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Abstract: In this paper, the constructions of both open and closed trigonometric Hermite interpolation
curves while using the derivatives are presented. The combination of tension, continuity, and bias
control is used as a very powerful type of interpolation; they are applied to open and closed Hermite
interpolation curves. Surface construction utilizing the studied trigonometric Hermite interpolation
is explored and several examples obtained by the C1 trigonometric Hermite interpolation surface are
given to show the usefulness of this method.
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1. Introduction

Parametric curves that are used in computer graphics are normally based on polyno-
mials, which is reasonable, since polynomials are simple functions that are easy to calculate
and flexible enough to create many different shapes. However, in principle, different types
of functions can be used to develop a parametric curve or surface. These methods are
based on control points. While using polynomials, it will be easy to construct a parametric
curve segment (or surface patch) that passes through a given one-dimensional array or two-
dimensional grid of points, respectively. The downside of these methods is that they are not
interactive. Charles Hermite developed a way to smoothly interpolate any mathematical
quantity from an initial value to a final value, given the rates of change of the quantity at
the start and end, and he then derived its blending functions. Hermite curves are very
powerful and also very easy to calculate. The mathematical background of Hermite curves
is an important tool that helps to understand the entire family of splines. For example,
the Catmull–Rom spline [1] is just a subset of the cardinal splines and they are really great
to smoothly interpolate between a set of data. A special form of the Hermite curves is the
so called KB-splines, curves with control over tension, continuity, and bias. Kochanek and
Bartels introduced these curves in 1984 [2] to give animators more control over keyframe
animation. They introduced three control-values for each keyframe point: the tension
parameter shows how sharply the curve bends, the continuity parameter illustrates how
rapid the change in speed and direction is, and the bias controls the direction of the curve as
it passes through the keypoint. Several authors have published the Hermite trigonometric
interpolation problem. For example, Barrera et al. [3] presented a method that can be used
to obtain minimal bending trigonometric Hermite curves. These curves can be used in a
number of areas, such as three-dimensional (3D)-modeling and camera movements. In [4],
Han presented explicit piecewise trigonometric Hermite interpolation methods that are
based on the symmetric, nonnegative, and normalized basis of trigonometric polynomials.
These trigonometric Hermite interpolants are local and easy to compute. In the last decade,
many studies have been conducted on rectangular interpolation; for example, in [5], they
reported rational interpolants with tension parameters and extended their method to the
rectangular topology case. Zhang and Wang [6] presented a new way for constructing C2

quartic spline interpolation surface, which makes the curve/surface formed to have the
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same advantages as cubic spline curve/surface in having a simple construction and being
easy to compute. In [7], the authors developed a bivariate rational Hermite interpolation in
order to create a space surface using both function values and the first-order partial deriva-
tives of the function being interpolated as the interpolation data. Fang et al. [8] studied a
method of rectangular interpolation of a given 3D data array that is regularly arranged.
They constructed C2 and C3 interpolating spline surfaces while using tensor product; it has
desirable properties and it is easily implemented and adjusted. Juncheng presented a class
of trigonometric cubic Hermite interpolating curves with a shape parameter [9]. In [10],
Akima presented a method of bivariate interpolation and smooth surface fitting based on
local procedures, after that Dodd et al. [11] made an improvement of Akima’s method and
reported a technique for smooth surface interpolation over grid data in order to reduce the
number of extraneous local optima and inflection points of the surface. Zhang [12] studied
an extension of cubic curves (C-curves) using the basis sin t, cos t, t, and 1. The curves
depend on one positive parameter. He showed that these curves can deal with circular
arcs, cylinders, cones, and toruses. Recently, Li [13] and Li et al. [14] proposed a class of
trigonometric interpolation curves with two parameters that can interpolate some given
data points without solving equation systems. They are also C2 and they have two degrees
of freedom in the interpolation curves and, thus, can adjust their shape by altering the
values of the two parameters. More recently, BiBi et al. constructed various shapes and
font designing of curves and described the curvature by using parametric and geometric
continuity constraints of generalized hybrid trigonometric Bézier (GHT-Bézier) curves [15].
In another very recent work, Usman et al. [16] presented a new TC Bernstein-like basis
functions analogous to standard Bernstein basis functions with single shape parameter to
overcome the drawing of complex curves. They constructed some conic curves by choosing
appropriate points and some complex curves by using continuity conditions. Even with
the existence of polynomial Hermite interpolant, the problem of inaccurate approximation
always remains for some types of curves, such as arcs, helix, cycloid, catenary, and the
exponential curves. In order to avoid their shortcomings, in this work we propose the
trigonometric Hermite interpolant, which is a mixture of cosine, sine, and {1, x} used
in [6]. This interpolant gives more advantages and accurate approximation. The curves
and surfaces, most commonly used in computer-assisted design, or even in engineering ap-
plications, are often helixes, cycloids, arcs, cylinders, or spheres. Thus, polynomial Hermite
interpolant does not always give good approximations, so it is necessary to find splines
in order to overcome this disadvantage. This paper reports a new mixture of polynomial
and trigonometric functions, combined with tension, continuity, and bias control, to build
the new Hermite interpolant. This Hermite interpolation allows the animator to change
the tension, continuity, and bias of these splines. They are used to smoothly interpolate
data between key-points like object movement in keyframe animation or camera control.
One of the benefits of this combination is the adjustments to overcome speed discontinu-
ities. The curves and surfaces, most commonly used in computer-assisted design or even
in engineering applications, are often helixes, cycloids, arcs, cylinders, or spheres. Thus,
the use of polynomial Hermite interpolant does not always give good approximations, so
it is necessary to find new splines in order to overcome this disadvantage. In this paper,
we report new mixture of polynomial and trigonometric functions to build a new Hermite
interpolant. This Hermite interpolation leads to the construction of a new and interesting
trigonometric Hermite basis having the same properties as the classical basis of Hermite
polynomials. Tension, continuity, and bias control were combined and used as a very
powerful type of interpolation.

The paper is structured, as follows. In Section 2, a trigonometric Hermite spline inter-
polation is developed and trigonometric Hermite basis functions are constructed. Section 3
deals with the construction of open and closed trigonometric Hermite interpolation curves
using the derivatives, which are illustrated by some examples. Section 4 introduces a
powerful type of interpolation using Tension, Continuity, and Bias parameters. A com-
bination of these three parameters is applied to open and closed Hermite interpolation
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curves, and the influence of each parameter on the interpolation curve is exihibited through
examples. In Section 5, we provide the construction of a spline interpolation surface using
our trigonometric Hermite basis. Several examples are given to show the usefulness of this
method. Finally, Section 6 summarizes our findings.

2. Trigonometric Hermite Spline Interpolation

In this section, we develop the trigonometric Hermite spline interpolation. To do this,
we consider the uniform grid partition:

∆ = {0 = x0 < x1 < ... < xn−1 < xn =
π

2
}

of the interval I = [0, π
2 ], where xi = ih, 0 ≤ i ≤ n, and h = π

2n . At the knots of ∆,
the values f (xi) and f ′(xi), i = 0, ..., n− 1, which are supposed to come from an unknown
differentiable function f , are given. We denote, by S1(∆, I), the space of trigonometric
splines of class C1, defined by:

S1(∆, I) = {s ∈ C1(I) : s|[xi ,xi+1 ]
∈ Γ, i = 0, ..., n− 1} (1)

where Γ = span{1, x, sin(x), cos(x)}.
More precisely, we can define the following trigonometric Hermite spline interpola-

tion problem.
Problem: Given 2n interpolation values

f (r)(xi), i = 0, ..., n− 1, r = 0, 1 (2)

find s ∈ S1(∆, I) such that

s(r)(xi) = f (r)(xi), i = 0, ..., n− 1, r = 0, 1. (3)

Theorem 1. There exists a unique spline s ∈ S1(∆, I), which satisfies the interpolatory conditions (3).
This spline can be written, as follows: ∀x ∈ [xi, xi+1[

si(x) = a0,i + a1,ix + a2,i sin(x) + a3,i cos(x), (4)

where

a0,i = Ch

(
f ′
(

xi
)(
− cos(h)

(
xi+1

)
+ sin(h) + xi

)
+ f ′

(
xi+1

)(
− cos(h)xi + h− sin(h) + xi

)
+ f

(
xi+1

)(
− sin(h)xi + cos(h)− 1

)
+ f

(
xi
)(

sin(h)
(
xi+1

)
+ cos(h)− 1

))
,

a1,i = Ch

(
− 2 sin

( h
2
)(

sin
( h

2
)(

f ′
(
xi+1

)
+ f ′

(
xi
))

+ cos
( h

2
)(

f
(
xi
)
− f

(
xi+1

)
)

)
,

a2,i = Ch

(
f ′
(

xi
)(

h sin
(
xi+1

)
+ cos

(
xi+1

)
− cos

(
xi
))
− f ′

(
xi+1

)(
h sin

(
xi
)
+ cos

(
xi+1

)
− cos

(
xi
))

+ f
(

xi+1
)(

sin
(
xi
)
− sin

(
xi+1

))
+ f

(
xi
)(

sin
(
xi+1

)
− sin

(
xi
))
)

)
,

a3,i = Ch

(
f ′
(

xi
)(
− sin

(
xi+1

)
+ h cos

(
xi+1

)
+ sin

(
xi
))

+ f ′
(
xi+1

)(
sin
(
xi+1

)
− h cos

(
xi
)
− sin

(
xi
))

+ f
(

xi
)(

cos
(

xi+1
)
− cos

(
xi
))

+ f
(
xi+1

)(
cos

(
xi
)
− cos

(
xi+1

))
)

)
,

with Ch = 1
sin2
(

h
2

)(
2h cot

(
h
2

)
−4
) .
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Proof. Let si(x) = a0,i + a1,ix + a2,i sin(x) + a3,i cos(x), ∀x ∈ [xi, xi+1[. The coefficients
aj,i, j = 0, ..., 3 must be chosen, so that si(x) will interpolate f and f ′ at xi and xi+1. This is
equivalent to the following linear system

1 xi sin(xi) cos(xi)

0 1 cos(xi) − sin(xi)

1 xi+1 sin(xi+1) cos(xi+1)

0 1 cos(xi+1) − sin(xi+1)




a0,i
a1,i
a2,i
a3,i

 =


f (xi)
f ′(xi)

f (xi+1)
f ′(xi+1)


It can be shown that the determinant of this system is

(xi+1 − xi) sin(xi+1 − xi) + 2(cos(xi+1 − xi)− 1).

Therefore, the system has to be solvable under our assumptions that the abscissas
xi = i h are distinct.

3. Trigonometric Hermite Interpolation Curves

However, some applications require that the interpolant be such that not only the
functional values are matched, but also the derivatives at the nodes. In this section,
we consider the situation in which we also want to interpolate derivative information for
constructing the interpolating curves.

Given the sequence of data points Pi ∈ R2, i = 0, ..., n − 1, along with associated
strictly monotone parameter values xi = i h ∈ [0, π

2 ], i = 0, ..., n− 1, with h = π
2(n−1) . In

order to calculate derivatives, it is a natural idea to estimate the derivative at the point Pi
by the difference Pi+1 − Pi or Pi − Pi−1, and more rational estimate may be their average
(see [1,2]). We now use the weighted average on neighboring positions of Pi to generate
these derivatives, noted Di.

Now, if we put Di =
1
2 (Pi+1 − Pi−1), then, according to the endpoints interpolation,

it is known that φ0 and φ1 are determined by the values at the ends of the interval, and the
derivatives determine φ2 and φ3 at the ends. Thus, it is natural to associate Pi to φ0, Pi+1 to
φ1, Di to φ2 and Di+1 to φ3. Subsequently, the trigonometric Hermite interpolation curve is
defined as

C(x) = Ci

(
π

2
x− xi

h

)
, x ∈ [xi, xi+1], (5)

where, Ci(u) = Piφ0(u) + Pi+1φ1(u) + 2h
π Diφ2(u) + 2h

π Di+1φ3(u), u ∈ [0, π
2 ].

We can rewrite this equation in the matrix form, as follows:

Ci(u) =


1
u

sin(u)
cos(u)


T


π−2
π−4

−2
π−4

2
π−4

π−2
π−4

−2
π−4

2
π−4

−2
π−4

−2
π−4

2
π−4

−2
π−4

π−2
π−4

2
π−4

−2
π−4

2
π−4

−2
π−4

2−π
π−4




Pi
Pi+1
2h
π Di

2h
π Di+1


Remark 1. For the construction of closed trigonometric Hermite interpolation curves, it is sufficient
to periodize the end control points and the knots, i.e., Pn = P0 and xn = x0.

By means of formulas above, one can easily prove the next lemma.

Lemma 1. The continuity of the trigonometric Hermite curve interpolant (5) is expressed, as follows:{
C(x−i ) = C(x+i ) = Pi

C′(x−i ) = C′(x+i ) = Di
(6)
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Proof. From (5) and according to simple calculations, we obtain:
Ci(0) = Pi

Ci−1(
π
2 ) = Pi

C′i(0) =
2h
π Di

C′i−1(
π
2 ) =

2h
π Di

so that

C(k)
i−1(

π

2
) = C(k)

i (0), k = 0, 1. (7)

Now, let x ∈ [xi, xi+1] and u = π(x−xi)
2h . Afterwards,

C(k)(x) =
(

π

2h

)k

C(k)(u), k = 0, 1.

Thus, {
C(k)(x−i ) =

(
π
2h
)kC(k)

i−1(
π
2 )

C(k)(x+i ) =
(

π
2h
)kC(k)

i (0)
(8)

Subsequently, according to (7) and (8), the Lemma 1 holds.

3.1. Examples

In this Subsection, we illustrate the above results with three examples. The control
points are marked by “•”. Each trigonometric Hermite interpolation segment, i.e., the
restriction of the trigonometric Hermite interpolation curve to the interval [xi, xi+1],
0 ≤ i ≤ n− 1, (see Figures 1–3) is shown with a red or blue color.

(a) Control polygon. (b) Control polygon and curve (c) Curve

Figure 1. Open trigonometric Hermite interpolation curve. The restriction of the curve to the interval
[xi , xi+1], 0 ≤ i ≤ n− 1, is shown (solid curve) with a red or blue color.

(a) Control polygon (b) Control polygon and curve (c) Curve

Figure 2. Closed trigonometric Hermite interpolation curve. The restriction of the curve to the interval
[xi , xi+1], 0 ≤ i ≤ n− 1, is shown (solid curve) with a red or blue color.
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(a) Control polygon (b) Control polygon and curve (c) Curve

Figure 3. Closed trigonometric Hermite interpolation curve. The restriction of the curve to the interval
[xi , xi+1], 0 ≤ i ≤ n− 1, is shown (solid curve) with a red or blue color.

4. TCB-Curves

In the previous section, we constructed open and closed trigonometric Hermite inter-
polation curves using the derivatives. In the present section, we are interested in another
type of interpolation while using tcb, as described in details by Kochanek and Bartels
(see [2]); it is a very powerful type of interpolation, its acronym is Tension, Continuity, Bias.
These are the three characteristics that define the shape of the curve when the value of
an interpolated parameter is determined over time. This type of interpolation produces a
smooth curve between passing adjacent points, in the same way as the spline tool produces
a smooth curve between the neighboring vertexes of the spline.

Each of these parameters has an important effect to better interpolate curves:
The tension parameter t controls how sharply the curve bends at a key position Pi,

in some cases a large curve is desired, while, in other cases, it is preferred something
more abrupt.

The continuity parameter c is used to avoid discontinuities in the direction and speed
of motion, which are produced by linear interpolation.

The bias parameter b controls the direction of the path of a curve as it passes through
a key position Pi.

In the following, we will apply a combination of the three parameters to open and
closed Hermite interpolation curves and discuss the influence of each parameter on the
interpolation curve.

More precisely, we are interested in the control values of type Kochanek–Bartels given
by the vector:

[Pi, Pi+1, DDi, DSi+1]
T ,

where, the destination derivative DDi and the source derivative DSi at Pi are given, respec-
tively, by :

DDi =
(1− t)(1− c)(1 + b)

2
(Pi − Pi−1) +

(1− t)(1 + c)(1− b)
2

(Pi+1 − Pi)

and

DSi =
(1− t)(1 + c)(1 + b)

2
(Pi − Pi−1) +

(1− t)(1− c)(1− b)
2

(Pi+1 − Pi).

Afterwards, we can define the trigonometric Kochanek-Bartels interpolation curve as

C(x) = Ci

(
π

2
x− xi

h

)
, x ∈ [xi, xi+1],

where, for u ∈ [0, π
2 ]

Ci(u) = Piφ0(u) + Pi+1φ1(u) +
2h
π

DDiφ2(u) +
2h
π

DSi+1φ3(u). (9)
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4.1. Examples

A trigonometric Hermite interpolation curve between two consecutive points Pi
and Pi+1 is based on these points’ position and the derivative associated at each point.
The choice of the derivative with each point strongly affects the resulting trigonometric
Hermite curve. We define the trigonometric Hermite curve on each segment [xi, xi+1] using
the two control points Pi and Pi+1, and by specifying the tangent (DDi and DSi) to the
curve at each control point in terms of (Pi − Pi−1) and (Pi+1 − Pi) and with different values
of t, c and b (see Figures 4–7). The restriction of the trigonometric Hermite interpolation
curve to the interval [xi, xi+1], 0 ≤ i ≤ n− 1, (see Figures 4 and 6) is shown (solid curve)
with a red or blue color.

(a) Control polygon. (b) t = 0.3, c = −1, b = −1. (c) t = −0.3, c = 0, b = 1.

(d) t = −0.2, c = −0.5, b = −0.75. (e) t = 0, c = −0.1, b = −0.4. (f) Superposition of curves with
different values of t, c and b pa-
rameters.

Figure 4. Trigonometric Hermite interpolation of open curves with clear effect of tension, continuity, and
bias parameters.

(a) Control polygon. (b) t = 0.3, c = −1, b = −1. (c) t = −0.3, c = 0, b = 1.

(d) t = −0.2, c = −0.5, b = −0.75. (e) t = 0, c = −0.1, b = −0.4. (f) Superposition of curves with
different values of t, c and b pa-
rameters.

Figure 5. Effect of the combination of tension, continuity, and bias parameters on the interpolation of open curves.
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(a) Control polygon. (b) t = 0.3, c = −1, b = −1. (c) t = −0.3, c = 0, b = 1.

(d) t = −0.2, c = −0.5, b = −0.75. (e) t = 0, c = −0.1, b = −0.4. (f) Superposition of curves with
different values of t, c and b pa-
rameters.

Figure 6. The effect of various parameter settings tcb on the interpolation of closed curves.

(a) Control polygon. (b) t = 0.3, c = −1, b = −1. (c) t = −0.3, c = 0, b = 1.

(d) t = −0.2, c = −0.5, b = −0.75. (e) t = 0, c = −0.1, b = −0.4. (f) Superposition of curves with
different values of t, c and b pa-
rameters.

Figure 7. The effect of varying the tension, continuity and bias parameters on the closed curves.

5. C1 interpolation Hermite Surface

In this section, we present the natural extension of our trigonometric Hermite curve
to the rectangular case. The reader is referred to [6–11] for similar works. Typically, the ex-
tension of a 1D Hermite interpolation curve to the tensor-product case is straightforward
and it can be done as for the classical cubic case (see, e.g., [11]).

Let m and n be two positive integers, and consider (m + 1)× (n + 1) control point
values Pi,j, and the first derivatives Du

i,j, Dv
i,j and Du,v

i,j corresponding to the rectangular grid
points (ui, vj), i = 0, ..., m, j = 0, ..., n (with ui = i h, vj = j k, h = π

2m and k = π
2n ). We can

define the two-dimensionnel trigonometric Hermite interpolation, as follows:
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Definition 1. The (i, j)th bi-trigonometric Hermite partially Coons patch Si,j(u, v), assuming
values Pi,j and derivatives Du

i,j, Dv
i,j and Du,v

i,j , corresponding to the four corners of the domain
[ui, ui+1]× [vj, vj+1], can be defined by the matrix form: for u ∈ [0, π

2 ], v ∈ [0, π
2 ]

Si,j(u, v) =


φ0(u)
φ1(u)
φ2(u)
φ3(u)


T


Pi,j Pi,j+1
2k
π Dv

i,j
2k
π Dv

i,j+1

Pi+1,j Pi+1,j+1
2k
π Dv

i+1,j
2k
π Dv

i+1,j+1
2h
π Du

i,j
2h
π Du

i,j+1
4hk
π2 Du,v

i,j
4hk
π2 Du,v

i,j+1
2h
π Du

i+1,j
2h
π Du

i+1,j+1
4hk
π2 Du,v

i+1,j
4hk
π2 Du,v

i+1,j+1




φ0(v)
φ1(v)
φ2(v)
φ3(v)


Subsequently, the trigonometric Hermite interpolation surface is given by:

For u ∈ [ui, ui+1], v ∈ [vj, vj+1],

S(u, v) = Si,j(
π

2
u− ui

h
,

π

2
v− vi

k
). (10)

The surface S(u, v) has the interpolating property and it is C1-continuous. More precisely,
we have the following lemma.

Lemma 2. The (i, j)th bi-trigonometric Hermite partially Coons patch Si,j(u, v) verifies the follow-
ing interpolating properties:

Si,j(ui+p, vj+q) = Pi+p,j+q,
∂

∂u Si,j(ui+p, vj+q) = Du
i+p,j+q,

∂
∂v Si,j(ui+p, vj+q) = Dv

i+p,j+q,
∂2

∂u∂v Si,j(ui+p, vj+q) = Du,v
i+p,j+q,

with p = 0, 1 and q = 0, 1.

Proof. This follows immediately from the definition of Si,j(u, v).

The surface S(u, v) resulting frim the union of bi-trigonometric Hermite partially
Coons patch Si,j(u, v) will have continuous first order derivatives and continuous crossed
derivative. More precisely, we have the following result.

Proposition 1. The surface S(u, v) defined by (10) is C1-continuous.

Proof. It suffices to verify the following equations for all i and j.
Si,j(u+

i+1, v) = Si+1,j(u−i+1, v) = Pi+1,jφ0(v) + Pi+1,j+1φ1(v) + 2k
π Dv

i+1,jφ2(v) + 2k
π Dv

i+1,j+1φ3(v),

∂
∂u Si,j(u+

i+1, v) = ∂
∂u Si+1,j(u−i+1, v) = 2h

π Du
i+1,jφ0(v) + 2h

π Du
i+1,j+1φ1(v) + 4hk

π2 Du,v
i+1,jφ2(v) + 4hk

π2 Du,v
i+1,j+1φ3(v),

Si,j(u, v+j+1) = Si,j+1(u, v−j+1) = Pi,j+1φ0(u) + Pi+1,j+1φ1(u) + 2h
π Du

i,j+1φ2(u) + 2h
π Du

i+1,j+1φ3(u),

∂
∂v Si,j(u, v+j+1) =

∂
∂v Si,j+1(u, v−j+1) =

2k
π Dv

i,j+1φ0(u) + 2k
π Dv

i+1,j+1φ1(u) + 4hk
π2 Du,v

i,j+1φ2(u) + 4hk
π2 Du,v

i+1,j+1φ3(u).

Example 1. In Figures 8 and 9, we present the original polygonal mesh, and the results that were
obtained by C1 trigonometric Hermite interpolation surface defined previously by (10).
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(a) Original polygonal mesh. (b) C1 interpolation surface and
polygonal mesh.

(c) C1 interpolation surface. (d) C1 interpolation surface. The Coons patch
Si,j is shown with a red or blue color.

Figure 8. Original polygonal mesh (a) and the result obtained by C1 trigonometric Hermite interpolation surface
derived here.

(a) Original polygonal mesh. (b) C1 interpolation surface and polygonal
mesh. The Coons patch Si,j is shown with a
red or blue color.

(c) C1 interpolation surface. (d) C1 interpolation surface. The Coons patch
Si,j is shown with a red or blue color.

Figure 9. Original polygonal mesh of nefertiti (a) and the result obtained by C1 trigonometric Hermite interpola-
tion surface (b–d).

6. Conclusions

New polynomial and trigonometric functions have been reported and are useful
for constructing a new trigonometric Hermite interpolant. This Hermite interpolation
led to building an interesting trigonometric Hermite basis having the same properties as
Hermite polynomials’ classical basis. The tension, continuity, and bias parameters were
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combined and used as a potent type of interpolation. Surface construction using the studied
trigonometric Hermite interpolation was explored. Several examples that were obtained
by the C1 trigonometric Hermite interpolation surface were given to show the usefulness
of this method.
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