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Abstract: A numerical procedure based on the spectral Tau method to solve nonholonomic systems
is provided. Nonholonomic systems are characterized as systems with constraints imposed on
the motion. The dynamics is described by a system of differential equations involving control
functions and several problems that arise from nonholonomic systems can be formulated as optimal
control problems. Applying the Pontryagins maximum principle, the necessary optimality conditions
along with the transversality condition, a boundary value problem is obtained. Finally, a numerical
approach to tackle the boundary value problem is required. Here we propose the Lanczos spectral
Tau method to obtain an approximate solution of these problems exploiting the Tau toolbox software
library, which allows for ease of use as well as accurate results.

Keywords: Tau method; nonholonomic systems

1. Introduction

Nonholonomic systems are a class of nonlinear systems that cannot be stabilized by a continuous
time-invariant feedback, i.e., at a certain time or state there are constraints imposed on the motion
(nonholonomic constraints). These systems are controllable but they cannot move instantaneously
in certain directions. They belong to a class of nonlinear differential systems with nonintegrable
constraints imposed on the motion [1].

Nonholonomic control systems, which result from formulations of nonholonomic systems that
include control inputs, are nonlinear control problems requiring nonlinear treatment. There is ample
literature on the formulation of the equations of motion and on the dynamics of nonholonomic systems,
being [2] an excellent survey for examples. Nonholonomic control systems have been studied in the
context of robot manipulation, mobile robots, wheeled vehicles, and space robotics, just to mention
a few. In the case of wheeled vehicles, the kinematics and dynamics can be modeled based on the
assumption that the wheels are ideally rolling. Typical constraints of wheeled vehicles are rolling
contact, like rolling between the wheels and the ground without slipping, or sliding contact such the
sliding of skates.

The solution of nonholonomic optimal control problems can be obtained following a standard
procedure, which consists of applying Pontryagin’s maximum/minimum principle to obtain set of
equations along with initial and terminal conditions resulting into a two-point boundary value problem
(BVP) [3].

In this work we propose the use of the spectral Tau method to obtain approximate solutions of
nonholonomic optimal control problems through the associated BVP.

The spectral Tau method produces a polynomial approximation of the solution of the differential
problem. It is based on solving a system of linear algebraic equations, obtained by imposing that all
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conditions are verified exactly and the residual is orthogonal to the first elements of an orthogonal
polynomial basis [4].

The paper is organized as follows. Section 2 describes the system model of the nonholonomic
wheeled vehicle and Section 3 explains the optimal control formulation. A brief description of the
Tau method is presented in Section 4. An illustrative example with numerical results is provided in
Section 5 and some conclusions are drawn in Section 6.

2. Nonholonomic Wheeled Vehicle Model

Vehicle models are usually described by a set of ordinary differential equations that define
the dynamics of the vehicle and the relationship between the state variables and control input.
The kinematic model of a wheeled vehicle can be defined by the following differential equations

ẋ = f1(x, y, v, θ, φ)

ẏ = f2(x, y, v, θ, φ)

θ̇ = f3(x, y, v, θ, φ),

where (x, y) ∈ R2 is the robot’s position in space, θ is the angle with respect to the x-axis, φ is the
steering wheel’s angle with respect to the robot’s longitudinal axis, and v is the velocity. (see Figure 1).
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Figure 1. Car-like robot model.

A nonholonomic car-like robot is a car model which rolls without slipping between the wheels
and the ground. This constraint is expressed by the equation [5]

ẋ sin(θ)− ẏ cos(θ) = 0. (1)

The simplest model corresponds to a robot with a single wheel: the unicycle model. In this model
the wheel rolls on a plane while keeping its body vertical. It is an unrestricted model since it can rotate
freely while standing in its position (x, y). Furthermore, the dynamics are characterized by

ẋ = vcos(θ)
ẏ = vsin(θ)
θ̇ = φ.

(2)
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The kinematic model of a car-like robot has the same state variables as the unicycle model and its
dynamic is represented by 

ẋ = vcos(θ)
ẏ = vsin(θ)
θ̇ = vu,

(3)

where u ∈ [− 1
r , 1

r ] stands for the curvature and r for the turning radius of the robot that corresponds
the maximum curvature [6].

3. Optimal Control Problems

An optimal control problem (OCP) can be formulated as

Minimize J(x(t), u(t)) =
∫ t f

t0

F(x(t), u(t)) dt + G(x(t f ), t f )

subject to

ẋ(t) = f (x(t), u(t)), t ∈ [t0, t f ]

x(t0) = x0

x(t f ) = x f
x(·) ∈ X
u(·) ∈ U
t f ∈ [t0,+∞[,

(4)

where J is the cost function, x is the state vector representing the dynamics, u is the control vector, x0 is
the initial configuration and x f is the final configuration.

The solution of the OCP can be obtained following a standard procedure, which consists in
applying Pontryagin’s maximum principle and obtaining the necessary optimality conditions along
with the transversality condition resulting into a two-point boundary value problem (BVP).

Pontryagin Maximum Principle

Considering the Hamiltonian function

H(x(t), u(t), λ) = F(x(t), u(t)) + λ f (x(t), u(t)), (5)

where F and f are the functions described above and λ = [λ1(t), λ2(t), . . . , λn(t)] is a vector of co-state
variables, and considering that (x, u∗) is a controlled trajectory defined over the interval [t0, t f ] then
(x, u∗) is optimal, for all admissible controls u, if the Pontryagin’s maximum principle holds, i.e.,

H(x, u∗, λ) ≥ H(x, u, λ).

The Pontryagin maximum principle guarantees that if (x, u∗) is an optimal pair, a solution of the
problem (4), then the first order necessary conditions

Hx = −λ̇ (6)

together with the stationary conditions
Hu = 0 (7)
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satisfies the Hamiltonian maximization with transversality conditions given by [3]

λ(t f ) = 0 if t f = ∞ or G(.) = 0
or

λ(t f ) =
∂G
∂x

∣∣∣∣
t=t f

.
(8)

This reduces the constrained problem (4) to an unconstrained differential equations system (6)–(8).
Usually nonlinear, this system of differential equations can be approximately solved by a numerical
method. The next section is devoted to introducing the Tau method, which will be used to numerically
tackle the problem.

4. Tau Method

The spectral Tau method produces a polynomial approximation, yn(x), of the solution, y(x),
of a given differential problem Dy(x) = f (x), satisfying a set of conditions defined on an interval
]a, b[. Introduced by Lanczos in 1938 [7] to compute approximate solutions of linear differential
problems with polynomial coefficients and right-hand side, the Tau method solves a tuned system of
linear algebraic equations obtained by imposing that the conditions are verified exactly and that the
residual is minimized in a quadrature sense, i.e, is orthogonal to the first elements of an orthogonal
polynomial basis. It can be applied, indifferently, to initial, boundary or mixed value problems
and it can be implemented with any orthogonal basis. We begin by introducing the method for the
original case and then shed some light on how to extend it for the solution of nonlinear problems with
non-polynomial coefficients.

4.1. Preliminaries and Notation

Let P be the space of all algebraic polynomials and let D : P→ P be a linear differential operator
of order ν ≥ 1 with polynomial coefficients represented by

D ≡
ν

∑
r=1

pr
dr

dxr (9)

and y be the exact solution of the differential problem{
Dy(x) = f (x), a < x < b
gj(y) = σj, j = 1, . . . , ν,

(10)

where f ∈ P is a polynomial or a convenient polynomial approximation and gj are ν linear functionals,
acting on Cν[a, b], representing the (supplementary) conditions.

The main idea of the Tau method is to approximate y by the polynomial yn, solution of the
perturbed problem {

Dyn(x) = f (x) + τn(x), a < x < b
gj(yn) = σj, j = 1, . . . , ν,

(11)

where τn is a polynomial perturbation close to zero in ]a, b[. Choosing an orthogonal polynomial
basis P = [P0, P1 . . .], then the coefficients of yn are determined imposing that τn is orthogonal to
Pi, i = 0, 1, . . . , n− ν.

The original idea of the Tau method [8] is based on the minimax property of Chebyshev
polynomials and on the fact that the solution yn of (11) depends continuously on the residual τn.
Later generalized to more general bases [4], the method looks for a residual τn that minimizes the
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weighted norm ||.||w associated to the sequence P. Indeed, P is orthogonal with respect to the weight
function w(x) on [a, b]

〈Pi, Pj〉 =
∫ b

a
w(x)Pi(x)Pj(x)dx = wiδij,

where wi = 〈Pi, Pi〉 = ||Pi||2w and δij is the Kronecker delta, and (11) is achieved by imposing

〈τn, Pj〉 = 0, j = 0, 1, . . . , n− ν,

that is, τn = O(Pn−ν).
Using suitable matrices, see for example [4,9,10], the differential problem (11) is translated

into an algebraic problem. Such matrices must be computed with criteria in order to ensure stable
computations [10].

4.2. Nonlinear Problems

Nonlinear differential problems are solved iteratively by first linearizing the problem and then
applying the Tau method to the linear inner problem.

Let
F(y) = 0, x ∈]a, b[ (12)

be a differential equation, where F is a differential operator that could be nonlinear in y and on
its derivatives.

From ym, an approximation of the exact solution y, we take the first order Taylor polynomial of F
centered in ym to approximate F

Dmy = F(ym) +
ν

∑
k=0

(y(k) − y(k)m )
∂F

∂y(k)

∣∣∣∣
ym

. (13)

F can be replaced by Dm in (12) to solve

ν

∑
k=0

y(k)
∂F

∂y(k)

∣∣∣∣
ym

= −F(ym) +
ν

∑
k=0

y(k)m
∂F

∂y(k)

∣∣∣∣
ym

. (14)

Applying the Tau method to the linear differential Equation (14), an iterative process is
implemented to get increasingly better approximations for the differential problem

Dmym+1 = 0, m = 0, 1, . . . (15)

For additional details on the use of the Tau method for nonlinear problems the reader is invited to
read [11].

5. Numerical Experiments

The proposed example is based on the work of [12] and it will be tackled by the Tau method,
described in Section 4.

The problem at hand is an optimal control problem of the form (4) with F = 1
2 (u

2
1 + u2

2) and
G = 1

2 xT(t f )Qx(t f ) where x is the vector of state variables and Q is the weighting matrix.

5.1. System Model

Consider an automated vehicle that moves on a horizontal plane, the contact of each wheel with
the floor is assumed to satisfy the rolling without slipping condition and the control inputs are the
torque generated by two motors mounted on the wheels. For a fixed final time, it is desired to find the
control inputs that minimizes the energy of the final state. This system can be modeled by
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J = min
∫ t f

t0

1
2
(u2

1 + u2
2)dt +

1
2

xT(t f )Qx(t f ) (16)

subject to

mẍ =
cos(θ)

R
(µ1 + µ2)− λ sin(θ) (17)

mÿ =
sin(θ)

R
(µ1 + µ2) + λ cos(θ) (18)

Iθ̈ =
L
R
(µ1 − µ2) (19)

with nonholonomic constraint
ẋ sin(θ)− ẏ cos(θ) = 0,

where the position coordinates (x, y), and the heading angle θ, define the system configuration.
The mass m, the inertia I, the wheels’ radius R, the half-length of the axis L, are parameters of the
system and µ1 and µ2 are torques generated by the motors.

Defining the control inputs u = [u1 u2]
T as

u1 =
1

mR
(µ1 + µ2), u2 =

L
IR

(µ1 − µ2)

and the state variables x = [x1 x2 x3 x4 x5]
T as

x1 = x cos(θ) + y sin(θ)

x2 = θ

x3 = −x sin(θ) + y cos(θ)

x4 = ẋ cos(θ) + ẏ sin(θ)− θ̇(x sin(θ)− y cos(θ))

x5 = θ̇.

Equations (17)–(19) can be reduced to the following system of differential equations:

ẋ1 = x4

ẋ2 = x5

ẋ3 = −x1x5

ẋ4 = −x1x2
5 + u1 + u2x3

ẋ5 = u2.

Applying the Hamiltonian H, defined in (5),

H(x, u, λ) =
1
2
(u2

1 + u2
2) + λẋ
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with λ = [λ1 λ2 λ3 λ4 λ5], and calculating the necessary conditions (6), the stationary conditions
(7) and the transversality conditions (8), the following second order system of differential equations
is obtained: 

x1 ẋ2 + ẋ3 = 0

ẍ1 − ẋ2 ẋ3 − ẍ2x3 + λ4 = 0

ẍ2 + x3λ4 + λ5 = 0

−ẋ2λ3 − ẋ2
2λ4 + λ̈4 = 0

ẍ2λ4 + λ̇3 = 0

−x1λ3 + 2ẋ3λ4 + λ2 + λ̇5 = 0

for ẋ1 = x4, ẋ2 = x5, λ̇4 = −λ1 and λ̇2 = 0, with initial and transversality conditions given by

xi(t0) = xi0, i ∈ {1, 2, 3}
ẋ1(t0) = x40

ẋ2(t0) = x50

λi(t f ) = λi f , i ∈ {3, 4, 5}
λ̇4(t f ) = −λ1 f .

(20)

Since this is a nonlinear differential system, in order to implement the Tau method, differential
equations need to be linearized. Expressions of the form uv and uv2 will be replaced, respectively, by

uv ≈ vmu + umv− umvm

uv2 ≈ v2
mu + 2umvmv− 2umv2

m.

Thus, the differential system becomes

ẋ2,mx1 + x1,m ẋ2 + ẋ3 = x1,m ẋ2,m

ẍ1 − ẋ3,m ẋ2 − x3,m ẍ2 − ẍ2,mx3 − ẋ2,m ẋ3 + λ4 = −ẋ2,m ẋ3,m − ẍ2,mx3,m

ẍ2 + λ4,mx3 + x3,mλ4 + λ5 = x3,mλ4,m

(λ3,m + 2ẋ2,mλ4,m)ẋ2 + ẋ2,mλ3 + ẋ2
2,mλ4 + λ̈4 = ẋ2,mλ3,m + 2ẋ2

2,mλ4,m

λ4,m ẍ2 + λ̇3 + ẍ2,mλ4 = ẍ2,mλ4,m

λ3,mx1 − 2λ4,m ẋ3 + x1,mλ3 − 2ẋ3,mλ4 − λ̇5 = x1,mλ3,m − 2ẋ3,mλ4,m + λ2,0

(21)

where xi,m, i = 1, 2, 3 and λi,m, i = 3, 4, 5 are approximations to x1, x2, x3 and λ3, λ4, λ5.
The matrix representation of the differential problem (21), together with the conditions (20), is of

the form Ta = b, where

T =

[
C
D

]
and b =

[
s
f

]
with

C =



P(t0) 0 0 0 0 0
0 P(t0) 0 0 0 0
0 0 P(t0) 0 0 0

P’(t0) 0 0 0 0 0
0 P’(t0) 0 0 0 0
0 0 0 P(t f ) 0 0
0 0 0 0 P(t f ) 0
0 0 0 0 0 P(t f )

0 0 0 0 P’(t f ) 0
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where P(ti) = [P0(ti), P1(ti), . . .] represents the action of boundary conditions (20) over the polynomial
base elements and P’(ti) its derivatives. Matrix D represents the differential operator

D =



ẋ2,m(M) x1,m(M)N N 0 0 0
N2 A2,2 A2,3 0 I 0
0 N2 λ4,m(M) 0 x3,m(M) I
0 A4,2 0 −ẋ2,m(M) A4,5 0
0 λ4,m(M)N2 0 N ẍ2,m(M) 0

λ3,m(M) 0 −2λ4,m(M)N x1,m(M) −2ẋ3,m(M) N


.

Finally,
s = [x10, x20, x30, x40, x50, λ3 f , λ4 f , λ5 f ,−λ1 f ]

f =


x1,m ẋ2,m

−ẋ2,m ẋ3,m − ẍ2,mx3,m
x3,mλ4,m

ẋ2,mλ3,m + 2ẋ2
2,mλ4,m

x1,mλ3,m − 2ẋ3,mλ4,m + λ20

 ,

where 
A2,2 = −ẋ3,m(M)N − x3,m(M)N2

A2,3 = −ẍ2,m(M)− ẋ2,m(M)N

A4,2 = (λ3,m(M) + 2ẋ2,mλ4,m(M))N

A4,5 = −ẋ2
2,m(M) + N2

and M and N are matrices described in [4] representing, respectively, the multiplication and the
differentiation operator.

5.2. Numerical Results

In this section we report the numerical results for the example described in Section 5.1 with initial
positions (x, y) = (10, 3) and heading angle 0◦. The time interval is [t0, f f ] = [0, 5] and the system
parameters used in the simulation are m = 10 kg, I = 1.2 kg·m2, R = 0.05 m and L = 0.1 m. The
weighting matrix is Q = 10I, where I stands for the identity matrix.

The simulation results were obtained using the Tau Toolbox with Chebyshev polynomials.
The state trajectories x1, x2 and x3 and the optimal trajectory for the position (x, y) are illustrated

in Figures 2 and 3. The trajectories were obtained with 5th order Chebyshev polynomials.

Figure 2. State trajectories x1, x2 and x3.
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Figure 3. State trajectories x1, x2 and x3.

These approximate solutions only required m = 8 iterations to satisfy the stopping criterion
||xm

i − xm−1
i || ≤ 10−14. For larger degree polynomials (10 and 15) machine precision can be achieved.

The residual produced by the Tau method in the iteration m is rm = Dym, where ym is the
approximating solution of the system of homogeneous differential equations Dy = 0. Figure 4 plots
the residual r1,m, r2,m and r1,m produced by the Tau method for the state variables x1, x2 and x3,
respectively.

Figure 4. Residual, r9 = Dy9, produced by the Tau method for the state variables x1, x2 and x3.

Table 1 presents the values for the functional J defined in (16) using polynomials of degree

n = 5, 10 and 15. Since u1 = −λ4 and u2 = ẋ5, the integral
∫ 5

0

1
2
(u2

1 + u2
2)dt and x(5)TQx(5) can be

calculated using the the approximate solutions for the state variables xi, i = 1, . . . , 5 and the co-state
variable λ4.

As the polynomial multiplication and differentiation, the integration can be set into algebraic
operation as well, using a suitable matrix [4].

Table 1. J values for several polynomial degree approximations.

Polynomial Degree Functional Value

5 5.0990
10 5.0878
15 5.0880
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6. Conclusions

The Lanczos spectral Tau method was used to compute approximate polynomial solutions for
nonholonomic systems. A detailed illustration on the approximation procedure is offered. The Tau
toolbox provides the appropriate environment to solve systems of ordinary differential problems
while allowing for accurate solutions, whenever the sought solution is regular. Numerical results for
this dynamical optimization problem confirm both aspects: ease of use and accuracy of approximation.

Author Contributions: A.G. and J.M.A.M. conceived and designed the experiments; J.M.A.M. and P.B.V.
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