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Abstract: In this paper, we present an implicit finite difference method for the numerical solution
of the Black–Scholes model of American put options without dividend payments. We combine the
proposed numerical method by using a front-fixing approach where the option price and the early
exercise boundary are computed simultaneously. We study the consistency and prove the stability of
the implicit method by fixing the values of the free boundary and of its first derivative. We improve
the accuracy of the computed solution via a mesh refinement based on Richardson’s extrapolation.
Comparisons with some proposed methods for the American options problem are carried out to
validate the obtained numerical results and to show the efficiency of the proposed numerical method.
Finally, by using an a posteriori error estimator, we find a suitable computational grid requiring that
the computed solution verifies a prefixed error tolerance.

Keywords: American put options; free boundary problem; front-fixing method; implicit finite
difference scheme; Richardson’s extrapolation

PACS: 65M06

1. Introduction

American options are contracts allowing the holder to exercise the option to sell or
to buy an asset at a certain price at any time prior to and including its maturity date. The
pricing of American options plays an important role both in theory and in real derivative
markets. The option pricing model developed by Black and Scholes [1] and extended by
Merton [2] has given rise to a partial differential equation governing the value of an option.
Schwartz [3] and Brennan and Schwartz [4,5] were the first to apply a finite difference
method to price American options. The accuracy of their finite difference method was
proved by Jaillet et al. [6]. Other papers present finite difference methods (see, for example,
Hull and White [7], Duffy [8], Wilmott et al. [9]). An alternative approach is based on
front-tracking methods that keep track of the boundary and discretize the problem in
changing domain; they have been considered in [10–12].

When we price an American option, we also need to determine the optimal exercise
moment as a function of the value of the underlying asset. This leads to the formulation
of a free boundary of the non-linear problem for the price of the American option when
looking for a boundary that changes over time to maturity, known as the optimal exercise
boundary. In particular, the American call option problem is a free boundary problem
defined on a finite domain. On the other hand, the American put option problem is a free
boundary problem that is defined on a semi-infinite domain, meaning that it is a non-linear
model complicated by a boundary condition at infinity. The difficulty associated with a
free boundary problem can be solved by using a front-fixing method—an approach relying
on a change of variable to map the changing domain into a fixed domain.

The front-fixing approach has been considered in several papers. Holmes and Yang [13],
used a front-fixing finite element method. Tangman et al. [12] introduced a fourth-order
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accurate finite difference scheme. In [14], the original problem was transformed into a
more manageable equation with coefficients that are not dependent on the spatial variable,
and an explicit update for the location of the free boundary at each time step was used;
furthermore, in Zhu et al. [15], the secant method was employed to solve the non-linear
problem. Moreover, in Tangman et al. [12,15], the difference between the prices of American
options and European options was computed. Sevčovič [16] studied and approximated
the early exercise boundary for a class of nonlinear Black–Scholes equations, applying a
fixed-domain transformation and using an operator splitting iterative numerical technique.
Lauko and Ševčovič [17] introduced a local iterative numerical scheme and compared
analytical and numerical solutions for the early exercise boundary position computation of
the American put option. In [18], Zhang and Zhu presented a predictor corrector method
after the fixed-domain transformation. Nielsen et al. [19] used both explicit and implicit
schemes to solve the Black–Scholes model of American options, while Company et al. [20]
presented an explicit finite difference method for the free boundary value problem under
logarithmic front-fixing transformation. In [21,22], Fazio proposed an a posteriori error
estimator for the numerical solution to the American put option obtained by an explicit
finite difference scheme.

In this paper, we present an implicit finite difference scheme combined with the use
of the front-fixing method in order to solve the American put option problem without
dividend payments. Preliminary results have been presented to the International Con-
ference ICNAAM2015 [23]. We use a front-fixing variable transformation to reformulate
the variable domain problem into a non-linear problem on a fixed rectangular domain.
For the non-linear problem, we introduce a suitable choice of a truncated boundary that
allows us to impose the asymptotic boundary condition. Then, the original problem is
transformed into a new non-linear partial differential equation where the free boundary
appears as a new variable and is computed as part of the solution. We develop an implicit
finite difference method and we investigate the consistency and the stability property by
fixing the values of the free boundary and of its first derivative.

Finally, we choose to validate the obtained numerical results via a mesh refinement
and a Richardson’s extrapolation technique, and we present a comparison with numerical
results available in the literature.

2. The American Put Options Model

Let us suppose that at time t the price of a given underlying asset is S. We consider
here the following mathematical model for the value P = P(S, τ) of an American put
option to sell the asset

∂P
∂τ

=
1
2

σ2S2 ∂2P
∂S2 + rS

∂P
∂S
− rP on 0 < τ ≤ T , S∗(τ) < S < ∞ ,

P(S, 0) = max(E− S, 0) , S∗(0) = E ,

lim
S→∞

P(S, τ) = 0 , (1)

P(S∗(τ), τ) = E− S∗(τ) ,
∂P
∂S

(S∗(τ), τ) = −1 ,

P(S, τ) = E− S , 0 ≤ S < S∗(τ) ,

where τ = T − t denotes the time to maturity T, S∗(τ) is a free boundary—that is, the
unknown early exercise boundary—σ, and r and E are given constant parameters repre-
senting the volatility of the underlying asset, the interest rate and the exercise price of the
option, respectively. Equation (1) is known as the Black–Scholes–Merton equation, which
was developed by the three economists Fischer Black, Myron Scholes and Robert Merton
in 1973 (see [1,2]).
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3. The Front-Fixing Method

The front-fixing method is widely employed for solving free boundary problems. The
basic idea of the front-fixing method is to use a variable transformation in order to remove
the free boundary and then to transform the original equation into a new non-linear partial
differential equation on a bounded domain, where the free boundary appears as a new
unknown of the problem. The main advantage of the front-fixing method is that the free
boundary is computed directly.

Then, we first transform the Black–Scholes equation into a new parabolic equation
over a bounded domain, we introduce a truncated boundary, and then we define an implicit
finite difference scheme for the new approximate problem over a bounded domain.

According to Wu and Kwok [14], we consider the dimensionless new variables

x = ln
S

S∗(τ)
, S f (τ) =

S∗(τ)
E

, p(x, τ) =
P(S, τ)

E
; (2)

it follows that S f (τ) is mapped on the fixed line x = 0, 0 ≤ p(x, τ) ≤ 1 and 0 ≤ S f (τ) ≤ 1.
Then, the put option problem (1) can be rewritten as follows:

∂p
∂τ

=
1
2

σ2 ∂2 p
∂x2 +

(
r− σ2

2

)
∂p
∂x

+
1

S f (τ)

dS f

dτ
(τ)

∂p
∂x
− r p , (3)

p(x, 0) = 0 for 0 ≤ x , S f (0) = 1 , (4)

lim
x→∞

p(x, τ) = 0 , (5)

p(0, τ) = 1− S f (τ) ,
∂p
∂x

(0, τ) = −S f (τ) , (6)

on the domain defined by 0 < τ ≤ T and 0 < x < ∞.
In order to solve the obtained problem numerically (3)–(6), we have to consider a

finite computational domain. Then, we introduce a truncated boundary value x∞, which is
a suitably large value where it would be convenient to impose the asymptotic boundary
condition. In other words, we replace the asymptotic boundary condition (5) with the
side condition

p(x∞, τ) = 0 . (7)

For the choice of x∞ and the accuracy of the related numerical solution, we follow the
approach of Kangro and Nicolaides [24], which was used to solve the multidimensional
Black–Scholes equation.

By setting an integer J and a positive value µ, we define the step-sizes

∆x =
x∞

J
, ∆τ = µ∆x2 ,

the integer N

N =

⌈
T

∆τ

⌉
,

where d·e : IR+ → IN is the ceiling function that maps a real number to the least integer
that is greater than or equal to that number. Therefore, µ is the grid-ratio

µ =
∆τ

(∆x)2 .

Therefore, within the finite domain, we can introduce a mesh of grid-points

xj = j∆x , τn = n∆τ ,
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for j = 0, 1, . . . , J and n = 0, 1, . . . , N. We would like to define a numerical scheme that
allows us to compute the grid values

pn
j ≈ p(xj, τn) ,

for j = 0, 1, . . . , J, n = 0, 1, . . . , N and the free boundary values

Sn
f ≈ S f (τ

n) ,

for n = 0, 1, . . . , N.

4. A New Implicit Finite Difference Scheme

Here, we present the implicit finite difference scheme for (3)–(6), which to the best of
our knowledge has never been used for this problem.

pn+1
j − pn

j

∆τ
=

1
2

σ2
pn+1

j−1 − 2pn+1
j + pn+1

j+1

(∆x)2 + (8)

+

(
r− σ2

2

) pn+1
j+1 − pn+1

j−1

2∆x
+

1
Sn+1

f

Sn+1
f − Sn

f

∆τ

pn+1
j+1 − pn+1

j−1

2∆x
− rpn+1

j

for j = 1, 2, . . . , J − 1 and n = 0, 1, . . . , N − 1.
The initial conditions (4) are given by

p0
j = 0 , S0

f = 1 ,

for j = 0, 1, . . . , J. From the boundary conditions (7), we get

pn+1
J = 0 ,

for n = 0, 1, . . . , N.
Moreover, by considering the governing differential Equation (3) at x0 = 0, τ > 0 and

taking into account the side conditions (6), one gets a new boundary condition

σ2

2
∂2 p
∂x2 (0

+, τ) +
σ2

2
S f (τ)− r = 0 , (9)

(see Wu and Kwok [14], Zhang and Zhu [18] or Kwok ([25], p. 341)), and its central finite
difference discretization

σ2

2
pn+1
−1 − 2pn

0 + pn+1
1

(∆x)2 +
σ2

2
Sn+1

f − r = 0 . (10)

From the two boundary conditions (6), using a central finite difference formula at time
n + 1 and considering (10), we obtain

pn+1
0 = 1− Sn+1

f , pn+1
1 = 1 +

r(∆x)2

σ2 −
(

1 + ∆x +
(∆x)2

2

)
Sn+1

f (11)

where x−1 = −∆x is a fictitious point out of the computational domain. Consider-
ing µ = ∆τ/(∆x)2 and rearranging (8), our implicit numerical scheme can be written
as follows:

ān+1 pn+1
j−1 + b̄pn+1

j + c̄n+1 pn+1
j+1 = pn

j (12)
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for j = 1, 2, . . . , J − 1 and n = 0, 1, . . . , N − 1, where

ān+1 =
µ

2

[
−σ2 +

(
r− σ2

2

)
∆x
]
+

1
Sn+1

f

Sn+1
f − Sn

f

2∆x

b̄ = 1 + µσ2 + r∆τ (13)

c̄n+1 =
µ

2

[
−σ2 −

(
r− σ2

2

)
∆x
]
− 1

Sn+1
f

Sn+1
f − Sn

f

2∆x
.

Considering (11) and putting j = 1 in (12), we get

c̄n+1 pn+1
2 = pn

1 − ān+1(1− Sn+1
f )− b̄

[
1 + r

(∆x)2

σ2 −
(

1 + ∆x +
1
2
(∆x)2

)
Sn+1

f

]
(14)

For j = 2 in (12) we obtain

b̄pn+1
2 + c̄n+1 pn+1

3 = pn
2 − ān+1

[
1 + r

(∆x)2

σ2 −
(

1 + ∆x +
1
2
(∆x)2

)
Sn+1

f

]
. (15)

Putting j = J in (12)
ān+1 pn+1

J−1 + b̄pn+1
J = pn

J . (16)

For j = 3, 4, · · · , J − 1 we have the equations

ān+1 pn+1
j−1 + b̄pn+1

j + c̄n+1 pn+1
j+1 = pn

j . (17)

Then, at each time step, we obtain a system of J equations, given by (14)–(17), in J
unknowns, pn+1

2 , pn+1
3 , · · · , pn+1

J and Sn+1
f . The system (14)–(17) can be written in the

following compact form:
A(Sn+1

f )pn+1 = f (Sn+1
f ) , (18)

where pn+1 = (pn+1
2 , pn+1

3 , · · · , pn+1
J ), the coefficients matrix A = A(Sn+1

f ) ∈ RJ,J−1 has
following form

A(Sn+1
f ) =




c̄n+1 0
b̄ c̄n+1

ān+1 b̄ c̄n+1

. . . . . . . . .
. . . . . . . . .

ān+1 b̄ c̄n+1

0 ān+1 b̄




,

and the mapping f = f (Sn+1
f ) : R→ RJ is

f (Sn+1
f ) =




pn
1 − ān+1(1− Sn+1

f )− b̄
[
1 + r (∆x)2

σ2 −
(

1 + ∆x + 1
2 (∆x)2

)
Sn+1

f

]

pn
2 − ān+1

[
1 + r (∆x)2

σ2 −
(

1 + ∆x + 1
2 (∆x)2

)
Sn+1

f

]

pn
3

...
pn

J




.

The system (18) can now be written as a non-linear problem in the form

F(pn+1, Sn+1
f ) = A(Sn+1

f )pn+1 − f (Sn+1
f ) = 0 . (19)
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The implicit discretization leads to the non-linear Equation (19) for the price and the
location of the free boundary at each time step.

5. Consistency and Stability

In this section, we discuss the consistency and stability of the implicit finite difference
scheme (8).

5.1. Consistency

We write the PDE (3) and the numerical scheme (8) as follows:

L(p, S f ) =
∂p
∂τ
− 1

2
σ2 ∂2 p

∂x2 −
(

r− σ2

2

)
∂p
∂x
− 1

S f

∂S f

∂τ

∂p
∂x

+ rp = 0 ,

F(pn+1
j , Sn+1

f ) =
pn+1

j − pn
j

∆τ
− 1

2
σ2

pn+1
j−1 − 2pn+1

j + pn+1
j+1

(∆x)2 +

−
(

r− σ2

2

) pn+1
j+1 − pn+1

j−1

2∆x
− 1

Sn+1
f

Sn+1
f − Sn

f

∆τ

pn+1
j+1 − pn+1

j−1

2∆x
+ rpn+1

j = 0.

In order to study the consistency, let us take an arbitrary point (x, τ) in the domain
[0, x∞]× [0, T], the mesh point (xj, τn+1), a numerical finite difference method is consistent
with the differential equation if the local truncation error Tn+1

j , defined by

Tn+1
j ( p̄, S̄ f ) = F( p̄n+1

j , S̄n+1
f ) ,

satisfies
Tn+1

j ( p̄, S̄ f ) −→ 0 as ∆x → 0 , ∆τ → 0 ,

where we denote with p̄n+1
j = p(xj, τn+1) the exact solution value of the PDE and with

S̄n+1
f = S f (τ

n+1) the exact solution of the free boundary. Using Taylor’s expansion,
assuming the existence of continuous partial derivatives up to an order of two in time and
up to an order of four in space, we obtain

Tn+1
j ( p̄, S̄ f ) = −

∆τ

2
∂2 p
∂τ2 (xj, τn+1) + O(∆τ)2 − σ2

2
(∆x)2

12
∂4 p
∂x4 (xj, τn+1) + O(∆x)4

−
(

r− σ2

2

)
(∆x)2

3!
∂3 p
∂x3 (xj, τn+1) + O(∆x)4

− 1
Sn+1

f

dS f

dτ
(τn+1)

(
(∆x)2

3!
∂3 p
∂x3 (xj, τn+1) + O(∆x)4

)
(20)

+
1

Sn+1
f

(
∆τ

2
d2S f

dτ2 (τn+1) + O(∆τ)2

)(
∂p
∂x

(xj, τn+1) +
(∆x)2

3!
∂3 p
∂x3 (xj, τn+1) + O(∆x)4

)
.

Then, the local truncation error is

Tn+1
j ( p̄, S̄ f ) = O(∆τ) + O(∆x)2 . (21)
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In our case, we have also to consider the boundary conditions (6) and (9):

L1(p, S f ) =p(0, τ)− 1 + S f (τ) = 0 ,

L2(p, S f ) =
∂p
∂x

(0, τ) + S f (τ) = 0 ,

L3(p, S f ) =
σ2

2
∂2 p
∂x2 (0, τ) +

σ2

2
S f (τ)− r = 0 .

The numerical scheme for the boundary conditions is

F1(pn+1
0 , Sn+1

f ) = pn+1
0 − 1 + Sn+1

f = 0 ,

F2(pn+1
0 , Sn+1

f ) =
pn+1

1 − pn+1
−1

2∆x
+ Sn+1

f = 0

F3(pn+1
0 , Sn+1

f ) =
σ2

2
pn+1
−1 − 2pn+1

0 + pn+1
1

(∆x)2 +
σ2

2
Sn+1

f − r = 0 .

Using Taylor’s expansion, the local truncation error for the boundary conditions is
of O(∆x)2

T1( p̄, S̄ f ) = F1( p̄, S̄ f ) = 0

Ti( p̄, S̄ f ) = Fi( p̄, S̄ f ) = O(∆x)2 for i = 2, 3 .

Thus, assuming the existence of continuous partial derivatives up to an order of two in
time and up to an order of four in space in the solution to the problem in (3)–(6), the implicit
finite difference method defined by (8) is consistent with the fixed domain model (3) of
order O(∆τ) + O(∆x)2.

5.2. Stability

Now, we perform the von Neumann analysis to investigate the stability of the implicit
method. The von Neumann analysis is only valid for linear problems with constant
coefficients; it is not possible to apply it to non-linear problems or to problems with
variable coefficients. In order to apply the method of von Neumann, it is necessary to
linearize the model and freeze the coefficients, considering the problem locally [26]. Then,
the von Neumann analysis can be applied, and a stability condition can be derived; this
condition will depend on the frozen coefficients involved.

In our context, the non-linear nature of the model (3) is due to the presence of the term

1
S f

dS f

dτ
. (22)

where S f is the unknown part of the problem. Then, in the stability analysis, we decide to
take this into account and to derive the stability condition in relation to the value of S f and
of its first derivative. Moreover, note that we approximate the term (22) with

1
Sn+1

f

Sn+1
f − Sn

f

∆τ
. (23)

which assumes nonpositive values because Sn
f is positive and not increasing.

Using the Fourier analysis, we set

pn+1
j = λpn

j pn+1
j±1 = λe±ik∆x pn

j
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where λ = λ(k∆x) is called the amplification factor. Substituting these expressions in the
numerical method (12) and dividing by pn

j , we obtain

λ =
1

ān+1e−ik∆x + b̄ + c̄n+1eik∆x .

By applying Euler’s formulas and by (13), after some manipulations, we derive

λ =
1

1 + r∆τ + 2µσ2 sin2 k∆x
2
− iµ∆x

[(
r− σ2

2

)
+

1
Sn+1

f

Sn+1
f − Sn

f

∆τ

]
sin(k∆x)

.

Now, if we compute the magnitude of amplification factor λ, then we have

|λ|2 =
1

(1 + A)2 + B2 ,

where

A = r∆τ + 2µσ2 sin2 k∆x
2

B = µ∆x

[(
r− σ2

2

)
+

1
Sn+1

f

Sn+1
f − Sn

f

∆τ

]
sin(k∆x) .

Because A > 0, (1 + A)2 > 1 and B2 > 0, thus |λ| < 1. So, we can conclude that the
implicit finite difference method defined by (8) for the fixed domain problem in (3)–(6) is
unconditionally stable.

In Figure 1, we show the amplification factor module for the implicit method at differ-
ent time steps τn. In fact, in the stability analysis, we decided to evaluate the amplification
factor λ depending on the value of (23). We observe that the variation of (23) does not
influence the stability of the implicit method.

Because A > 0, (1+A)2 > 1 and B2 > 0, thus |λ | < 1. So, we can conclude that
the implicit finite difference method defined by (8) for the fixed domain problem
(3-6) is unconditionally stable.

In figure (1), we show the amplification factor module for implicit method
at different time steps τn. In fact, in the stability analysis, we have decided to
evaluate the amplification factor λ depending on the value of (23). We observe
that the variation of (23) does not influence the stability of the implicit method.

0 0.5 1 1.5 2 2.5 3
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

k∆x

|λ
|

n = 1
n = 5
n = N

Figure 1: Implicit method. Amplification factor module |λ | for different values of
n with N = 320, µ = 20 and x∞ = 1.

In figure (2) we show the amplification factor module for different values of
µ at final time τ = T . We observe that the unconditionally stable implicit finite
difference scheme produces results that are stable for any value of grid-ratio µ .

We can compare the result reported in figure (2) with the ones reported in
figure (3), where we show the amplification factor module λ , for different values
of µ , of the explicit method [5]

λ = 1− r∆τ −2µσ2 sin2 k∆x
2

+ iµ∆x

[(
r− σ2

2

)
+

1
Sn

f

Sn+1
f −Sn

f

∆τ

]
sin(k∆x) .

In order to evaluate λ , we use the same assumptions given for the implicit method.

12

Figure 1. Implicit method: amplification factor module |λ| for different values of n with N = 320,
µ = 20 and x∞ = 1.
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In Figure 2, we show the amplification factor module for different values of µ at final
time τ = T. We observe that the unconditionally stable implicit finite difference scheme
produces results that are stable for any value of the grid ratio µ.

We can compare the result reported in Figure 2 with the results reported in Figure 3,
where we show the amplification factor module λ, for different values of µ, of the explicit
method [20]

λ = 1− r∆τ − 2µσ2 sin2 k∆x
2

+ iµ∆x

[(
r− σ2

2

)
+

1
Sn

f

Sn+1
f − Sn

f

∆τ

]
sin(k∆x) .

We observe that the explicit finite difference scheme produces results that are
stable only for values of grid-ratio µ < 26.

The main limitation of the explicit method is the restriction on the choice
of ∆τ and ∆x that have to be chosen in relation at the values of the parameters
of the model σ and r, the volatility of the underlying asset and the interest rate,
respectively. On the other hand, the new implicit method is unconditionally stable,
no restriction on step sizes is required.

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

k∆x

|λ
|

µ = 12 N = 534
µ = 20 N = 320
µ = 26 N = 247
µ = 100 N = 64
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6 A posteriori error estimator

In this section, we describe a posteriori error estimator for the American put
options problem based on Richardson’s extrapolation. In this way, we can find a
more suitable computational grid requiring that the numerical solution obtained
by the implicit method verifies a prefixed error tolerance.

For a scalar U of interest, either a value of the solution pn
j or a free boundary

value Sn
f , the numerical error e can be defined by

e = u−U , (24)

where u is the exact, usually unknown, value. When the numerical error is caused
prevalently by the discretization error and in the case of smooth enough solutions
the global error can be split into a sum of powers of the inverse of N

u =UN +C0

(
1
N

)q0

+C1

(
1
N

)q1

+C2

(
1
N

)q2

+ · · · , (25)

where C0, C1, C2, . . . are coefficients that depend on u and its derivatives, but
are independent of N, and q0, q1, q2, . . . are the true orders of the discretization
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In order to evaluate λ, we use the same assumptions as for the implicit method. We
observe that the explicit finite difference scheme produces results that are stable only for
values of the grid ratio µ <26.

The main limitation of the explicit method is the restriction of the choice of ∆τ and
∆x, which have to be chosen in relation to the values of the parameters of the model σ and
r—the volatility of the underlying asset and the interest rate, respectively. On the other
hand, the new implicit method is unconditionally stable, and thus no restriction on step
sizes is required.

6. A Posteriori Error Estimator

In this section, we describe the a posteriori error estimator for the American put
options problem based on Richardson’s extrapolation. In this way, we can find a more
suitable computational grid requiring that the numerical solution obtained by the implicit
method verifies a prefixed error tolerance.

For a scalar U of interest, either a value of the solution pn
j or a free boundary value Sn

f ,
the numerical error e can be defined by

e = u−U , (24)

where u is the exact, usually unknown, value. When the numerical error is caused predom-
inantly by the discretization error, in the case of smooth enough solutions, the global error
can be split into a sum of powers of the inverse of N

u = UN + C0

(
1
N

)q0

+ C1

(
1
N

)q1

+ C2

(
1
N

)q2

+ · · · , (25)

where C0, C1, C2, . . . are coefficients that depend on u and its derivatives but are indepen-
dent of N, and q0, q1, q2, . . . are the true orders of the discretization error; see Schneider
and Marchi [27] and the references quoted therein. Each qk is usually a positive integer with
q0 < q1 < q2 < · · · which together constitute an arithmetic progression of ratio q1 − q0.
The value of q0 is called the asymptotic order or the order of accuracy of the method or
of the numerical value UN . By replacing N = Ng and N = Ng+1 in Equation (25) and
subtracting into the second obtained equation the first times (1/s)q0 , where s = Ng+1/Ng,
we get the first extrapolation formula

u ≈ Ug+1 +
Ug+1 −Ug

sq0 − 1
, (26)

which has a leading order of accuracy equal to q1. This type of extrapolation is due to
Richardson [28,29]. Taking into account Equation (26), we can conclude that the error
estimator using the first Richardson’s extrapolation is given by

er =
Ug+1 −Ug

sq0 − 1
, (27)

where q0 is the order of the numerical method used to compute the numerical solutions.
Thus, (27) gives the real value of the numerical solution error without knowledge of the
exact solution. In comparison with (27), a safer error estimator can be defined by

es = Ug+1 −Ug . (28)

Of course, q0 can be estimated with the formula

q0 ≈
log(|Ug − u|)− log(|Ug+1 − u|)

log(s)
, (29)
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where u is again the exact solution (or, if the exact solution is unknown, a reference solution
computed with a suitable large value of N) and both u and Ug+1 are evaluated at the same
grid-points of Ug.

Within the above framework, in order to improve the numerical accuracy by using
only a small number of grid-nodes, we can generalize (26) by introducing the following
repeated extrapolation formula:

Ug+1,k+1 = Ug+1,k +
Ug+1,k −Ug,k

sqk − 1
, (30)

where g ∈ {0, 1, 2, . . . , G− 1}, k ∈ {0, 1, 2, . . . , G− 1}, s = Ng+1/Ng is the grid refinement
ratio, and qk is the true order of the discretization error. Formula (30) is asymptotically
exact in the limit as N0 goes to infinity if we use uniform grids. We notice that, to obtain
each value of Ug+1,k+1, we need two computed solutions U in two adjacent grids, namely
g + 1 and g at the extrapolation level k. For any g, the level k = 0 represents the numerical
solution of U without any extrapolation. We recall that the theoretical orders of accuracy of
the numerical values Ug,k, with N = Ng and k extrapolations, verify the relation

qk = q0 + k(q1 − q0) (31)

valid for k ∈ {0, 1, 2, . . . , G− 1}.

7. Numerical Results

In this section, we show the numerical results obtained by using the implicit finite
difference scheme. Comparisons with some numerical results available in the literature for
the American put options problem are also presented. The numerical experiments were
performed in MatLab on a computer equipped with a CPU Intel i7 under the operating
system Windows 10.

The parameters considered for solving the American put option problem (3)–(6) are
as follows:

r = 0.1 , σ = 0.2 , T = 1 . (32)

In order to choose the truncated boundary value x∞, we compute the numerical
solution SN

f for three different values of x∞. As we can see in Table 1, the change of these
values does not greatly affect the numerical solution; for this reason, we decided to set
x∞ = 1.

Table 1. Free boundary value SN
f at τ = T for different truncated boundary locations x∞.

x∞ N = 10 N = 20 N = 40

0.7 0.8710513251234 0.8661003470130 0.86351373607045
1 0.8710513685210 0.8661003514438 0.86351373597835
2 0.8710513685385 0.8661003514444 0.86351373597828
4 0.8710513685388 0.8661003514438 0.86351373597789

In Figure 4, we show the plots of pN
j versus xj and of Sn

f versus τn; these results
were obtained by the implicit finite difference scheme, considering the parameters (32)
with N = 320 and µ = 20. We found the value Sn

f = 0.862718733223996 in 15.536384
seconds. In order to solve the non-linear system, we used the MATLAB routine “fsolve”.
In general, the Newton iterations method represents a good tool in order to guarantee
good computational stability properties. Initially, we used the classical Newton iteration
method, but the obtained numerical results were less accurate when compared with those
obtained by the MATLAB routine fsolve. By our numerical experiments, we conclude that
the MATLAB routine, principally regarding the choice of the initial iterate, is more robust
than the Newton iteration method and thus more suited for our application.
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x∞ N = 10 N = 20 N = 40

0.7 0.8710513251234 0.8661003470130 0.86351373607045

1 0.8710513685210 0.8661003514438 0.86351373597835

2 0.8710513685385 0.8661003514444 0.86351373597828

4 0.8710513685388 0.8661003514438 0.86351373597789

Table 1: Free boundary value SN
f at τ = T for different truncated boundary loca-

tions x∞.

fsolve. By our numerical experiments, we conclude that the MATLAB routine,
principally regarding the choice of the initial iterate, reveals more robust than the
Newton iteration method and then more suited for our application.
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Looking at the results listed in Table 1, we realize also that, fixing a value of
the truncated boundary x∞, the computed values of SN

f for different values of the
grid-steps are in agreement only up to the first decimal place. For this reason, we
decide to improve the numerical accuracy by performing a mesh refinement and
applying repeated Richardson’s extrapolation. The implicit difference scheme is
accurate of first-order in time and second-order in space, then, we can perform a
mesh refinement keeping constant the grid-ratio µ , so that we end up with second-
order truncation error T n

j = O(∆τ2) in time. Therefore, the global error is of first-
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In Figure 5, the 3D plot of the numerical solution pn
j is shown.
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order, which is the value of q0 = 1. In our case the sequence of sqk , for k = 0,1, . . . ,
with s = 4 and qk = k+1 is given by 4, 16, 64, 256, 1024, . . . .
The numerical results, obtained by repeated Richardson’s extrapolations, for the

N Ug,0 Ug,1 Ug,2 Ug,3 Ug,4 Ug,5

5 0.884069

20 0.866100 0.860111

80 0.863100 0.862100 0.862232

320 0.862719 0.862592 0.862625 0.862631

1280 0.862717 0.862716 0.862724 0.862726 0.862726

5120 0.862738 0.862746 0.862748 0.862748 0.862748 0.862748

Table 2: Implicit method: Richardson’s repeated extrapolations for the free
boundary value SN

f at τ = T .

values SN
f computed with the implicit method are reported in Table 2. The last
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Figure 5. Numerical results obtained by implicit scheme (8), pn
j with J = 80, N = 320 and µ = 20.

Now, we consider the stability of the numerical method with respect to small pertur-
bations of the starting parameters. In particular, we consider the perturbations δr and δσ
related to the parameters involved in the model, namely r and σ. In Table 2, we show the
numerical results obtained by different values of the perturbations. We can conclude that
“small perturbations at input give rise to small perturbations at output”.
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Table 2. Numerical results obtained by different perturbations.

δr
|δS f |

δr
|Sn+1

f +δS f |
r+δr

|Sn+1
f +δS f |
|Sn+1

f |
||δp||∞

δr
||δp||∞

r+δr
||pn+1+δp||∞

||pn+1||∞

δr = 0.1 0.740531 7.909584 1.008584 0.745939 1.181324 0.946084
δr = 0.05 0.759815 8.251885 1.004403 0.765465 1.271923 0.972340
δr = 0.01 0.776018 8.548762 1.000899 0.781872 1.352228 0.994350

δσ
|δS f |

δσ

|Sn+1
f +δS f |
σ+δσ

|Sn+1
f +δS f |
|Sn+1

f |
||δp||∞

δσ
||pn+1+δp||∞

σ+δσ
||pn+1+δp||∞

||pn+1||∞

δσ = 0.1 1.013264 3.829016 0.9765080 1.025923 0.716437 1.147543
δσ = 0.05 1.010532 4.059731 0.9882857 1.022231 0.702173 1.073572
δσ = 0.01 1.007935 4.260559 0.9976631 1.018774 0.689935 1.014676

Looking at the results listed in Table 1, we realize also that, when fixing a value of the
truncated boundary x∞, the computed values of SN

f for different values of the grid-steps are
in agreement only up to the first decimal place. For this reason, we decide to improve the
numerical accuracy by performing a mesh refinement and applying repeated Richardson’s
extrapolation. The implicit difference scheme is accurate on the first order in time and
second order in space; then, we can perform a mesh refinement keeping the grid ratio
µ constant so that we end up with second-order truncation error Tn

j = O(∆τ2) in time.
Therefore, the global error is of the first order, which is the value of q0 = 1. In our case,
the sequence of sqk , for k = 0, 1, . . . , with s = 4 and qk = k + 1 is given by 4, 16, 64, 256,
1024, . . . .

The numerical results obtained by repeated Richardson’s extrapolations for the values
SN

f computed with the implicit method are reported in Table 3. The last extrapolated

result is U5,5 = 0.862748, so we can consider this value as our benchmark SN
f ≈ 0.862748.

Our result can be compared with the value SN
f ≈ 0.862762 found by Fazio [21], with

SN
f ≈ 0.86222 computed by Nielsen et al. [19] and with SN

f ≈ 0.8628 found by the explicit
method of Company et al. [20].

Table 3. Implicit method: Richardson’s repeated extrapolations for the free boundary value SN
f at

τ = T.

N Ug,0 Ug,1 Ug,2 Ug,3 Ug,4 Ug,5

5 0.884069
20 0.866100 0.860111
80 0.863100 0.862100 0.862232

320 0.862719 0.862592 0.862625 0.862631
1280 0.862717 0.862716 0.862724 0.862726 0.862726
5120 0.862738 0.862746 0.862748 0.862748 0.862748 0.862748

In Table 4, we compare the option price P(S, T) obtained by different methods with
the following parameters:

T = 3 σ = 0.2 r = 0.08 E = 100 . (33)

We report the “true value” as in [30], the penalty method (PM) of Nielsen et al. given
in [30], the explicit method (EM) of Company et al. [20] with ∆x = 0.02, the explicit
method with Richardson’s extrapolation (EMR) of Fazio [21] with µ = 5 and our implicit
method (IM) without extrapolation, setting ∆x = 0.02 and µ = 5, and with Richardson’s
extrapolation (IMR) with µ = 5. In order to find the value of the option price P(S, T) in
correspondence to each different asset price S we use a piecewise cubic spline interpolation.
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Table 4. Comparison of American put option price P(S, T) with parameters (33). PM: penalty method;
EM: explicit method; EMR: explicit method with Richardson’s extrapolation; IM: implicit method;
IMR: implicit method with Richardson’s extrapolation.

Asset True PM EM EMR IM IMR
Price S Value Nielsen [19] Company [20] Fazio [21]

90 11.6974 11.7207 11.7054 11.7706 11.6926 11.7707
100 6.9320 6.9573 6.9309 6.9313 6.9243 6.9315
110 4.1550 4.1760 4.1564 4.1288 4.1467 4.1291
120 2.5102 2.5259 2.5151 2.5061 2.5028 2.5064

Our goal was to solve the American put option problem with a given tolerance ε,
where 0 < ε� 1; thus, we used the error estimator defined by Equation (27), or alternatively
by Equation (28). To this end, we needed to solve the given problem twice, for two grids
defined with given values of Jg = J and Jg+1 = 2J of space intervals but for the same
value of the grid-ratio µ. The corresponding time intervals Ng and Ng+1 verify the relation
s = Ng+1/Ng. Thus, we were able to apply (component-wise) to pn and to Sn

f the error
estimator in Formula (27) or (28). Then, we could verify whether, for n = 1, 2, . . . , N,

‖er(pn)‖∞ ≤ ε |er(Sn
f )| ≤ ε . (34)

If the two inequalities (34) hold true, for n = 1, 2, . . . , N, then we can accept the
numerical solution computed on the grid defined by Jg+1 and Ng+1; otherwise, we have to
increase these two integers and repeat the computation.

Figure 6 shows the error estimator results computed by setting ε = 0.005. We set
µ = 20 and start with J0 = 5 and J1 = 10 repeating the computation by doubling the
number of spatial grid-intervals if the requi accuracy is not achieved. Our algorithm stops
when J5 = 160 that for µ = 20 means N5 = 1280.

10
−2

10
−1

10
0

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−3

 

 

τ

e r
(p

n j)
,e

r(
Sn f)

er(pn
j)

er(Sn
f )

10
−2

10
−1

10
0

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−3

 

 

τ

e r
(p

n j)
,e

r(
Sn f)

er(pn
j)

er(Sn
f )

Figure 6: Numerical estimated errors er(pn) and er(Sn
f ) versus τn for the explicit

(left) and implicit method (right), setting ε = 0.005, µ = 20, J5 = 160 and N5 =

1280.

If the two inequalities (34) hold true, for n = 1,2, . . . ,N, then we can accept the
numerical solution computed on the grid defined by Jg+1 and Ng+1, otherwise, we
have to increase these two integers and repeat the computation.

Fig. 6 shows the error estimator results computed by setting ε = 0.005. We set
µ = 20 and start with J0 = 5 and J1 = 10 repeating the computation by doubling
the number of spatial grid-intervals if the requi accuracy is not achieved. Our
algorithm stops when J5 = 160 that for µ = 20 means N5 = 1280. From the
numerical results shown in Figure 6 we can easily realize that the greatest errors
are found within a few time steps for both numerical methods. The error of the
implicit method is almost twice of the error of the explicit scheme only in the
first time steps, but it becomes smaller in the next time steps, so we can conclude
that the numerical results obtained by the implicit method are more accurate than
those of the explicit one. We suggest that in order to obtain better accuracy also in
the first time steps it can be developed an adaptive version of both finite difference
schemes.

8 Concluding Remarks

In this paper, we consider an American put option model, a free boundary problem
defined on an infinite domain. We overcome the numerical difficulty of solving

20

Figure 6. Numerical estimated errors er(pn) and er(Sn
f ) versus τn for the explicit (left) and implicit method (right), setting

ε = 0.005, µ = 20, J5 = 160 and N5 = 1280.

From the numerical results shown in Figure 6 we can easily see that the greatest errors
are found within a few time steps for both numerical methods. The error of the implicit
method is almost twice that of the error of the explicit scheme only in the first time steps,
but it becomes smaller in the next time steps, so we can conclude that the numerical results
obtained by the implicit method are more accurate than those of the explicit method. We
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suggest that in order to obtain better accuracy in the first time steps, an adaptive version of
both finite difference schemes should be developed.

8. Concluding Remarks

In this paper, we consider an American put option model—a free boundary problem
defined on an infinite domain. We overcome the numerical difficulty of solving a free
boundary problem using a front-fixing approach combined with an implicit finite difference
scheme. We prove that the implicit finite difference scheme is consistent and uncondi-
tionally stable. In order to improve the obtained accuracy, we use a mesh refinement and
Richardson’s extrapolation technique. Comparisons with data available in the literature are
carried out to validate the obtained numerical results. Finally, by using an a posteriori error
estimator, we find a suitable computational grid that requires that the computed solution
verifies a prefixed error tolerance.
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