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Abstract: In this paper, we study the meshless local Petrov–Galerkin (MLPG) method based on
the moving least squares (MLS) approximation for finding a numerical solution to the Stefan free
boundary problem. Approximation of this problem, due to the moving boundary, is difficult.
To overcome this difficulty, the problem is converted to a fixed boundary problem in which it
consists of an inverse and nonlinear problem. In other words, the aim is to determine the temperature
distribution and free boundary. The MLPG method using the MLS approximation is formulated to
produce the shape functions. The MLS approximation plays an important role in the convergence and
stability of the method. Heaviside step function is used as the test function in each local quadrature.
For the interior nodes, a meshless Galerkin weak form is used while the meshless collocation method
is applied to the the boundary nodes. Since MLPG is a truly meshless method, it does not require any
background integration cells. In fact, all integrations are performed locally over small sub-domains
(local quadrature domains) of regular shapes, such as intervals in one dimension, circles or squares in
two dimensions and spheres or cubes in three dimensions. A two-step time discretization method is
used to deal with the time derivatives. It is shown that the proposed method is accurate and stable
even under a large measurement noise through several numerical experiments.

Keywords: free boundary problems; moving boundary; weak form; meshless local Petrov–Galerkin
(MLPG) method; moving least squares (MLS) approximation

MSC: 65N21; 80A22

1. Introduction

A free boundary problem (FBP) is a partial differential equation with initial and boundary
conditions, in which a part of the boundary of domain, called a free boundary, is unknown at the
outset of the problem. FBPs have many applications in science and engineering. FBPs usually happen
in phase separation problems, which can be either stationary or moving free boundaries. The Stefan
problem is one kind of the free boundary problems which describes the process of melting and
solidification. In this paper, the numerical solution of these problems are considered. The determination
of the temperature function and the position of the free boundary are desired [1–5]. The existence
and uniqueness of the solution to these problems are investigated in References [2,3,5]. In recent
years, several methods have been employed for solving the Stefan problems numerically, such as the
homotopy analysis method [6,7], Lie-group shooting method [8], finite difference and finite element
methods [9] and the variational iteration method [10]. Grzymkowski and Slota [11,12] applied the
Adomian decomposition method (ADM) to solve one-phase Stefan problems and Slota [13] used the

Math. Comput. Appl. 2019, 24, 101; doi:10.3390/mca24040101 www.mdpi.com/journal/mca

http://www.mdpi.com/journal/mca
http://www.mdpi.com
https://orcid.org/0000-0003-3385-4152
http://www.mdpi.com/2297-8747/24/4/101?type=check_update&version=1
http://dx.doi.org/10.3390/mca24040101
http://www.mdpi.com/journal/mca


Math. Comput. Appl. 2019, 24, 101 2 of 18

homotopy perturbation method for one-phase inverse Stefan problems. In Reference [14] the method
of fundamental solutions was applied to the one-dimensional Stefan problem.

For many years, the finite element method (FEM) has been considered a standard and effective
technique for numerically solving many applied problems in science and engineering [15,16]. Due to
several limitations, these techniques cannot solve some of the complex problems of today’s world.
For this reason, the development and formulation of new and effective numerical techniques in
recent years has been an interesting field for some engineers and mathematicians. In recent years,
meshless methods have gained considerable attention, in engineering and applied mathematics.
Flexibility and simplicity are the advantages of these methods. Meshless methods overcome the
shortcomings of the mesh-based techniques [17]. In these methods, a system of algebraic equations is
created using a set of scattered nodes—called field nodes—within the domain and its boundary for
representation (but not for discretization) the whole domain of the problem and its boundary, therefore
it is not necessary to use a predefined mesh for the domain discretization.

Meshless methods are generally divided into three categories. The first category includes
methods that use integration and are based on weak forms of PDEs, such as the element free Galerkin
method [18–24]. The second methods are based on the strong forms of PDEs and use integration,
for example, the meshless collocation method based on radial basis functions (RBFs) [25–28] are
in this category. The third category is a set of methods based on the combination of weak forms
and strong forms. The meshless methods based on strong form are truly meshless methods and
the implementation of these methods are usually simple. They are also computationally efficient.
In spite of several advantages, they also have some shortcomings, such as numerical instability and
less accuracy.

The meshless weak form methods are those that use the global and local weak form. The stability
and accuracy of these methods make them more attractive. In these methods, the global weak forms are
used and numerical integrations are carried out on the global background cells in solving the algebraic
equations. In meshless local weak form methods, it does not require any background integration cells
for field nodes. The meshless local Petrov–Galerkin (MLPG) method [29–40] is based on the local
weak form of PDEs. In the MLPG method, the numerical integrations are performed over a local
small sub-domain defined for each node. The local sub-domains usually have a regular shape, such as
interval, circle, square, sphere, cube, and so forth.

The moving least square (MLS) approximations have an important role in using the MLPG
method. By considering a local sub-domain for each field node, the MLS approximates the solving
function at each field node. In this paper, a kind of MLPG method using the MLS approximation is
applied for numerically solving the Stefan problem.

The layout of the paper is as follows. In the next section, we give the formulation of the inverse
Stefan problem. Section 3 briefly describes the MLS approximation. In Section 4 we present the time
discretization of the problem. In Section 5 the local weak form formulation of the discretized problem
is presented. We present the MLPG discretization of the problem in Section 6. Numerical examples are
given and solved to observe the performance of the proposed method in Section 7. At last, we give a
conclusion in Section 8.

2. Statement of the Problem

Consider the following heat conduction equation

∂v(y, t)
∂t

= α
∂2v(y, t)

∂y2 , 0 < y < s(t), 0 < t < T, (1)

subject to the initial condition:

v(y, 0) = f (y), 0 < y < s0, s0 = s(0), (2)
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and boundary condition
v(0, t) = g(t), (3)

where α denotes the thermal diffusivity and v(y, t), t and x denote the temperature, time and spatial
location, respectively.

On the free boundary s(t) we have

v(s(t), t) = h(t), (4)

β
∂v(y, t)

∂y
|y=s(t) = κ

ds(t)
dt

, (5)

where α is the thermal diffusivity, β is the thermal conductivity, κ is the latent heat of fusion per unit
volume, h(t) is the temperature of the phase change, v(y, t) is temperature and t and x refer to time and
spatial location, respectively. Equation (4) represents the continuity of temperature and Equation (5) is
the Stefan condition.

In this problem, we try to find v(y, t), the temperature distribution in given domain and s(t),
the free boundary.This is a nonlinear problem due to Stefan condition [4].

By using the change of variable, we the free boundary problem is transformed into a fixed
boundary problem.

Let
x =

y
s(t)

, u(x, t) = v(y, t). (6)

Then Equations (1)–(5) are changed to

∂u(x, t)
∂t

= α
1

s2(t)
∂2u(x, t)

∂x2 + x
s′(t)
s(t)

∂u(x, t)
∂x

, 0 < x < 1, 0 < t < T, (7)

u(x, 0) = f (s0x), 0 < x < 1, s0 = s(0), (8)

u(0, t) = g(t), (9)

u(1, t) = h(t), (10)

β
∂u(1, t)

∂x
= κs(t)s′(t). (11)

In this paper, an approach based on the MLPG method and MLS approximations is applied
to the Equation (7), which is subjected to the initial condition (8) and over-specified boundary
conditions (9)–(11).

3. The MLS Approximation Technique

In this section, the formulation of MLS approximation is explained. The trial functions at each
node is represented by the MLS approximation. Consider the sub-domain Ωs, with the boundary ∂Ωs,
of problem global domain Ω around point x. In fact, Ωs is the domain of definition (or support) of
the MLS approximation for the trial function at x. Let qt(x) = [q1(x), q2(x), ..., qm(x)] be a complete
monomial basis in the space coordinate x. For example, the linear basis for one-dimensional is

qt(x) = {1, x} , m = 2, (12)

and the quadratic basis function is

qt(x) =
{

1, x, x2
}

, m = 3. (13)
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For all x belong to Ωs the MLS approximation uh(x) of u in Ωs, over a set of random nodes xi
(i = 1, 2, ..., n) located in Ωs, is given as

uh(x) = qt(x)λ(x), ∀ x ∈ Ωs, (14)

where λt(x) = [λ1(x), λ2(x), ..., λm(x)] is a vector of coefficients. In order to determine the unknown
coefficient vector λ(x), we define a function I(λ(x)) as follows

I(λ(x)) =
n

∑
i=1

wi(x)[qt(xi)λ(x)− ûi]
2 = [Qλ(x)− û]tW(x)[Qλ(x)− û], (15)

where the matrices Q and W(x) in Equation (15) are defined as

Q =


qt(x1)

qt(x2)
...

qt(xn)


n×m

, W(x) =

w1(x) · · · 0
...

. . .
...

0 · · · wn(x)

 .

In the above relations, wi(x), i = 1, 2, ..., n, is the weight function corresponding to the node xi,
so that for each x in the support of wi(x) we have wi(x) > 0, n is the number of nodes in Ωs for
which the weight functions wi(x) > 0 and ût = [û1, û2, ..., ûn] is the vector of fictitious nodal values.
It is necessary to mention that ûi, i = 1, 2, ..., n, are not equal to nodal values ui, i = 1, 2, ..., n, of the
unknown trial function uh(x) in general (Figure 1). The stationarity of I(λ(x)) in Equation (15) with
respect to λ(x) we have

F(x)λ(x) = G(x)û, (16)

where F(x) and G(x) are matrices defined as follows

F(x) = QtW(x)Q = G(x)Q =
n

∑
i=1

wi(x)q(xi)qt(xi), (17)

G(x) = QtW(x) = [w1(x)q(x1), w2(x)q(x2), ..., wn(x)q(xn)]. (18)

The MLS approximation is well-defined only when the matrix F in Equation (16) is non-singular,
that is, if and only if the rank of Q equals m. A necessary condition to have a well-defined MLS
approximation is that at least m weight functions are non-zero (i.e., n > m) for each sample point
x ∈ Ω. Computing λ(x) from Equation (16) and substituting it into Equation (14), gives

uh(x) = Ψt(x).û =
n

∑
i=1

ψi(x)ûi, x ∈ Ωs, (19)

where
Ψt(x) = qt(x)F−1(x)G(x) (20)

or

ψi(x) =
m

∑
j=1

qj(x)[F−1(x)G(x)]ji. (21)

The function ψi is usually called the shape function of the MLS approximation corresponding to
nodal point xi.

The partial derivative of ψi(x) with respect to x is defined as

ψi,x =
m

∑
j=1

[qj,x(F−1G)ji + qj(F−1G,x + F−1
,x G)ji], (22)
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where (F−1),x = F−1
,x = −F−1F,xF−1 and (·),x denotes the derivative with respect to x. In this paper,

the following Gaussian weight function is used

wi(x) =


exp[−( li

ci
)2]−exp[−( rs

ci
)2]

1−exp[−( rs
ci

2)]
, 0 ≤ li ≤ rs,

0, li ≥ rs,

where li =‖ x− xi ‖, ci is a constant controlling the shape of the weight function wi(x) and rs is the
size of the support domain. rs must be chosen large enough to have sufficient number of nodes covered
in the domain of definition of every sample point (n ≥ m) to ensure the regularity of F.

Figure 1. The distinction between the nodal values ui of the trial function uh(x), and the undetermined
fictitious nodal values ûi.

4. The Time Discretization of the Problem

We use the following finite difference approximations for the time derivative operators

∂u(x, t)
∂t

∼=
1
4t

(uk+1(x)− uk(x)), (23)

s′(t) ∼=
1
4t

(sk+1 − sk), (24)

where uj(x) = u(x, tj), sj = s(tj), tj = t0 + j4t, j = 0, 1, ..., M and 4t = T
M . Also by using the

Crank–Nicolson technique, we have the following approximations:

1
s2(t)

∂2u(x, t)
∂x2

∼=
1
2
(

1
(sk+1)2 uk+1

xx +
1

(sk)2 uk
xx), (25)

1
s(t)

∂u(x, t)
∂x

∼=
1
2
(

1
sk+1 uk+1

x +
1
sk uk

x). (26)

Using the above approximations, Equations (7) and (11) can be respectively written as:

uk+1 − uk

4t
=

α

2
(

1
(sk+1)2 uk+1

xx +
1

(sk)2 uk
xx) +

sk+1 − sk

24t
x(

1
sk+1 uk+1

x +
1
sk uk

x), (27)

sk+1 − sk

4t
=

β

κ

1
sk uk

x(1). (28)
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Suppose that λ = 2
4t , then we have

λ(uk+1 − uk) = α(
1

(sk+1)2 uk+1
xx +

1
(sk)2 uk

xx) +
λ

2
(1− sk

sk+1 )xuk+1
x − λ

2
(1− sk+1

sk )xuk
x, (29)

sk+1 = sk +
β

κ
4t(

1
sk uk

x(1)). (30)

5. The Local Weak Form Formulation

Let Ωi
q be a sub-domain associated with the nodal point xi, i = 1, 2, ..., N, (called local quadrature

cell) in the global domain Ω. Ωi
q i = 1, 2, ..., N, overlap each other and union of them cover the whole

global domain Ω. In this paper Ωi
q are intervals centered at xi of radius rq. By applying the MLPG

method, the local weak form is obtained over local quadrature cells Ωi
q. For each node xi ∈ Ωi

q the
local weak form of Equation (29) is represented as follows

λ
∫

Ωi
q

(uk+1 − uk)ν(x)dx =
∫

Ωi
q

α(
1

(sk+1)2 uk+1
xx +

1
(sk)2 uk

xx)ν(x)dx +

λ

2

∫
Ωi

q

((1− sk

sk+1 )xuk+1
x )ν(x)dx− λ

2

∫
Ωi

q

((1− sk+1

sk )xuk
x)ν(x)dx, (31)

where the Heaviside step function [41,42]

ν(x) =

{
1, x ∈ Ωi

q,
0, x /∈ Ωi

q,
(32)

is used as the test function. Applying the integration by parts in Equation (31) the following local weak
form equation is obtained:

λ
∫

Ωi
q

u(k+1)dx− λ

2

∫
Ωi

q

((1− sk

sk+1 )xuk+1
x )dx− α

(sk+1)2 uk+1
x |∂Ωi

q
=

λ
∫

Ωi
q

u(k)dx− λ

2

∫
Ωi

q

((1− sk+1

sk )xuk
x)dx +

α

(sk)2 uk
x|∂Ωi

q
, (33)

where ∂Ωi
q is the boundary of Ωi

q.

6. MLPG Discretization

In this section, we obtain a system of algebraic equations from discretization of the Equation (33),
by employing MLS approximation. Equation (33) is discretized for this purpose. Consider the N
regularly points xi, i = 1, 2, ...N, in the domain of the problem and its boundary such that xi+1− xi = h.
Suppose that u(xi, tk), is determined and u(xi, tk+1), is unknown for i = 1, 2, ...N. In order to determine
the N unknown quantities u(xi, tk+1) we need to have N equations. For interior nodes xi of the domain
Ω, by replacing MLS approximation Formula (19) in the Equation (33), the following discrete equations
are obtained

λ
N

∑
j=1

(∫
Ωi

q

φj(x)dx

)
u(k+1)

j − λ

2
(1− sk

sk+1 )
N

∑
j=1

(∫
Ωi

q

xφ
′
j(x)dx

)
u(k+1)

j −

α

(sk+1)2

N

∑
j=1

φ
′
j(x)u(k+1)

j |∂Ωi
q
= λ

N

∑
j=1

(∫
Ωi

q

φj(x)dx

)
u(k)

j −

λ

2
(1− sk+1

sk )
N

∑
j=1

(∫
Ωi

q

xφ
′
j(x)dx

)
u(k)

j +
α

(sk)2

N

∑
j=1

φ
′
j(x)u(k)

j |∂Ωi
q
. (34)
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For boundary nodes x = 0 and x = 1 we set

uk+1(0) = g(tk+1), (35)

uk+1(1) = h(tk+1), (36)

together with Equation (30) for which its discrete form is written as

sk+1 = sk +
β

κ

4t
sk

N

∑
j=1

φ
′
j(1)u

(k)
j . (37)

The matrix form of Equations (34)–(36) for all N nodal points can be represented as follows

[
λ

N

∑
j=1

aij −
λ

2
(1− sk

sk+1 )
N

∑
j=1

bij −
α

(sk+1)2

N

∑
j=1

cij

]
u(k+1)

j =

[
λ

N

∑
j=1

aij −
λ

2
(1− sk+1

sk )
N

∑
j=1

bij +
α

(sk)2

N

∑
j=1

cij

]
u(k)

j , (38)

where
aij =

∫
Ωi

q

φj(x)dx, bij =
∫

Ωi
q

xφ
′
jdx, cij = φ

′
j(x)|∂Ωi

q
. (39)

Assuming that

Aij = λaij −
λ

2
(1− sk

sk+1 )bij −
α

(sk+1)2 cij,

Bij = λaij −
λ

2
(1− sk+1

sk )bij +
α

(sk)2 cij,

and U = (ui)N×1, Equations (37) and (38) yield the following system of equations
sk+1 = sk + β

κ
4t
sk ∑N

j=1 φ
′
j(1)u

(k)
j ,

AU(k+1) = BU(k).

(40)

According to the boundary conditions (35) and (36) we have for each step

A11 = ANN = 1, ∀j 6= 1 : A1j = 0, ∀j 6= N : ANj = 0, (41)

B11 = BNN = 1, ∀j 6= 1 : B1j = 0, ∀j 6= N : BNj = 0, (42)

uk+1
1 = g(tk+1), uk+1

N = h(tk+1). (43)

At the first step, when k = 0, due to the initial conditions, we have the following assumptions

U(0) = [ f (s0x1), f (s0x2), . . . , f (s0xN)]
t, (44)

s(0) = s0. (45)
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7. Numerical Experiments

In this section, we test the described meshless method with two examples. In numerical
computations, the input Cauchy data are considered with noise

g̃(ti) = g(ti)(1 + δR(i)), (46)

where δ denotes the level of noise, and R(i) are random numbers in [−1, 1]. In these examples,
the domain integrals are approximated using the 4 points Gaussian quadrature rule. In order to
investigate the accuracy of computed approximations and the efficiency of the presented method,
the following root mean square (RMS) error and absolute error formulas are applied

RMS =

√
∑N

i=1
(
uexact(xi, tj)− uapprox(xi, tj)

)2

N
, (47)

Absolute error u = |uexact(xi, tj)− uapprox(xi, tj)|, (48)

Absolute error s = |sexact(tj)− sapprox(tj)|. (49)

In implementing the meshless local weak form, each local quadrature domain Ωi
q is taken as

interval centered at xi of radius rq = 0.7h where h = xi+1 − xi, i = 0, 1, 2, ...N − 1. Also the radius of
support domain Ωs is rs = 4rq and the quadratic basis functions (13) is used in Equation (14).

Example 1. We consider the problem (1)–(5) with α = 1, T = 1, β = −1, κ = 1 and

f (y) = exp(1− y), g(t) = exp(1 + t), h(t) = 1.

The analytical solutions of problem are

v(y, t) = exp(1− y + t), s(t) = t + 1,

and

u(x, t) = v(xs(t), t) = exp(1− x(t + 1) + t), s(t) = t + 1.

The results of using the proposed method are obtained with4t = 0.01, h = 0.01. Figure 2 presents
the RMS error for u(x, t) and Absolute error for s(t) versus the shape parameter c at t = 1. For other
values of t the results are almost the same. In this example, the interval (0.0097, 0.01155) is suggested
for choosing c. It is necessary to note that, ill conditioning occurs by increasing c. Hereafter, we fix it
at c = 1.1h = 0.011. In Figure 3 RMS versus N is plotted at t = 1. It can be seen that in this figure,
the error values decrease by increasing N. Values of RMS error for u(x, t) and Absolute error for s(t)
with δ = 0 and δ = 0.1 are presented in Table 1. It shows that the numerical results are more accurate
when there exists no noise on the input data. Under a noise level δ = 0.1, the numerical result obtained
by the MLPG method is also acceptable. Exact solution, numerical solution and Absolute errors for
u(x, t) and s(t) are plotted in Figures 4–6.
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Figure 2. Example 1: Diagram of RMS error for u(x, t) and Absolute error for s(t) at t = 1 versus
shape parameter c by the meshless local Petrov–Galerkin (MLPG) method when h = 0.01,4t = 0.01.
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Figure 3. Example 1: Diagram of RMS error for u(x, t) and Absolute error for s(t) at t = 1 versus N by
the MLPG method when4t = 0.01, c = 0.011.

Table 1. Example 1: RMS error for u(x, t) and Absolute error for s(t) without noise and with level
noise δ = 0.1 for different time levels when h = 0.01,4t = 0.01, c = 0.011.

RMS Error RMS Error Absolute Error Absolute Error
t for u(x, t) for u(x, t) for s(t) for s(t)

with δ = 0 with δ = 0.1 with δ = 0 with δ = 0.1

0 0 0 0 0
0.1 5.0608× 10−4 2.184549× 10−2 6.815× 10−5 4.45× 10−6

0.2 7.6318× 10−4 3.766709× 10−2 5.977× 10−5 6.7943× 10−4

0.3 9.7185× 10−4 5.135603× 10−2 3.313× 10−5 1.68936× 10−3

0.4 1.18114× 10−3 2.942010× 10−2 1.92× 10−6 2.93583× 10−3

0.5 1.40740× 10−3 3.451082× 10−2 3.002× 10−5 3.69751× 10−3

0.6 1.65791× 10−3 8.867908× 10−2 6.163× 10−5 3.85729× 10−3

0.7 1.93721× 10−3 6.922609× 10−2 9.272× 10−5 3.93321× 10−3

0.8 2.24902× 10−3 4.306378× 10−2 1.2333× 10−4 3.82775× 10−3

0.9 2.59697× 10−3 4.763296× 10−2 1.5360× 10−4 4.12823× 10−3

1.0 2.98488× 10−3 5.332613× 10−2 1.8367× 10−4 4.76457× 10−3
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Example 2. In this example, we consider the problem (1)–(5) with α = 1, β = −1, κ = 1, T = 1 and

f (y) = exp(1−
√

5
5

(1 + y))− 1, g(t) = exp(1−
√

5
5

+
t
5
)− 1, h(t) = 0.

The analytical solutions of problem are given by

v(y, t) = exp(1−
√

5
5

(1 + y) +
t
5
)− 1, s(t) =

t√
5
+
√

5− 1,

and

u(x, t) = v(xs(t), t) = exp(1−
√

5
5

(1 + x(
t√
5
+
√

5− 1)) +
t
5
)− 1, s(t) =

t√
5
+
√

5− 1.

The approximation results of using the proposed method are obtained with4t = 0.01, h = 0.01.
Figure 7 presents the RMS error for u(x, t) and absolute error for s(t) versus the shape parameter c at
t = 1. For other values of t the results are similar. In this example, the interval (0.0097, 0.01155) is also
suggested for choosing c. It is necessary to note that ill conditioning occurs by increasing c. Hereafter
we fix it at c = 1.1h = 0.011. In Figure 8 RMS versus N is plotted at t = 1. We observe that in this
figure, the error values decrease by increasing N. Values of RMS error for u(x, t) and absolute error
for s(t) with δ = 0 and δ = 0.1 are presented in Table 2. We see that the numerical results are more
accurate when there exist no noise on the input data. Under a noise level δ = 0.1, the numerical result
obtained by the MLPG method is also acceptable. The exact solution, numerical solution and absolute
errors for u(x, t) and s(t) are plotted in Figures 9–11, respectively.
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Figure 7. Example 2: Diagram of RMS error for u(x, t) and Absolute error for s(t) at t = 1 versus
shape parameter c by the MLPG method when h = 0.01,4t = 0.01.
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Figure 8. Example 2: Diagram of RMS error for u(x, t) and absolute error for s(t) at t = 1 versus N by
the MLPG method when4t = 0.01, c = 0.011.
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Figure 10. Example 2: Absolute error for s(t) without noise and with level noise δ = 0.1 when h = 0.01,
4t = 0.01, c = 0.011.

Table 2. Example 2: RMS error for u(x, t) and Absolute error for s(t) without noise and with level
noise δ = 0.1 for different time levels when h = 0.01,4t = 0.01, c = 0.011.

RMS Error RMS Error Absolute Error Absolute Error
t for u(x, t) for u(x, t) for s(t) for s(t)

with δ = 0 with δ = 0.1 with δ = 0 with δ = 0.1

0 0 0 0 0
0.1 8.614× 10−5 1.535648× 10−2 2.668× 10−5 2.225× 10−5

0.2 1.3203× 10−4 3.35379× 10−3 3.327× 10−5 9.390× 10−5

0.3 1.6115× 10−4 9.07394× 10−3 3.203× 10−5 6.566× 10−5

0.4 1.8259× 10−4 5.16000× 10−3 2.708× 10−5 2.1054× 10−4

0.5 2.0051× 10−4 4.94580× 10−3 2.031× 10−5 3.9630× 10−4

0.6 2.1688× 10−4 6.29044× 10−3 1.264× 10−5 5.6382× 10−4

0.7 2.3270× 10−4 2.182342× 10−2 4.51× 10−6 7.9115× 10−4

0.8 2.4845× 10−4 8.48735× 10−3 3.83× 10−6 7.1690× 10−4

0.9 2.6441× 10−4 5.47081× 10−3 1.228× 10−5 3.1084× 10−4

1.0 2.8074× 10−4 1.056699× 10−2 2.077× 10−5 3.917× 10−5
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Figure 11. Example 2: Exact solution, numerical solution and absolute error for u(x, t) without noise
and with level noise δ = 0.1 when h = 0.01,4t = 0.01, c = 0.011.
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Example 3. With an example, we compare the average values of the absolute errors between the present method
and the Adomian decomposition method and the fourth-order Runge–Kutta method obtained in Reference [43].
We consider the problem (1)–(5) with α = 0.1, κ = 10, β = −1, T = 0.5 and

f (y) = exp(1− y), g(t) = exp(1 + 0.1t), h(t) = 1.

The analytical solutions of problem are

v(y, t) = exp(1− y + 0.1t), s(t) = 0.1t + 1,

and

u(x, t) = v(xs(t), t) = exp(1− x(0.1t + 1) + t), s(t) = 0.1t + 1.

Tables 3 and 4 show the results of calculations related to the reconstruction of the moving boundary
and the temperature distribution using the present method, the Adomian decomposition method and
the fourth-order Runge–Kutta method. It can be seen that the presented procedure in this paper is
useful and efficient in finding solutions of the considered problem.

Table 3. Example 3: Average values of the error in the reconstruction of the position of the moving
boundary for N = 7 (ADM, Adomian decomposition method; RKM, fourth-order Runge–Kutta
method; PM, present method).

ADM RKM PM

m = 1 0.002545 4t = 0.05 0.002376 0.000188
m = 3 0.002324 4t = 0.025 0.002372 0.000177
m = 5 0.002200 4t = 0.01 0.002370 0.000171
m = 7 0.002095 4t = 0.005 0.002369 0.000169

Table 4. Example 3: Average values of the absolute errors in the reconstruction of the temperature
distribution (∆ui , average value of the u(xi, tj), j = 0, 1, 2, ..., M; ADM, Adomian decomposition method;
RKM, fourth-order Runge–Kutta method; PM, present method).

ADM (m = 5) RKM (M = 50) PM (M = 50)

N = 5
∆u1 0.004737 0.571854 0.001150
∆u2 0.006836 0.1038585 0.000806
∆u3 0.005531 0.012567 0.001228

N = 6
∆u1 0.004478 0.766475 0.000886
∆u2 0.014252 0.198930 0.000641
∆u3 0.003705 0.043138 0.000113
∆u4 0.005107 0.003309 0.000807

N = 7
∆u1 0.020102 0.934229 0.000576
∆u2 0.051464 0.310715 0.000327
∆u3 0.017199 0.089096 0.000128
∆u4 0.011347 0.021850 0.000115
∆u5 0.003379 0.001768 0.000459

8. Conclusions

In this paper, a kind of MLPG method using the MLS approximation to represent the trial
function at each field node, is applied for numerically solving a nonlinear one-phase Stefan problem.
Nonlinearity of this problem is due to the Stefan condition. The free boundary problem is transformed
into a fixed boundary by the change of variable. In the presented method, all integrations are
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performed over small local quadrature domains so it does not require using any background
integration cells. In the proposed method, the shape functions are produced by the MLS approximation
technique. A two-step time discretization method is used to approximate the time derivatives operators.
The Heaviside step function was used as the test function in the local weak form method in MLPG.
Numerical results show that the proposed method is accurate and stable, although under a large
measurement noise.
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