PDE are
introduced. Subsequently, we show how reduced-order modeling can be applied efficiently.
In Section 4, numerical results concerning both the subdivision and the modified algorithm
are presented. Finally, we give a conclusion and discuss possible future work in Section 5.

2. A Set-Oriented Method for Multiobjective Optimization with Inexact Objective
Gradients

In this section, we briefly recall the basic concepts of multiobjective optimization.
Furthermore, we develop a set-oriented method to solve these problems, where only
inexact gradient information is utilized.

2.1. Multiobjective Optimization

Let µa, µb ∈ Rm with µa ≤ µb be arbitrary. We define the convex and compact
parameter set Pad = [µa, µb] ⊂ Rm. Now, the goal is to solve the constrained multiobjective
optimization problem

min Ĵ(µ) subject to (s.t.) µ ∈ Pad (1)

with a given objective Ĵ = (Ĵ1, . . . , Ĵk) : Pad → Rk and k > 1.
Compared to scalar optimization, we do not have a natural total order of Rk for k > 1.

Therefore, we cannot expect that there is a single point in Pad that minimizes all objectives
Ĵi simultaneously. For this reason, we make use of the following definition.

Definition 1. (a) A point µ̄ ∈ Pad is called (globally) Pareto optimal, if there is no µ ∈ Pad

satisfying Ĵ(µ) � Ĵ(µ̄). In that case we call µ̄ a Pareto point.
(b) The set of all Pareto points in Pad is called Pareto set and is denoted by

P =
{

µ ∈ Pad

∣∣ µ is Pareto optimal
}

.

(c) The image Ĵ(P) ⊂ Rk of the Pareto set under Ĵ is called the Pareto front.

If Ĵ is continuously differentiable on an open set containing Pad, then there exists a
first-order necessary condition for Pareto optimality. To formulate this condition, we define
the convex, closed, and bounded set

∆k =
{

α ∈ Rk ∣∣ αi ≥ 0 and
k
∑

i=1
αi = 1

}
.

Math. Comput. Appl. 2021, 26, 32 3 of 23

Further, the row vector

∇ Ĵi(µ) =

(
∂ Ĵi
∂µj

(µ)

)
1≤j≤m

∈ R1×m

stands for the gradient of the i-th objective Ĵi with i ∈ {1, . . . , k}.

Definition 2. If for a given µ̄ ∈ Pad there exists an ᾱ = (ᾱi)1≤i≤k ∈ ∆k with

∑k
i=1 ᾱi∇ Ĵi(µ̄)(µ− µ̄) = (µ− µ̄)>DĴ(µ̄)>ᾱ ≥ 0 for all µ ∈ Pad (2)

then we call µ̄ Pareto critical, where

DĴ(µ) =

 ∇ Ĵ1(µ̄)
...

∇ Ĵk(µ)

 ∈ Rk×m

denotes the Jacobi matrix of Ĵ at µ. The set of all Pareto critical points is called the Pareto critical
set, denoted by Pc.

Now, we recall the first-order necessary optimality conditions for (1).

Theorem 1. Let Ĵ be continuously differentiable and µ̄ ∈ Pad Pareto-optimal. Then, µ̄ is Pareto-
critical, i.e., it holds P ⊂ Pc. Condition (2) is called the Karush–Kuhn–Tucker (KKT) condition
for multiobjective optimization problems.

Proof. The claim follows from ([1], Theorem 3.25) and the specific choice of Pad.

Remark 1. (a) Let µ̄ belong to the interior of Pad, i.e., µ̄ ∈ int (Pad) = (µa, µb). Then (2) is
equivalent to

k
∑

i=1
ᾱi∇ Ĵi(µ̄) = α>DĴ(µ) = 0 in R1×m (3)

or
DĴ(µ)>α = 0 in Rm = Rm×1;

see also in [21].
(b) Throughout the paper, we only calculate the Pareto critical points in the interior of Pad and

make use of (3). The idea is to choose Pad sufficiently large so that we get Pc ⊂ int (Pad).
(c) Due to Theorem 1, we have

P ⊂ Pc =
{

µ ∈ Pad

∣∣ ∃α = α(µ) ∈ ∆k : DĴ(µ̄)>α = 0 in Rm} ⊂ int (Pad).

provided Pc ⊂ int (Pad) holds true. ♦

2.2. Descent Direction with Exact Gradients

Next, we introduce the notion of a descent direction for the vector valued objective
function Ĵ at a non-Pareto critical point µ /∈ Pc. From now on, we assume that Ĵ : Pad → Rk

is continuously differentiable (on an open set containing Pad).

Definition 3. The vector v ∈ Rm is a descent direction for Ĵ in µ ∈ Pad, if we have

∇ Ĵi(µ)v ≤ 0 for all i ∈ {1, ..., k}

and if there is at least one i ∈ {1, ..., k} with ∇ Ĵi(µ)v < 0.

Math. Comput. Appl. 2021, 26, 32 4 of 23

One way to compute a descent direction is to solve a constrained quadratic optimiza-
tion problem in Rk as shown in the following theorem. For a proof we refer to the work
in [8]. A similar result was shown in [22].

Theorem 2. For given µ ∈ int (Pad) let ᾱ = ᾱ(µ) ∈ ∆k be a (global) solution of the convex
constrained quadratic minimization problem

min
1
2
‖DĴ(µ)>α‖2

2 s.t. α ∈ ∆k. (4)

Then, we have either DĴ(µ)>ᾱ = 0 or v = −DĴ(µ)>ᾱ ∈ Rm is a descent direction for Ĵ in µ.

Combined with a backtracking Armijo line search, the descent direction from Theorem 2
can be used to construct the steepest descent method in Algorithm 1.

Algorithm 1: Steepest descent method.

Require : κ ∈ (0, 1), µ0 ∈ int (Pad) and l = 0;
1 Calculate α0 as a solution of (4) for µ = µ0; set v0 = −DĴ(µ0)>α0;
2 while vl 6= 0 do
3 Choose the stepsize tl > 0 as maximum of the set

Tl =
{

t = 2−j
∣∣∣ j ∈ N, µl + tvl ∈ int (Pad)

and Ĵ(µl + tvl) ≤ Ĵ(µl) + κtDĴ(µl)vl
}

;

Set µl+1 = a(µl) with a(µl) = µl + tlvl and update l = l + 1;
4 Calculate αl as a solution of (4) for µ = µl ;
5 Set vl = −DĴ(µl)>αl ;
6 end

Remark 2. (a) If Algorithm 1 terminates after a finite number l of iterations, then µl is a Pareto
critical point.

(b) Assume that Algorithm 1 does not stop after a finite number of iterations. Then, every
accumulation point µ̄ of the sequence {µl}l∈N generated by Algorithm 1 is a Pareto critical
point. A proof based on ([7], Theorem 1) can be found in ([23] Theorem 5.2.5). ♦

2.3. Descent Direction with Inexact Gradients

Suppose that we have continuously differentiable approximations Ĵ` = (Ĵ`i)1≤i≤k of
the objective function Ĵ satisfying

max
µ∈Pad

‖∇ Ĵi(µ)−∇ Ĵ`i (µ)‖2 ≤ εi for i ∈ {1, ..., k}, (5)

for given tolerances εi ≥ 0. By P ⊂ Pad we denote the Pareto set for Ĵ and by P` ⊂ Pad

the Pareto set for Ĵ`. If we write Pc, we mean the Pareto-critical set for Ĵ and P`c is the
Pareto-critical set for Ĵ`. Note that, in general, we have neither P` ⊂ P nor P ⊂ P`.

In this section, our goal is to compute an approximation of P based on the approx-
imation Ĵ` of the objective function and the error bounds εi. We begin by investigating
the relationship between the KKT conditions of the original objective function and its
approximation.

Math. Comput. Appl. 2021, 26, 32 5 of 23

Lemma 1. Let (5) be satisfied and µ̄ ∈ int (Pad) be Pareto-critical for Ĵ with the KKT-condition
vector ᾱ ∈ ∆k. Then, it holds that

‖DĴ`(µ̄)>ᾱ‖2 ≤
k

∑
i=1

ᾱiεi = 〈ᾱ, ε〉2 ≤ ‖ε‖∞ (6)

with ε = (εi)1≤i≤k, where we set 〈ᾱ, ε〉2 = ᾱ>ε.

Proof. From µ̄ ∈ int (Pad) and Remark 1-a) we infer that DĴ(µ̄)>ᾱ = 0 holds. Therefore,

‖DĴ`(µ̄)>ᾱ‖2 = ‖DĴ`(µ̄)>ᾱ− DĴ(µ̄)>ᾱ‖2 =
∥∥∥ k

∑
j=1

(∇ Ĵ`j (µ̄)−∇ Ĵj(µ̄))ᾱj

∥∥∥
2

≤
k

∑
j=1

∥∥∇ Ĵ`j (µ̄)−∇ Ĵj(µ̄)
∥∥

2 ᾱj ≤
k

∑
j=1

ε jᾱj = 〈ᾱ, ε〉2 ≤ ‖ε‖∞

which gives the desired results.

Based on estimate (6), we define two approximation sets for the Pareto-critical set Pc
of Ĵ.

Definition 4. Let us introduce the two sets

P`1 =
{

µ ∈ int (Pad)
∣∣ min

α∈∆k
‖DĴ`(µ)>α‖2

2 ≤ ‖ε‖
2
∞

}
⊂ Pad

and
P`2 =

{
µ ∈ int (Pad)

∣∣∣ min
α∈∆k

(
‖DĴ`(µ)>α‖2

2 − 〈α, ε〉22
)
≤ 0

}
⊂ Pad.

Lemma 2. It holds that

Pc ⊂ P`2, P`c ⊂ P`2 and P`2 ⊂ P`1.

Proof. Let µ̄ ∈ Pc be a Pareto-critical point of Ĵ, then there exists ᾱ ∈ ∆k with DĴ(µ̄)>ᾱ = 0.
From Lemma 1, it follows that Pc ⊂ P`2.
Next, we assume that µ̄ ∈ P`c is a Pareto-critical point of Ĵ`, then there exists ᾱ ∈ ∆k with
DĴ`(µ̄)>ᾱ = 0. This implies

min
α∈∆k

(
‖DĴ`(µ̄)>α‖2

2 − 〈α, ε〉2
)
≤ ‖DĴ`(µ̄)>ᾱ‖2

2 − 〈ᾱ, ε〉22 = −〈ᾱ, ε〉2 ≤ 0.

Therefore, we have µ̄ ∈ P`2.
Let µ̄ ∈ P`2. Then, there exists ᾱ ∈ ∆k with

‖DĴ`(µ̄)>ᾱ‖2
2 − 〈ᾱ, ε〉22 ≤ 0.

Thus, we get ‖DĴ`(µ̄)>ᾱ‖2
2 ≤ 〈ᾱ, ε〉22 ≤ ‖ε‖2

∞ which implies P`2 ⊂ P`1.

Our goal is to compute the set Pl
2 via a descent method like Algorithm 1. To this

end, the following theorem presents a modified version of the descent direction (4), which
additionally takes the error bounds εi into account.

Theorem 3. Let ε = (ε j)1≤j≤k with ε ≥ 0 and µ ∈ int (Pad) be given. Assume that αε is a
minimizer of the quadratic problem

min
α∈∆k

(
‖DĴ`(µ)>α‖2

2 − 〈α, ε〉22
)

. (7)

Math. Comput. Appl. 2021, 26, 32 6 of 23

Then, we have that µ ∈ P`2 or vε = −DĴ`(µ)>αε ∈ Rm is a descent direction for Ĵ` in µ.

Proof. The Lagrange functions for (7) is given as

L : Rk ×R×Rk → R, (α, λ, $) 7→ ‖DĴ`(µ)>α‖2
2 − 〈α, ε〉22 + λ

(
1−

k

∑
j=1

αj

)
−

k

∑
j=1

$jαj.

As αε is a minimizer of (7), we get Lagrangian multipliers λ ∈ R and $ ∈ Rk
≥0 with

2DĴ`(µ)DĴ`(µ)>αε − 2ε 〈ε, αε〉2 + λ(−1, ...,−1)> − $ = 0, (8)

$i ≥ 0 and (αε)i$i = 0.

If we multiply (8) with α>ε from the left, we get

2α>ε DĴ`(µ)DĴ`(µ)>αε − 2 〈ε, αε〉22 − λ
m

∑
i=1

(
(αε)i − (αε)i$i

)
= 0

which implies

λ = 2
(
‖DĴ`(µ)>αε‖2

2 − 〈αε, ε〉22
)

.

First case: λ ≤ 0, then µ ∈ P`2 holds and we are done.
Second case: λ > 0, then µ /∈ P`2 holds. In this case, we show that vε = −DĴ`(µ)>αε is a
descent direction in µ for every objective function Ĵ`j with j = 1, ..., k:
Define

K(µ) =
{

DĴ`(µ)>α
∣∣ α ∈ Rk, αi ≥ 0 and

k

∑
i=1

αi = 1
}

.

If we can show that w>vε < 0 holds for every w ∈ K, we know that vε is a descent direction
for every objective function J`i in µ.
Choose w ∈ K(µ). Then, there exists an αw ∈ ∆k with w = DĴ`(µ)>αw, and using (8) we
obtain

w>vε =
(

DĴ`(µ)>αw
)>vε = −α>w DĴ`(µ)DĴ`(µ)>αε

= −α>w

(
ε〈ε, αε〉2 +

1
2

λ(1, ..., 1) +
1
2

$
)
= −

(
〈αw, ε〉2〈αε, ε〉2 +

1
2

λ +
1
2
〈αw, $〉2

)
≤ −1

2
(
λ + 〈αw, $〉2

)
≤ −λ

2
< 0.

Therefore, vε is a descent direction in µ for every objective function Ĵ`j , j = 1, ..., k.

The descent direction vε from the previous theorem will be referred to as the modified
descent direction. Based on this direction, we can now construct a descent method for the
computation of Pl

2, which is shown in Algorithm 2.

Remark 3. (a) If Algorithm 2 terminates after l iteration steps, then µl is contained in P`2.
(b) Assume that Algorithm 2 does not terminate after a finite number of iteration steps. Then,

every accumulation point µ̄ of the sequence {µl}l∈N generated by Algorithm 2 is in the set
P`2. A proof based on ([7] Theorem 1) can be found in ([23] Theorem 5.3.5).

(c) Note that the tolerance ε is constant for all l throughout Algorithm 2. In Section 2.5, we will
adapt ε in each iteration. ♦

Math. Comput. Appl. 2021, 26, 32 7 of 23

Algorithm 2: Descent method with inexact gradients.

Require : ε =
(
ε j
)

1≤j≤k, κ ∈ (0, 1), µ0 ∈ int (Pad) and l = 0;

1 while µl /∈ P`2 do
2 Calculate αl

ε as solution of (7) for µ = µl ;
3 Set vl

ε = −DĴ`(µl)>αl
ε;

4 Choose the stepsize tl > 0 as maximum of the set

Tl =
{

t = 2−j
∣∣∣ j ∈ N, µl + tvl

ε ∈ int (Pad)

and Ĵ`(µl + tvl
ε) ≤ Ĵ`(µl) + κtDĴ`(µl)vl

ε

}
;

5 Set µl+1 = aε(µl) with aε(µl) = µl + tlvl
ε and update l = l + 1;

6 end

2.4. Subdivision Algorithm

As mentioned in the introduction, there exist set-based solution methods for MOPs
which globally approximate the Pareto set via sets (instead of a finite number of points).
Here, we will consider the subdivision algorithm [12,13,15], which computes an approxima-
tion of the Pareto set as a covering of hypercubes (or boxes). The idea is to start with a large
box containing the Pareto set which is then iteratively subdivided into smaller boxes, while
eliminating boxes that do not contain part of the Pareto set.

There are essentially two versions of the subdivision scheme: one is gradient free and,
thus, is particularly useful in the case when the evaluation of gradients is computationally
expensive. We refer to the work in [12], where this variant is utilized to numerically realize
a reduced-order approach for a PDE-constrained multiobjective optimization problem.
The other one is directly based on a dynamical systems approach and utilizes gradient
information in a similar way to memetic algorithms, see in [8]. Here, we will generalize the
latter to the case of inexact gradients.

For a stepsize tl > 0, let us formulate a descent step of the optimization procedure by

µl+1 = a(µl) = µl + tlvl or µl+1 = aε(µ
l) = µl + tlvl

ε,

where vl and vl
ε are the descent directions given by Theorems 2 and 3, respectively, with the

choice µ = µl . Depending on the descent step that we use, we either want to compute the
Pareto-critical set Pc or the superset P`2 or P`1 of Pc. As these sets are the sets of fixed points
for their respective descent step, we want to find the subset AP ⊂ int (Pad) satisfying
a(AP) = AP or aε(AP) = AP.

To generate the set AP, we will use a subdivision method. This method produces an
outer approximation of the set AP in the form of a nested sequence of sets B0, B1, ... ⊂
P(Pad), where P(Pad) denotes the power set of Pad and each Bl is a subset of Bl−1 in the
sense that ⋃

B∈Bl

B ⊂
⋃

B∈Bl−1

B

holds and Bl consists of finitely many subsets B covering AP for all l ∈ N. For each set
Bl , we define a diameter through diam(Bl) = maxB∈Bl (diam(B)). Algorithm 3 shows the
classical subdivision method (based on Theorem 2) and our modified descent direction
(based on Theorem 3).

Math. Comput. Appl. 2021, 26, 32 8 of 23

Algorithm 3: Subdivision algorithm.

Require :B0 ⊂ P(Pad) finite collection of subsets of Pad with
⋃

B∈B0
B = Pad,

θ ∈ (0, 1), l = 0; in the setting of inexact gradients ε1, ..., εk;
1 while a(ε)

(⋃
B∈Bl

B
)
6= ⋃

B∈Bl
B do

2 Subdivision:
3 Construct from Bl a set B̂l+1 ⊂ P(Pad) with⋃

B∈B̂l+1

B =
⋃

B∈Bl

B and diam(B̂l+1) = θdiam(Bl);

4 Selection:
5 Define the new set Bl+1 by

Bl+1 =
{

B ∈ B̂l+1
∣∣ ∃ B̂ ∈ B̂l+1 with a−1

(ε)
(B) ∩ B̂ 6= ∅

}
;

6 Set l = l + 1;
7 end

Remark 4. In order to realize the subdivision algorithm numerically we choose a similar way as
described in ([13] Remark 2.4). Instead of working explicitly with the centers and radii of the boxes,
these are stored within a binary tree in the subdivision step, whereby the memory requirement is
noticeably reduced. The selection step is implemented using a certain number of sample points in
each box. These sample points are chosen either on an a priori defined grid or randomly within the
boxes. Afterwards, a(ε) is evaluated in these points. For more details, we refer the reader to ([24]
Section 5). ♦

2.5. Modified Subdivision Algorithm for Inexact Gradients

In Algorithm 2, we utilize the same error bounds ε = (ε1, ..., εk) with εi ≥ 0, i = 1, ..., k,
in each iteration step l. Note that the larger the ε, the greater the difference between Pc and
P`2 or P`1. In the algorithm, we produce an outer approximation of the set AP with a nested
sequence of sets {Bl}l∈N by

B̃l =
⋃

B∈Bl

B ⊆ Pad.

As it holds that B̃l ⊂ Pad, we have

max
{
‖∇ Ĵi(µ)−∇ Ĵ`i (µ)‖2

∣∣ µ ∈ B̃l
}
≤ max

{
‖∇ Ĵi(µ)−∇ Ĵ`i (µ)‖2

∣∣ µ ∈ Pad

}
for 1 ≤ i ≤ k.

Now we modify Algorithm 3 by utilizing the descent directions introduced in Theorem 3
and update ε after every iteration step l to generate a better approximation of the set AP.
For updating ε, we use the formula

εl
i = sup

{
‖∇ Ĵi(µ)−∇ Ĵ`i (µ)‖2

∣∣ µ ∈ B̃l
}

for 1 ≤ i ≤ k (9)

and set εl = (εl
i)1≤i≤k. Due to the nested choice of the box coverings, we have εl+1

i ≤ εl
i for

i = 1, ..., k and l ∈ N. In iteration step l, we generate the descent direction by computing

αl
ε ∈ arg min

{
‖DĴ`(µ)>α‖2

2 − 〈α, εl〉22
∣∣∣ α ∈ ∆k

}
. (10)

Then, we set
vl

ε = −DĴ`(µ)>αl
ε and µl+1 = al

ε(µ
l) = µl + tlvl

ε.

Typically, the set P`2 is far smaller then the admissible set Pad. Therefore, we expect that
the error bounds in (9) become significantly smaller than the ones from (5). Therefore, we
expect that we get better results with the modified function al

ε instead of aε.

Math. Comput. Appl. 2021, 26, 32 9 of 23

3. Multiobjective Optimization of a Semi-Linear Elliptic PDE

In this section, we introduce a multiobjective parameter optimization problem gov-
erned by a semi-linear elliptic PDE. Further, we show how reduced-order modeling can be
applied efficiently.

3.1. Problem Formulation

Let Ω ⊂ Rd, d ∈ {1, 2, 3}, be a bounded domain with Lipschitz-continuous boundary
Γ = ∂Ω. Then, we consider the problem

min
(y,µ)

J(y, µ) =

J1(y, µ)

...
Jk−1(y, µ)

Jk(y, µ)

 =
1
2

∫
Ω |y− yd1 |2 dx

...∫
Ω |y− ydk−1|

2 dx
m
∑

j=1
|µj − µd

j |2

 (11a)

subject to the elliptic boundary value problem

− c∆y + by + dy3 = f +
m

∑
i=1

µiξi in Ω, c
∂y
∂n

+ y = g on Γ, (11b)

where y ∈ V = H1(Ω) is the state variable and µ ∈ Pad = [µa, µb] the parameter. We
suppose that g ∈ Lr(Γ) with r > d− 1, ξ1, ..., ξm, f ∈ H = L2(Ω), µd = (µd

j) ∈ Rm, and

yd1 , ..., ydk−1 ∈ H. Moreover, b, c, and d are non-negative constants with c > 0.
As Ω is a bounded connected open set with smooth boundary, it is known that V is a

Hilbert space endowed with the inner product

〈ϕ, ψ〉V =
∫

Ω
∇ϕ · ∇ψ dx +

∫
Γ

ϕψ ds for ϕ, ψ ∈ V

and the induced norm ‖ϕ‖V = 〈ϕ, ϕ〉1/2
V for ϕ ∈ V, see ([25], p. 133) for instance.

3.2. The Parameter Dependent Semi-Linear Elliptic PDE

In this subsection, we study the state equation (11b). First, we define the nonlinear
operator A : V → V′ by

〈A(y), ϕ〉V′ ,V =
∫

Ω
c∇y · ∇ϕ +

(
by + dy3)ϕ dx +

∫
Γ

yϕ ds for y, ϕ ∈ V.

Recall that d ∈ {1, 2, 3} implies V ↪→ L6(Ω), cf. ([26] Section 7). Therefore, the operator A
is well defined. Moreover, for µ ∈ Pad the functional bµ ∈ V′ is given by

〈bµ, ϕ〉V′ ,V =
∫

Ω

(
f +

m

∑
i=1

µiξi

)
ϕ dx +

∫
Γ

gϕ ds for ϕ ∈ V.

Now, we define a weak solution to the state equation (11b).

Definition 5. A weak solution of (11b) is a function y ∈ V satisfying

〈A(y), ϕ〉V′ ,V = 〈bµ, ϕ〉V′ ,V for all ϕ ∈ V. (12)

The following result is proved, e.g., in ([26] Section 4.2.3).

Math. Comput. Appl. 2021, 26, 32 10 of 23

Proposition 1. For a fixed parameter µ ∈ Rm, there exists a unique solution y ∈ V to (11b). This
solution is even continuous on Ω, and for a constant c∞ it holds that

‖y‖V + ‖y‖C(Ω) ≤ c∞

(
‖g‖Lr(Γ) +

∥∥∥ f +
m

∑
i=1

µiξi

∥∥∥
H

)
.

Remark 5. We define the state space Y = V ∩ C(Ω), which is a Banach space endowed with the
natural norm

‖ϕ‖Y = ‖ϕ‖V + ‖ϕ‖C(Ω) for ϕ ∈ Y.

Motivated by Proposition 1, we define the parameter-to-state mapping S : Pad → Y as follows:
For a given parameter µ ∈ Pad, the function y = S(µ) ∈ Y is the solution to (11b). It follows by
standard arguments that S is continuously Fréchet-differentiable, see ([23] Sections 2 and 4). ♦

3.3. Reduced Formulation and Adjoint Approach

Utilizing the parameter-to-state mapping S , we define the reduced cost functional

Ĵ(µ) = J(S(µ), µ) =

 Ĵ1(µ)
...

Ĵk(µ)

 for µ ∈ Pad

with
Ĵi(µ) =

1
2

∫
Ω

∣∣(S(µ))(x)− ydi (x)
∣∣2 dx for 1 ≤ i ≤ k− 1

and Ĵk(µ) =
m
∑

j=1
|µj − µd

j |2/2. Now, the reduced problem is given as

min Ĵ(µ) s.t. µ ∈ Pad. (13)

If µ̄ ∈ Pad is a locally optimal solution to (13), then the pair (S(µ̄), µ̄) is a locally optimal
solution to (11). Conversely, if (S(µ̄), µ̄) ∈ Y× Pad solves (11) locally, the parameter µ̄ is a
locally optimal solution to (13).

To apply the subdivision algorithm, the reduced objective function Ĵ has to be Fréchet-
differentiable, following immediately from the fact that the parameter-to-state operator S
is Fréchet-differentiable, cf. Remark 5. The gradient of Ĵ can be expressed by introducing
adjoint variables. For that purpose, we define the operators Bi : V×V → V′, 1 ≤ i ≤ k− 1,
as

〈Bi(p, y), ϕ〉V′ ,V =
∫

Ω
c∇p · ∇ϕ +

(
b + 3dy2)pϕ dx +

∫
Γ

pϕ dx−
∫
G

(y− ydi)ϕ dx

for p, y, ϕ ∈ V. Next, we define adjoint variables.

Definition 6. Let a parameter µ ∈ Pad be given and y(µ) = S(µ) ∈ Y. For every i ∈ {1, . . . , k−
1}, we call the solution pi(µ) ∈ V to

〈Bi(pi(µ), y(µ)), ϕ〉V′ ,V = 0 for all ϕ ∈ V (14)

the adjoint variable associated with the objective Ĵi.

Remark 6. (a) Notice that (14) is the weak formulation of the elliptic problem

−c∆pi(µ) +
(
b + 3dy(µ)2)pi(µ) = y(µ)− ydi in Ω,

c
∂pi
∂n

(µ) + pi(µ) = 0 on Γ
(15)

Math. Comput. Appl. 2021, 26, 32 11 of 23

for i = 1, . . . , k− 1.
(b) Applying the Lax–Milgram lemma (see, e.g., ([26] Section 2)) one can show that (14) has a

unique solution pi(µ) ∈ V for all µ ∈ Pad and i = 1, . . . , k− 1. ♦

Now, we can express the gradient of the reduced cost functional as follows:

∇ Ĵi(µ) =

∫

Ω ξ1 pi(µ)dx
...∫

Ω ξm pi(µ)dx

 for 1 ≤ i ≤ k− 1, ∇ Ĵk(µ) = µ− µd,

where y(µ) ∈ Y and pi(µ) ∈ V, i ∈ {1, . . . , k− 1}, solve (12) and (14), respectively.

3.4. Finite Element (FE) Galerkin Discretization

Let us briefly introduce a standard finite element (FE) method based on a triangulation
of the spatial domain Ω. Here, we utilize piecewise linear FE ansatz functions ϕ1, . . . , ϕN ∈
V, which are linearly independent. We define the finite-dimensional subspace VN =
span {ϕ1, ..., ϕN} ⊂ V supplied with the same topology as in V.

Next, we replace (12) by a FE Galerkin scheme: For each µ ∈ Pad, the FE solution
yN(µ) ∈ VN solves

〈A(yN(µ)), ϕi〉V′ ,V = 〈bµ, ϕi〉V′ ,V for i = 1, . . . , N. (16)

It follows by the same arguments as for (12) that the FE problem (16) has a unique solution
yN = yN(µ) for every µ ∈ Pad. Therefore, the parameter-to-state FE mapping SN : Pad →
VN , µ 7→ SN(µ) = yN(µ) is well defined. For yN ∈ VN there exist coefficients yN

i ,
i = 1, . . . , N, satisfying

yN =
N

∑
i=1

yN
i ϕi for x ∈ Ω. (17)

Inserting (17) into (16), we can express (16) as a nonlinear algebraic system. For that
purpose, we introduce the N × N-matrices

K =
((∫

Ω∇ϕj · ∇ϕi dx
))

, M =
((∫

Ω ϕj ϕi dx
))

, Q =
((∫

Γ ϕj ϕi ds
))

,

the N-vectors

yN =
(
yN

i
)
, Fµ =

(∫
Ω

(
f +

m
∑

j=1
µjξ j

)
ϕi dx

)
, G =

(∫
Γ gϕi ds

)
,

and the nonlinearity function H : RN → RN given as

H(v) =
(∫

Ω

(
∑N

j=1 vj ϕj
)3

ϕi dx
)

for v =
(
v1, . . . , vN

)
∈ RN .

Inserting (17) into (16), we end up with the following nonlinear system:(
cK + bM + Q

)
yN + dH(yN) = Fµ + G ∈ RN . (18)

Remark 7. The difficulty of (18) lies in the fact that we cannot assemble H(yN) efficiently in
terms of a matrix-vector multiplication. Therefore, we use mass lumping to compute H(yN)
approximately. For an introduction into mass lumping see, e.g., ([27] Section 15) or ([28] Section
17.2). With that we can write (18) as a root finding problem of(

cK + bM + Q
)
yN + dM̃(yN)3 = Fµ + G ∈ RN (19)

Math. Comput. Appl. 2021, 26, 32 12 of 23

with (yN)3 = ((yN
i)3)1≤i≤N and the lumped mass matrix M̃ defined by

M̃kj := δkj
N
∑

l=1
Mkl .

Further details can be found in [23,29]. Let us refer to in [30], where mass lumping is utilized in
optimal control. ♦

Now, the FE objectives are given as

ĴN
i (µ) =

1
2

∫
Ω

∣∣SN(µ)− ydi
∣∣2 dx for i = 1, ..., k− 1, ĴN

k (µ) =
m

∑
j=1

∣∣µj − µd
j
∣∣2.

3.5. Reduced-Order Modelling (ROM)

To generate the Pareto-critical set of the MOP (11), we need to evaluate the reduced
objectives Ĵi, i = 1, . . . , k, and their gradients many times. Therefore, the state and adjoint
equations have to be solved numerically very often. Therefore, the use of ROM is a suitable
option. In this paper, we will use the Reduced Basis (RB) method. The main idea is to
construct a low-dimensional (i.e., `� N) subspace V` of the FE space VN spanned by FE
solutions of the state and adjoint equation for appropriately chosen parameters µ ∈ Pad.
Here, this strategy is realized by greedy algorithms. We refer to the works in [17,18,31]
for a general explanation and to ([23] Section 3.2) for our specific problem (11). This is an
iterative procedure where in each iteration FE solutions of the state and adjoint equation
at a specific parameter value are added to the basis. An essential ingredient of greedy
algorithms is the choice of an error indicator η`(µ). Here, we use the maximal true error
between the FE and the ROM gradients, i.e., we set

η`(µ) := max
1≤i≤k

‖∇ ĴN
i (µ)−∇ Ĵ`i (µ)‖2. (20)

Our subdivision scheme is based on gradient information. To be able to generate P`1 or P`2
for the approximation of P, we have to ensure that the approximated objective function
Ĵ` based on the ROM model satisfies the inequality in (5). The idea is to generate a new
basis element in every step until the maximum error η`(µ) on a discrete training set Strain,
which approximates Pad good enough, is smaller than a tolerance εtol . For more details, see
Algorithm 4.

As V` is a subset of V, we endow V` with the V-topology. Due to ψj ∈ VN (1 ≤ j ≤ `),
there exists a coefficient matrix Ψ ∈ RN×` such that

ψj(x) =
N

∑
i=1

Ψij ϕi(x) for x ∈ Ω. (21)

Now, we replace (16) by an RB Galerkin scheme: For each µ ∈ Pad, the RB solution
y`(µ) ∈ V` solves

〈A(y`(µ)), ψi〉V′ ,V = 〈bµ, ψi〉V′ ,V for i = 1, . . . , `. (22)

We suppose that (22) has a unique solution y` = y`(µ) for every µ ∈ Pad. Therefore, the
parameter-to-state RB mapping S` : Pad → V`, µ 7→ S`(µ) = y`(µ) is well defined.

Inserting (21) and y`(µ) = ∑N
i=1 y`

i (µ)ψi into (22), we derive the nonlinear algebraic
system (cf. (18))(

cK` + bM` + Q`
)
+ dΨ>H

(
Ψy`

)
= F`

µ + G` ∈ Rl (`� N) (23)

with the `× ` matrices K` = Ψ>KΨ, M` = Ψ>MΨ, and Q` = Ψ>QΨ and the `-vectors
F`

µ = Ψ>Fµ and G` = Ψ>G.

Math. Comput. Appl. 2021, 26, 32 13 of 23

Algorithm 4: Greedy algorithm.

Require : Tolerance εtol > 0, error indicator η`(µ), discrete training set Strain;
Return : RB space V` and basis Ψ`;

1 Set V`
0 := {0}, Ψ0 := ∅, ` := 0, M := 0;

2 while max
µ∈Strain

η`(µ) > εtol and M ≤ |Strain| do

3 Set µM+1 ∈ argmax {η`(µ) : µ ∈ Strain};
4 ψ̃

p
M+1 := pN(µM+1) and ψ̃

y
M+1 := yN(µM+1);

5 Perform Gram–Schmidt orthonormalization (GS) of ψ̃
p
M+1 against ΨM and get

ψ
p
M+1;

6 Set ΨM+1 := {ΨM, ψ
p
M+1}, V`

M+1 := VN`
M ⊕ {ψ

p
M+1};

7 if ψ̃
y
M+1 is linearly independent of V`

M+1 then
8 Perform GS orthonormalization of ψ̃

y
M+1 against ΨM+1 and get ψ

y
M+1;

9 Set ΨM+2 := {ΨM+1, ψ
y
M+1}, V`

M+2 := VN`
M+1 ⊕ {ψ

y
M+1} and M := M + 2;

10 else
11 Set M := M + 1;
12 end
13 end

Remark 8. As mentioned in Remark 7, we apply mass lumping to evaluate the nonlinear function
H more efficiently. With that we can write (23) as a root finding problem of(

cK` + bM` + Q`
)
y` + dM̃`

(
Ψy`

)3
= F`

µ + G` ∈ Rl (`� N) (24)

with (Ψy`)3 = (((Ψy`)3
i))1≤i≤N and the ` × N matrix M̃` = Ψ>M̃. However, in the RB

Galerkin scheme the evaluation of the nonlinearity is still as costly as in the FE case. Here, discrete
empirical interpolation (DEIM) is applied, cf. [19,20]. We skip the detailed description here and
refer the reader to ([23] Section 3.2). ♦

3.6. Convergence Analysis

We prove the convergence of the RB solution with mass lumping to the weak solution
of the state and adjoint equation.

Remark 9. As the FE space is a finite dimensional space, the error for the state and adjoint equation
converges for increasing dimension of the RB space to zero. Therefore, the RB solution converges for
increasing accuracy in the Greedy algorithm to the FE solution. We skip a detailed description of
the proof here and refer the reader to [23, Section 3.2]. ♦

Theorem 4. Let (Sj)j ⊂ Pad with Sj ⊆ Sj+1 be a growing sequence of training sets and choose a
monotone sequence (ε j)j ⊂ R>0 satisfying

ε j → 0 for j→ ∞ and ε j ≥ ε j+1.

Then, we get

lim sup
j→∞

{
‖y(µ)− y`(µ)‖V

∣∣ µ ∈ Pad

}
= 0, lim sup

j→∞

{
‖p(µ)− p`(µ)‖V

∣∣ µ ∈ Pad

}
= 0.

Proof. Let µ ∈ Pad be an arbitrary parameter. It holds that

‖y(µ)− y`(µ)‖V ≤ ‖y(µ)− yN(µ)‖V + ‖yN(µ)− y`(µ)‖V

with N > `. From Theorem A1 (see Appendix A), we infer that the first summand

Math. Comput. Appl. 2021, 26, 32 14 of 23

converges to zero for increasing N. For the second summand, we refer the reader to ([23]
Section 3.2.5); in this section we proved the convergence of the RB solution to the FE
solution. For the adjoint equation, we can do the same and the claim follows.

4. Numerical Experiments

In this section, we use our algorithm to solve multiobjective optimization problems
with PDE constraints and interpret the numerical results. All computations were executed
on a computer with a 2.9 GHz Intel Core i7 CPU, 8 GB of RAM, and an Intel HD Graphic
4000 1536 MB GPU. The algorithms were implemented in Matlab R2017b. For the subdivi-
sion method, we used the implementation from https://math.uni-paderborn.de/en/ag/
chair-of-applied-mathematics/research/software.

In this example, we will numerically investigate the application of the modified
subdivision algorithm presented in Section 2.5 to the PDE-constrained multiobjective
optimization problem using the RB-DEIM solver from Section 3.5. For the underlying PDE,
we set d = 2, Ω = (0, 1)2 with elements x = (x1, x2), Pad = [−2, 2]2, and b = c = d = 1;
the right-hand side f (x) = x2

1 + x2
2 − 4 + (x2

1 + x2
2)

3, m = 2, ξ1(x) = −25 · 1x1>0.5(x), and
ξ2(x) = 25 · 1x1≤0.5(x); and the boundary condition g(x) = 2 · 1x1=1(x) + 2 · 1x2=1(x) +
x2

1 + x2
2. This leads to the following PDE:

− ∆y + y + y3 = f + µ1ξ1 + µ2ξ2 in Ω,
∂y
∂n

+ y = g on ∂Ω. (25)

In Figure 1, the corresponding solutions of the state equation are shown for three values of
µ.

(a) (b) (c)

Figure 1. FE solutions of (25) for parameters (a) µ = (0, 0), (b) µ = (0, 1) and (c) µ = (1, 0).

In [23], we have already observed that the error between the FE- and RB-DEIM-
solution of the state and adjoint equation decreases if the FE grids get finer. We skip the
detailed description here and refer the reader to ([23] Section 5).
Notice that y(x) = x2

1 + x2
2 solves (25) for µ = (0, 0). For the FE-solver, we used linear

finite elements with ∆Hmax = 0.04 and the finite elements have 762 degrees of freedom.
We choose the following two objective functions:

Ĵ1(µ) =
1
2

∫
Ω
|y(µ)− yd|2 dx, Ĵ2(µ) =

1
2

2

∑
j=1
|µj − µd

j |2

with µd = (1, 1). For the desired state yd, we take the FE solution for µ = 0, i.e., yd = yN(0).
Thus, yd = ∑N

i=1 yd
i ϕi is a piecewise linear approximation of x2

1 + x2
2. The associated FE

objectives are now given as

ĴN
1 (µ) =

1
2
(
yN(µ)− yd

)>M
(
yN(µ)− yd

)
, ĴN

2 (µ) =
1
2

2

∑
j=1
|µj − µd

j |2

https://math.uni-paderborn.de/en/ag/chair-of-applied-mathematics/research/software
https://math.uni-paderborn.de/en/ag/chair-of-applied-mathematics/research/software

Math. Comput. Appl. 2021, 26, 32 15 of 23

with yd = (yd
i)1≤i≤N . The gradients are

∇ ĴN
1 (µ) =

(
pN(µ)> F̄1
pN(µ)> F̄2

)
, ∇ ĴN

2 (µ) = µ− µd

where pN(µ) = ∑N
j=1 pN

j (µ)ϕj is the FE solution to (15), pN(µ) = (pN
j (µ))1≤j≤N and

F̄i = (
∫

Ω ϕjξi dx)1≤j≤N . The associated RB objective functions have the form

Ĵ`1(µ) =
1
2
(
y`(µ)− yd,`)>M`

(
y`(µ)− yd,`), Ĵ`2(µ) =

1
2

m

∑
j=1
|µj − µd

j |2

with yd,` = Ψ>yd. In [23], we have already observed good agreement between the ap-
proximated Pareto critical sets with the FE- and RB-DEIM-solver, if the error between the
gradients is sufficiently small. However, we cannot always guarantee this agreement. Thus,
we will instead use the supersets P`1 and P`2 from Section 2.3 for the approximation of P
(and Pc), which is only based on the reduced objective function Ĵ` and the error bounds ε.
To generate P`1, we compute the steepest descent direction for all components of Ĵ`. Similar
to Algorithm 1, we first calculate αk as solution of (4) for µk. Then, the descent direction is
vk := −DĴ`(µk)

>αk. As a stopping condition, we choose σ = ‖ε‖∞ and set a(µk) = µk if it
holds that

‖DĴ`(µk)
>αk‖2 = ‖vk‖2 < σ = ‖ε‖∞.

To generate P`2, we use Algorithm 2.
To save computational time during the modified subdivision algorithm, we calculate

max
1≤i≤k

‖∇ ĴN
i (µ)−∇ Ĵ`i (µ)‖2

before the algorithm starts (i.e., in an offline phase) on a training set Ptrain, which ap-
proximates Pad and store these errors. During the subdivision algorithm, we use them to
generate the new εl

i+1 faster and without calculating the FE solution again.
To see a significant difference between the modified subdivision algorithm and the sub-
division algorithm and P`2 and P`1, we need to have a big error between the gradients. To
achieve this, we choose a rough training set

Strain =
{
(−2 + 0.51k,−2 + 0.427j)>

∣∣ (k, j) ∈ {0, ..., 7} × {0, ..., 9}
}

with |Strain| = 80. For the Greedy algorithm, we choose the tolerance εtol = 0.06 and
the true error η`(µ) := max1≤i≤k ‖∇ ĴN

i (µ)−∇ Ĵ`i (µ)‖2 as error indicator, for the DEIM
algorithm we choose the tolerance ε = 0.5.
With these settings, we generate an RB-basis with six elements and a DEIM-basis with 18
elements. This leads to the following estimations for the gradients of ĴN and Ĵ`:

max
µ∈Pad

‖∇ ĴN
1 (µ)−∇ Ĵ`1(µ)‖2 ≈ max

µ∈Ptrain

‖∇ ĴN
1 (µ)−∇ Ĵ`1(µ)‖2 ≈ 0.0491 = ε1,

max
µ∈Pad

‖∇ ĴN
2 (µ)−∇ Ĵ`2(µ)‖2 = max

µ∈Pad

‖∇ Ĵ2(µ)−∇ Ĵ`2(µ)‖2 = 0 = ε2.

To generate these estimations, we chose a training set Ptrain ⊂ Pad with 3105 equally
distributed test points and generate the error for these points. Thus, we have

ε0 =

(
0.0491

0

)
.

Now, we test the subdivision and the modified subdivision algorithm with the following
conditions. To compute the descent direction, we use the Matlab function fmincon and

Math. Comput. Appl. 2021, 26, 32 16 of 23

solve (4) or (7). The algorithm stops when the box size is small enough, which is after 25
iteration steps in our case. In every step, we halve the boxes. We choose five sample points
in each box during the first five iteration steps, four sample points in the next five iteration
steps, three sample points for the iteration steps ten to 14, two sample points for the next
five steps, and one sample points for the last five iteration steps, see Remark 4. Figure 2
shows the generated approximated Pareto sets for the FE-solver after 20 and 25 iteration
steps.

(a) (b)

Figure 2. Pareto-critical set Pc in iteration step (a) 20 and (b) 25 for the FE-solver.

The results with the subdivision algorithm and RB-DEIM-solver are shown in Figure 3.

(a) (b)

Figure 3. (a) P`1 and (b) P`2 generated with the subdivision algorithm.

The modified subdivision algorithm and RB-DEIM-solver lead to the results plotted
in Figure 4.

(a) (b)

Figure 4. (a) P`1 and (b) P`2 generated with the modified subdivision algorithm.

The runtime, number of boxes and number of function and gradient evaluations
needed in iteration step 10, 15, 20, and 25 are shown in Tables 1–5. The total runtime and
number of function and gradient evaluations needed for the different methods and the
speed-up are shown in Table 6.

Math. Comput. Appl. 2021, 26, 32 17 of 23

Table 1. The performance of the subdivision algorithm with the FE-solver and the steepest descent
method.

FE

It. Step Time [s] # Grad. Solves # Del. Boxes # Boxes

10 370.7 6872 30 64
15 1077.1 16786 166 322
20 1239.1 20092 938 1388
25 3364.2 64721 2567 4749

Table 2. Subdivision algorithm with the steepest descent method.

RB-DEIM

It. Step Time [s] # Grad. Solves # Del. Boxes # Boxes ε

10 18.8 6809 32 64 (0.0491, 0)
15 42.4 14279 168 326 (0.0491, 0)
20 44.3 13781 622 3412 (0.0491, 0)
25 848.6 196405 149 97551 (0.0491, 0)

Table 3. Subdivision algorithm with the modified descent direction.

RB-DEIM

It. Step Time [s] # Grad. Solves # Del. Boxes # Boxes ε

10 21.0 6792 31 63 (0.0491, 0)
15 43.1 15546 167 315 (0.0491, 0)
20 38.0 12655 878 1438 (0.0491, 0)
25 289.5 64606 233 30607 (0.0491, 0)

Table 4. Modified subdivision algorithm with the steepest descent method.

RB-DEIM

It. Step Time [s] # Grad. Solves # Del. Boxes # Boxes ε

10 18.5 6829 32 64 (0.041, 0)
15 44.1 16307 170 318 (0.0084, 0)
20 45.6 16677 919 1357 (0.0072, 0)
25 121.2 29811 560 12230 (0.0072, 0)

Table 5. Modified subdivision algorithm with the modified descent direction.

RB-DEIM

It. Step Time [s] # Grad. Solves # Del. Boxes # Boxes ε

10 18.7 6805 31 263 (0.041, 0)
15 44.1 16459 168 318 (0.0084, 0)
20 49.7 18266 937 1329 (0.0072, 0)
25 109.7 37170 1615 4129 (0.0043, 0)

Math. Comput. Appl. 2021, 26, 32 18 of 23

Table 6. Total runtime, number of function, and gradient evaluations for the different methods and
the speed-up.

Algorithm Solver Method Time [min] Speed-Up # Grad. Solves

subdivision FE steep. desc. 495.83 - 610728
subdivision RB-DEIM steep. desc. 41.77 11.9 622034
subdivision RB-DEIM mod. desc. 24.77 20.0 390362

mod. subdivision RB-DEIM steep. desc. 21.00 23.6 372551
mod. subdivision RB-DEIM mod. desc. 21.91 22.6 412667

The Greedy algorithm and DEIM together take 14.06 s in the offline phase. To ensure
the error ε (cf. (5)) for the gradients on the training set Ptrain, it takes 151.13 s. It follows from
Figures 3 and 4 that P`2 is significantly smaller than P`1 for the subdivision algorithm as well
as for the modified subdivision algorithm. Therefore, we have a much better approximation
for Pc if we choose P`2 instead of P`1. If we compare the two different subdivision algorithms,
we notice that with the modified subdivision algorithm we have a better approximation of
Pc than with the subdivision algorithm.

The reason for this is that in the modified subdivision algorithm we have a monotoni-
cally decreasing sequence εl . In Figure 5, the error between ∇ ĴN

1 and ∇ Ĵ`1 is plotted on the
parameter set Pad. The black markers are some points on the Pareto critical set Pc. It turns
out that the difference between the two gradients is significantly smaller near Pc than in
other regions of Pad. Due to this, in the modified subdivision algorithm, the sequence εl

decreases noticeably so that it is useful to update ε after each iteration step. As we have
already mentioned, P`2 is a better approximation of Pc. If P`2 is generated by the modified
subdivision algorithm, the result is even better. Comparing Figures 2b and 4b, there is no
significant difference between the two sets. Therefore, the modified subdivision algorithm
yields a good approximation P`2 for Pc, although the error ε1 is not small.

Figure 5. Difference ‖∇ ĴN
1 (µ)−∇ Ĵ`1(µ)‖2 for µ ∈ Pad.

Regarding the computational time (cf. Tables 1–6), we notice that in the first 20
iterations the four methods take almost the same time. In these iteration steps, the FE-
solver takes between 19 and 30 times more time for one iteration step than the four RB-based
methods. Only in the subsequent iteration steps a significant difference in the four RB-
based methods appears. For these iteration steps, the FE-solver takes between 3.9 and
30.8 times as much time as one of the four methods for one iteration step. We notice that
the computation of P`1 takes around two times as much time as the computation of P`2
with the subdivision algorithm. The main reason for this is the much larger number of
function and gradient evaluations that we have for P`1. This, in turn, can be attributed to the
significantly larger number of boxes for P`1. If we use the modified subdivision algorithm,
the computation of P`2 takes slightly more time than the computation of P`1. The main

Math. Comput. Appl. 2021, 26, 32 19 of 23

reason for this is again the larger number of function and gradient evaluations. Unlike
the previous case, this can not be lead back to the number of boxes, but probably to the
calculation of the modified descent method, which requires more function and gradient
evaluations. Nevertheless, the difference in the computational time is marginal (a factor
about 1.04) for the modified subdivision algorithm. For P`1, we notice another behavior:
Here, the generation of P`1 with the modified subdivision algorithm is 2 times faster than
with the subdivision algorithm. This is mainly because of the larger number of function
evalutions, which is due to the larger number of boxes. The FE-solver takes approximately
23.6 times as much time as the computation of P`1 and approximately 22.6 times as much as
the time as the computation of P`2 with the modified subdivsion. This is another advantage
of the modified subdivision algorithm. As we get a better approximation in this algorithm,
we have fewer boxes in the iteration steps, and therefore we have a smaller number of
function and gradient evaluations than we have for the subdivision algorithm. Finally, we
see that the modified subdivision algorithm works better and faster than the subdivision
algorithm. As P`2 is a tighter approximation of Pc, it is better to generate P`2 rather than P`1.

5. Conclusions

In this article, we present a way to solve multiobjective parameter optimization
problems of semilinear elliptic PDEs by combining an RB approach and DEIM with the
set-oriented method based on gradient evaluations. To deal with the error introduced by
the surrogate model, we derived an additional condition for the descent direction, which
allows us to consider the errors for the objective functions independently and derive a
superset P`2 of the Pareto-critical set Pc. To get an even tighter superset, we update these
error bounds in our subdivision algorithm after each iteration step. To summarize the
numerical results, we first investigated the influence of the error bounds for the gradients
of the objective functions. By individually adapting the components of the error bounds,
we obtained a tighter covering of the Pareto critical set. When we additionally adjusted the
error bounds in each iteration step, the result became even tighter and almost coincided
with the exact solution of the MOP (solution with the FE-solver and the steepest descent
method). Furthermore, we compared the computational time for each method. The FE-
solver needed between 11.9 times and 23.6 times more time than the four different RB-based
methods we presented in this work. For future work, it could be interesting to improve the
results in ([23] Section 3.2.4) and to develop an efficient a posteriori error estimator for the
error in the objectives and their gradients, cf., e.g., [32–34]. These error bounds can then be
used in a weak greedy algorithm and beyond that for the error bounds which are needed
in the subdivision algorithm.

Author Contributions: The authors contributed equally to this work. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded partially by Deutsche Forschungsgemeinschaft grant number
Priority Programme 1962.

Acknowledgments: The authors gratefully acknowledge partial support by the German DFG-
Priority Program 1962. Furthermore, S. Banholzer acknowledges his partial funding by the Landes-
graduiertenförderung of Baden-Württemberg.

Conflicts of Interest: The authors declare no conflict of interest.

Math. Comput. Appl. 2021, 26, 32 20 of 23

Abbreviations
The following abbreviations are used in this manuscript:

MOP Multiobjective optimization problem
DEIM Discrete Empirical Interpolation Method
FE Finite Element
GS Gram–Schmidt
KKT Karush–Kuhn–Tucker
PDE Partial-differential equation
POD Proper Orthogonal Decomposition
RB Reduced Basis
ROM Reduced Order Modeling

Appendix A. Mass Lumping

We follow the work in [35]. Let Ω ⊂ Rd, d ∈ {1, 2, 3} be an open, bounded Lipschitz
domain, e.g., Ω = (0, 1)d. We set H = L2(Ω) and V = H1(Ω), where V is endowed with
the inner product

〈ϕ, ϕ〉V =
∫

Ω
∇ϕ · ∇ϕ dx +

∫
Γ

ϕϕ ds for ϕ, ϕ ∈ V

and its induced norm. Let T N denote an underlying triangulation of Ω and V(T N) =
{z1, ..., zN} denote the set of interior vertices of T N , and let V(τ) be the set of vertices
belonging to τ ∈ T N and VN = span{ϕ1, .., ϕN} be the FE space generated by first order
Lagrange elements. It holds that ϕj(zl) = δjl .

Define for zj ∈ V(T N) a lumped mass region Ωj by joining the centroids of the
triangles, which have zj as a common vertex, to the midpoint of the edges, which have zj

as a common extremity. We define the two sets

VN =
{

v ∈ C(Ω)
∣∣ v|τj ∈ P1 for all τi ∈ T N} ⊂ V,

HN =
{

v ∈ L∞(Ω)
∣∣ v =

N

∑
j=1

1Ωj vj, vj ∈ R
}
⊂ H

and the operator

RN : C(Ω)→ HN , RN(ω) =
N

∑
j=1

1Ωj ω(zj).

We consider the following semi-linear elliptic partial differential equation:

− ∆y + f (y) = h in Ω,
∂y
∂n

+ y = g on Γ = ∂Ω. (A1)

A weak solution of (A1) is a function y ∈ Y = V ∩ L∞(Ω) such that∫
Ω
∇y · ∇ϕ + f (y)ϕ dx +

∫
Γ

yϕ ds =
∫

Ω
hϕ dx +

∫
Γ

gϕ ds for all ϕ ∈ V. (A2)

The function f is supposed to be sufficiently smooth, bounded, and measurable for a fixed
y; monotonically increasing; and satisfies f ≥ 0. Moreover, h ∈ H and g ∈ Lr(Γ) with
s > d− 1. Then, there exists a unique solution y ∈ Y of (A1), c.f. ([26], Section 4.2.3), for
instance. This solution is even continuous, and for a constant c∞ it holds that

‖y‖V + ‖y‖C(Ω) ≤ c∞
(
‖h‖H + ‖g‖Lr(Γ)

)
.

Math. Comput. Appl. 2021, 26, 32 21 of 23

The lumped mass finite element approximation of (A1) is to find yN ∈ VN such that∫
Ω
∇yN · ∇ϕ + f (RN(yN))ϕN dx +

∫
Γ

yN ϕ ds =
∫

Ω
hϕ dx +

∫
Γ

gϕ ds (A3)

holds for all ϕ ∈ VN and for ϕN = RN(ϕ).

Remark A1. For any v ∈ C(Ω), it holds thatRN(v) = ∑N
j=1 1Ωj v(zj). Therefore, RN(v)→ v

for n→ ∞, which implies
‖RN(v)− v‖H → 0 for n→ ∞.

♦

Theorem A1. Assume that y ∈ V and yN ∈ VN are solutions of (A2) and (A3), respectively.
Then, it holds that

‖y− yN‖V → 0 for N → ∞.

Proof. Because y solves (A2), it holds that y ∈ C(Ω). Let yp ∈ VN be the interpolation
polynomial of y in VN . Then, it follows thatRN(yp) = RN(y). Utilizing (A3), we derive

−
∫

Ω
∇yN · ∇yp −

∫
Γ

yNyp ds =
∫

Ω
f (RN(yN))RN(y)− hyp dx−

∫
Γ

gyp ds. (A4)

Let ε > 0 be an arbitrary tolerance. For N large enough, we have ‖y− yp‖V < ε. Further-
more, we have ‖RN(y)− y‖H < ε and ‖RN(yp − yN)− (yp − yN)‖H < ε. From (A4), we
conclude

‖yN − y‖2
V =

∫
Ω

∣∣∇(yN − y)
∣∣2 dx +

∫
Γ
|yN − y|2 ds

=
∫

Ω

(
∇(yN − y) · ∇(yp − y) +∇(yN − y) · ∇yN +∇(y− yN) · ∇yp

)
dx

+
∫

Γ

(
(yN − y)(yp − y) + (yN − y)yN + (y− yN)yp

)
ds

=
∫

Ω

(
∇(yN − y) · ∇(yp − y) +∇(yN − y) · ∇yN +∇y · ∇yp

)
dx

+
∫

Γ

(
(yN − y)(yp − y) + (yN − y)yN + yyp

)
ds

+
∫

Ω

(
f (RN(yN))RN(y)− hyp

)
dx−

∫
Γ

gyp ds.

Utilizing ‖y − yp‖V < ε, ‖RN(y) − y‖H < ε, and ‖RN(yp − yN) − (yp − yN)‖H < ε, it
follows that∫

Ω

(
f (RN(yN))RN(y)

)
dx = 〈 f (RN(yN)),RN(y)〉H

= 〈 f (RN(yN))− f (RN(y)),RN(y)−RN(yN)〉H
+ 〈 f (RN(yN)),RN(yN)〉H + 〈 f (RN(y)),RN(y)−RN(yN)〉H
≤ 〈 f (RN(yN)),RN(yN)〉H + 〈 f (RN(y)),RN(y)−RN(yN)〉H
= 〈 f (RN(y)),RN(y− yN)− (y− yN)〉H + 〈 f (y), y− yN〉H
+ 〈 f (RN(y))− f (y), (y− yN)〉H + 〈 f (RN(yN)),RN(yN)〉H
≤ c
(
‖y− yp‖H + ‖RN(yp − yN)− (yp − yN)‖H

)
+ 〈 f (y), y− yN〉H

+ c ‖RN(y)− y‖H‖y− yN‖H + 〈 f (RN(yN)),RN(yN)〉H
≤ c
(

2ε + ε ‖y− yN‖H

)
+ 〈 f (y), y− yN〉H + 〈 f (RN(yN)),RN(yN)〉H .

Math. Comput. Appl. 2021, 26, 32 22 of 23

Inserting this estimation into the equality before thus gives

‖y− yN‖2
V ≤ ε ‖y− yN‖2

V +
‖yp − y‖2

V
4ε

+ 〈∇yN ,∇(yN − y)〉Hd + 〈∇yp,∇y〉Hd

+ 〈yN − y, yp − y〉L2(Γ) + 〈y
N , yN − y〉L2(Γ) + 〈y

p, y〉L2(Γ) − 〈y
p, h〉H

− 〈yp, g〉L2(Γ) + cε + cε ‖y− yN‖H + 〈g, y− yN〉L2(Γ) − 〈y, y− yN〉L2(Γ)

+ 〈h, y− yN〉H − 〈∇y,∇(y− yN)〉Hd + 〈 f (RN(yN)),RN(yN)〉H

≤ cε ‖y− yN‖2
V +

ε2

4ε
+ cε 〈∇yN ,∇y〉Hd + 〈∇yp,∇y〉Hd

+ 〈g, y− yp〉L2(Γ) + 〈h, y− yp〉H + 〈yN , yp − y〉L2(Γ) − 〈∇y,∇(y− yN)〉Hd

≤ cε + cε ‖y− yN‖2
V

with Hd = ⊗d
i=1H. In the last inequality, we used the fact that yp → y for N → ∞.

Therefore, we get

‖y− yN‖2
V ≤ c0ε

and it follows ‖y− yN‖V → 0 for N → ∞.

Remark A2. For yN ∈ VN and j = 1, ..., N we find

∫
Ω

f (RN(yN))RN(ϕj)dx =
N

∑
i=1

∫
Ωi

f
(N

∑
l=1

yN
l 1Ωl

)
1Ωj dx

=
∫

Ωj
f
(N

∑
l=1

yN
l 1Ωl

)
dx = f (yN

j)
∫

Ωj
1Ωj dx

= f (yN
j) ∑

τ∈T N :zj∈V(τ)

|τ|
n + 1

= M̃jj f (yN
j).

For the last step we use

M̃jj =
N

∑
k=1

Mjk = ∑
τ∈T N :zj∈V(τ)

∫
τ

ϕj dx = ∑
τ∈T N :zj∈V(τ)

|τ|
n + 1

.

A detailed proof for this equality can be found in ([36], Appendix A). ♦

References
1. Ehrgott, M. Multicriteria Optimization; Springer: Berlin/Heidelberg, Germany, 2005.
2. Iapichino, L.; Ulbrich, S.; Volkwein, S. Multiobjective PDE-constrained optimization using the reduced-basis method. Adv.

Comput. Math. 2017, 43, 945–972. [CrossRef]
3. Miettinen, K. Nonlinear Multiobjective Optimization; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1999.
4. Zadeh, L. Optimality and non-scalar-valued performance criteria. IEEE Trans. Autom. Control 1963, 8, 59–60. [CrossRef]
5. Deb, K. Multi-Objective Optimization Using Evolutionary Algorithms; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2001.
6. Fliege, J.; Graña Drummond, L.M.; Svaiter, B.F. Netwon’s Method for multiobjective optimization. SIAM J. Optim. 2008, 20,

602–626. [CrossRef]
7. Fliege, J.; Svaiter, B.F. Steepest descent methods for multicriteria optimization. Math. Methods Oper. Res. 2000, 51, 479–494.

[CrossRef]
8. Schäffler, S.; Schultz, R.; Weinzierl, K. Stochastic method for the solution of unconstrained vector optimization problems. J. Optim.

Theory Appl. 2002, 114, 209–222. [CrossRef]
9. Banholzer, S.; Gebken, B.; Dellnitz, M.; Peitz, S.; Volkwein, S. ROM-based multiobjective optimization of elliptic PDEs via

numerical continuation. arXiv 2019, arXiv:1906.09075v1.
10. Hillermeier, C. Nonlinear Multiobjective Optimization: A Generalized Homotopy Approach; Birkhäuser: Cambridge, MA, USA, 2001.

http://doi.org/10.1007/s10444-016-9512-x
http://dx.doi.org/10.1109/TAC.1963.1105511
http://dx.doi.org/10.1137/08071692X
http://dx.doi.org/10.1007/s001860000043
http://dx.doi.org/10.1023/A:1015472306888

Math. Comput. Appl. 2021, 26, 32 23 of 23

11. Schütze, O.; Dell’Aere, A.; Dellnitz, M. On continuation methods for the numerical treatment of multi-objective optimization
problems. In Practical Approaches to Multi-Objective Optimization; Branke, J., Deb, K., Miettinen, K., Steuer, R.E., Eds.; Dagstuhl
Seminar Proceedings: Dagstuhl, Deutschland, 2005.

12. Beermann, D.; Dellnitz, M.; Peitz, S.; Volkwein, S. Set-oriented multiobjective optimal control of PDEs using proper orthogonal
decomposition. In Reduced-Order Modeling (ROM) for Simulation and Optimization: Powerful Algorithms as Key Enablers for Scientific
Computing; Springer International Publishing: Cham, Switzerland, 2018; pp. 47–72.

13. Dellnitz, M.; Schütze, O.; Hestermeyer, T. Covering Pareto sets by multilevel subdivision techniques. J. Optim. Theory Appl. 2005,
124, 113–136. [CrossRef]

14. Jahn, J. Multiobjective search algorithm with subdivision technique. Comput. Optim. Appl. 2006, 35, 161–175. [CrossRef]
15. Schütze, O.; Witting, K.; Ober-Blöbaum, S.; Dellnitz, M. Set oriented methods for the numerical treatment of multiobjective

optimization problems. In EVOLVE—A Bridge between Probability, Set Oriented Numerics and Evolutionary Computation; Tantar, E.,
Tantar, A.-A., Bouvry, P., Del Moral, P., Legrand, P., Coello Coello, C.A., Schütze, O., Eds.; Springer: Berlin/Heidelberg, Germany,
2013; Volume 447, pp. 187–219.

16. Schilders, W.H.; Van der Vorst, H.A.; Rommes, J. Model Order Reduction; Springer: Berlin/Heidelberg, Germany, 2008.
17. Hesthaven, J.S.; Rozza, G.; Stamm, B. Certified Reduced Basis Methods for Parametrized Partial Differential Equations; SpringerBriefs in

Mathematics: Heidelberg, Germany, 2016.
18. Patera, A.T.; Rozza, G. Reduced Basis Approximation and A Posteriori Error Estimation for Parametrized Partial Differential Equations.

MIT Pappalardo Graduate Monographs in Mechanical Engineering: Cambridge, MA, USA, 2007.
19. Chaturantabut, S.; Sorensen, D.C. Nonlinear model reduction via discrete empirical interpolation. SIAM J. Sci. Comput. 2010, 32,

2737–2764. [CrossRef]
20. Chaturantabut, S.; Sorensen, D.C. A state space estimate for POD-DEIM nonlinear model reduction. SIAM J. Numer. Anal. 2012,

50, 46–63. [CrossRef]
21. Gebken, B.; Peitz, S.; Dellnitz, M. A descent method for equality and inequality constrained multiobjective optimization problems.

In Numerical and Evolutionary Optimization—NEO 2017; Trujillo, L., Schütze, O., Maldonado, Y., Valle, P., Eds.; Springer: Cham,
Switzerland, 2017.

22. Graña Drummond, L.M.; Svaiter, B.F. A steepest descent method for vector optimization. J. Comput. Appl. Math. 2005, 175,
395–414. [CrossRef]

23. Reichle, L. Set-Oriented Multiobjective Optimal Control of Elliptic Non-Linear Partial Differential Equations Using POD Objectives
and Gradient. Master’s Thesis, University of Konstanz, Konstanz, Germany, 2020. Available online: http://nbn-resolving.de/urn:
nbn:de:bsz:352-2-1h6pp1cxptbap6 (accessed on 15 April 2021).

24. Dellnitz, M.; Hohmann, A. A subdivision algorithm for the computation of unstable manifolds and global attractors. Numer.
Math. 1997, 75, 293–316. [CrossRef]

25. Dautray, R.; Lions, J.-L. Mathematical Analysis and Numerical Methods for Science and Technology. Volume 2: Functional and Variational
Methods; Springer-Verlag: Berlin/Heidelberg, Germany, 2000.

26. Tröltzsch, F. Optimal Control of Partial Differential Equations: Theory, Methods and Applications; American Mathematical Society:
Providence, RI, USA, 2010; Volume 112.

27. Thomée, V. Galerkin Finite Element Methods for Parabolic Problems; Springer: Berlin/Heidelberg, Germany, 2006.
28. Zienkiewicz, O.C.; Taylo, R.L. The Finite Element Method, 5th ed.; Butterworth-Hienemann: Oxford, UK, 2000; Volume 3.
29. Brenner, S.; Scott, R. The Mathematical Theory of Finite Element Methods; Springer: Berlin/Heidelberg, Germany, 2008.
30. Rösch, A.; Wachsmuth, G. Mass lumping for the optimal control of elliptic partial differential equations. SIAM J. Numer. Anal.

2017, 55, 1412–1436. [CrossRef]
31. Quarteroni, A.; Manzoni, A.; Negri, F. Reduced Basis Methods for Partial Differential Equations; Springer: Berlin/Heidelberg,

Germany, 2016.
32. Grepl, M.A.; Maday, Y.; Nguyen, N.C.; Patera, A.T. Efficient reduced-basis treatment of nonaffine and nonlinear partial differential

equations. ESAIM Math. Model. Numer. Anal. 2007, 41, 575–605. [CrossRef]
33. Hinze, M.; Korolev, D. Reduced basis methods for quasilinear elliptic PDEs with applications to permanent magnet synchronous

motors. arXiv 2020, arXiv:2002.04288.
34. Rogg, S.; Trenz, S.; Volkwein, S. Trust-region POD using a-posteriori error estimation for semilinear parabolic optimal control

problems. Konstanz. Schriften Math. 2017, 359. Available online: https://kops.uni-konstanz.de/handle/123456789/38240
(accessed on 15 April 2021).

35. Zeng, J.; Yu, H. Error estimates of the lumped mass finite element method for semilinear elliptic problems. J. Comput. Appl. Math.
2012, 236, 993–2004. [CrossRef]

36. Bernreuther, M. RB-Based PDE-Constrained Non-Smooth Optimization. Master’s Thesis, University of Konstanz, Konstanz,
Germany, 2019. Available online: http://nbn-resolving.de/urn:nbn:de:bsz:352-2-t4k1djyj77yn3 (accessed on 15 April 2021).

http://dx.doi.org/10.1007/s10957-004-6468-7
http://dx.doi.org/10.1007/s10589-006-6450-4
http://dx.doi.org/10.1137/090766498
http://dx.doi.org/10.1137/110822724
http://dx.doi.org/10.1016/j.cam.2004.06.018
http://nbn-resolving.de/urn:nbn:de:bsz:352-2-1h6pp1cxptbap6
http://nbn-resolving.de/urn:nbn:de:bsz:352-2-1h6pp1cxptbap6
http://dx.doi.org/10.1007/s002110050240
http://dx.doi.org/10.1137/16M1074473
http://dx.doi.org/10.1051/m2an:2007031
https://kops.uni-konstanz.de/handle/123456789/38240
http://dx.doi.org/10.1016/j.cam.2011.11.009
http://nbn-resolving.de/urn:nbn:de:bsz:352-2-t4k1djyj77yn3

	Introduction
	A Set-Oriented Method for Multiobjective Optimization with Inexact Objective Gradients
	Multiobjective Optimization
	Descent Direction with Exact Gradients
	Descent Direction with Inexact Gradients
	Subdivision Algorithm
	Modified Subdivision Algorithm for Inexact Gradients

	Multiobjective Optimization of a Semi-Linear Elliptic PDE
	Problem Formulation
	The Parameter Dependent Semi-Linear Elliptic PDE
	Reduced Formulation and Adjoint Approach
	Finite Element (FE) Galerkin Discretization
	Reduced-Order Modelling (ROM)
	Convergence Analysis

	Numerical Experiments
	Conclusions
	Mass Lumping
	References

