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Abstract: This paper aims to present a finite element (FE) formulation for the study of the natural
frequencies of functionally graded orthotropic laminated plates characterized by cross-ply layups.
A nine-node Lagrange element is considered for this purpose. The main novelty of the research is the
modelling of the reinforcing fibers of the orthotropic layers assuming a non-uniform distribution
in the thickness direction. The Halpin–Tsai approach is employed to define the overall mechanical
properties of the composite layers starting from the features of the two constituents (fiber and epoxy
resin). Several functions are introduced to describe the dependency on the thickness coordinate
of their volume fraction. The analyses are carried out in the theoretical framework provided by
the first-order shear deformation theory (FSDT) for laminated thick plates. Nevertheless, the same
approach is used to deal with the vibration analysis of thin plates, neglecting the shear stiffness of the
structure. This objective is achieved by properly choosing the value of the shear correction factor,
without any modification in the formulation. The results prove that the dynamic response of thin
and thick plates, in terms of natural frequencies and mode shapes, is affected by the non-uniform
placement of the fibers along the thickness direction.

Keywords: finite element modelling; laminated composite plates; non-uniform mechanical properties

1. Introduction

The finite element (FE) method currently represents the most-utilized computational approach
to solve several engineering problems and in applications whose solutions cannot be obtained
analytically [1]. The technological advancements in computer sciences have allowed a fast and easy
diffusion of this technique, especially in terms of structural mechanics problems. The key to the success
of the FE method lies in the reduction of complex problems into simpler ones in which the reference
domain is made of several discrete elements, and in its easy computational implementation. This idea
was first highlighted by Duncan and Collar [2,3], and successively emphasized by Hrennikoff [4],
Courant [5], Clough [6], and Melosh [7].

The approximate solutions that can be obtained by means of the FE approach are accurate and
representative of the physical problem under consideration [8,9]. To the best of the authors’ knowledge,
the progression and development of this technique are well-described in many pertinent books, such
as the ones by Oden [10], Oden and Reddy [11], Hinton [12], Zienkiewicz [13], Reddy [14], Onate [15],
Hughes [16], and Ferreira [17]. These books should be used as references for the theoretical background
of the numerical approach at issue. For completeness purposes, it should be recalled that various and
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alternative approaches have been developed in past decades to obtain approximated but accurate
solutions to several complex structural problems, not only based on the FE method [18–21].

An intriguing application that is efficiently solved by means of the FE methodology is about
the structural response of plates and panels made of composite materials [22–24]. With respect to an
isotropic and conventional medium, a composite material can reach superior performance by combining
two (or more) constituents. A typical example of this category are fiber-reinforced composites, in
which the high-strength fibers are the main load-carrying elements, whereas the matrix has the task of
keeping them together and protecting the reinforcing phase from the environment [25–28]. In general,
a micromechanical approach should be employed to evaluate the overall mechanical properties of
these materials, starting from the features of the single constituents. The review paper by Chamis
and Sendeckyj represents a fundamental contribution is this direction [29]. One of the most effective
approaches that can be used toward this aim is the one proposed by Halpin [30] and Tsai [31,32], who
developed a semi-empirical method and expressed the mechanical properties of the constituents in
terms of Hill’s elastic moduli [33,34]. Further details concerning the micromechanics of fiber-reinforced
composite materials can be found in [35].

The use of a versatile numerical method also allows us to investigate the structural response of
composite structures with non-uniform mechanical properties. In particular, in the present paper the
reinforcing fibers are characterized by a gradual variation of their volume fraction along the plate
thickness, following the same idea of functionally graded materials [36–52]. With respect to this
class of materials, in which the composites turn out to be isotropic, the layers of the plate assume
orthotropic features and can also be oriented. This topic clearly falls within the aim of the optimal
design of composite structures [53–58]. It should be mentioned that a similar approach is followed in
the design of functionally graded carbon-nanotube-reinforced composites, due to the advancements in
nanostructures and nanotechnologies [59–68].

In this paper, the research is organized in two main sections. After this brief introduction, the
FE formulation for laminated thick and thin plates is presented in Section 2. Here, the theoretical
framework is based on the well-known first-order shear deformation theory (FSDT) for laminated
composite structures [69,70]. The effect of the shear correction factor is also discussed in order to
deal with thin plates [71]. In addition, the micromechanics approach based on the Halpin–Tsai model
is described in detail, by also introducing the topic of variable mechanical properties. Section 3
presents the results of the numerical applications. As a preliminary test, the accuracy and convergence
features of the numerical approach are discussed by means of the comparison with the semi-analytical
solutions available in the literature for thin and thick laminated composite plates. Then, the natural
frequencies of functionally graded orthotropic cross-ply plates are presented for several mechanical
configurations. Finally, Appendix A is added to define the terms of the fundamental operators of the
proposed FE formulation.

2. Finite Element (FE) Formulation for Laminated Thick and Thin Plates

The theoretical framework of the current research is based on the first-order shear deformation
theory (FSDT). The governing equations are presented in this section by developing the corresponding
FE formulation. The following kinematic model is assumed within each discrete element of the
plate [69]:

U(e)
x (x, y, z, t) = u(e)

x (x, y, t) + zφ(e)
x (x, y, t)

U(e)
y (x, y, z, t) = u(e)

y (x, y, t) + zφ(e)
y (x, y, t)

U(e)
z (x, y, z, t) = u(e)

z (x, y, t)

, (1)

where U(e)
x , U(e)

y , U(e)
z are the three-dimensional displacements of the structure, whereas the degrees of

freedom of the problem are given by three translations u(e)
x , u(e)

y , u(e)
z and two rotations φ(e)

x ,φ(e)
y defined
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on the plate middle surface. These quantities can be conveniently collected in the corresponding vector
u(e), defined below

u(e) =
[

u(e)
x u(e)

y u(e)
z φ

(e)
x φ

(e)
y

]T
. (2)

The coordinates x, y, z specify the local reference system of the plate and t is the time variable.
The superscript (e) clearly specifies that this model is valid for each element. The geometry of the plate
is fully described once the lengths Lx, Ly of its sides and its overall thickness h are defined. It should be
recalled that for a laminate structure one gets

h =

NL∑
k=1

(zk+1 − zk), (3)

in which zk+1, zk stand for the upper and lower coordinates of the k-th layer, respectively. The degrees
of the freedom (2) are approximated in each element by means of quadratic Lagrange interpolation
functions. As can be noted from Figure 1, nine nodes are introduced in each subdomain. As a
consequence, the degrees of freedom assume the following aspect:

u(e)
x (x, y, t) =

9∑
i=1

Ni(x, y)u(e)
x,i (t) = Nu(e)

x

u(e)
y (x, y, t) =

9∑
i=1

Ni(x, y)u(e)
y,i (t) = Nu(e)

y

u(e)
z (x, y, t) =

9∑
i=1

Ni(x, y)u(e)
z,i (t) = Nu(e)

z

φ
(e)
x (x, y, t) =

9∑
i=1

Ni(x, y)φ(e)
x,i (t) = Nφ

(e)
x

φ
(e)
y (x, y, t) =

9∑
i=1

Ni(x, y)φ(e)
y,i (t) = Nφ

(e)
y

, (4)

where Ni represents the i-th shape function, whereas u(e)
x,i , u(e)

y,i , u(e)
z,i ,φ(e)

x,i ,φ(e)
y,i denote the nodal

displacements, which can be included in the corresponding vectors

u(e)
x =

[
u(e)

x,1 · · · u(e)
x,9

]T
, u(e)

y =
[

u(e)
y,1 · · · u(e)

y,9

]T
, u(e)

z =
[

u(e)
z,1 · · · u(e)

z,9

]T

φ
(e)
x =

[
φ
(e)
x,1 · · · φ

(e)
x,9

]T
,φ(e)

y =
[
φ
(e)
y,1 · · · φ

(e)
y,9

]T . (5)

On the other hand, the shape functions linked to the nine nodes of the finite element are included
in the vector N, defined below:

N =
[

N1 · · · N9
]
. (6)

For the sake of clarity, it should be recalled that the nodes are identified in each element by
following the numbering specified in Figure 1.

At this point, the nodal degrees of freedom can be collected in a sole vector u(e) to simplify
the nomenclature:

u(e) =
[

u(e)
x u(e)

y u(e)
z φ

(e)
x φ

(e)
y

]T

=
[

u(e)
x,1 · · · u(e)

x,9 u(e)
y,1 · · · u(e)

y,9 u(e)
z,1 · · · u(e)

z,9 φ
(e)
x,1 · · · φ

(e)
x,9 φ

(e)
y,1 · · · φ

(e)
y,9

]T , (7)

and to write the definitions (4) by using the following matrix notation:
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u(e)
x

u(e)
y

u(e)
z

φ
(e)
x

φ
(e)
y


=


N 0 0 0 0
0 N 0 0 0
0 0 N 0 0
0 0 0 N 0
0 0 0 0 N





u(e)
x

u(e)
y

u(e)
z

φ
(e)
x

φ
(e)
y


⇔ u(e)

5×1
= N

5×(9×5)
u(e)

(9×5)×1
. (8)

The size of each matrix is indicated under the corresponding symbol. It is important to
specify that the same approximation is employed for all degrees of freedom (both translational
and rotational displacements).
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Figure 1. Nine-node quadratic Lagrange rectangular element.

As mentioned in the books by Reddy [14] and Ferreira [17], it is convenient to introduce the
natural coordinates ξ, η within the reference finite element, which is called the master element (or
parent element). In this reference system, which is also depicted in Figure 1, the shape functions
Ni = Ni(ξ, η) assume the following definitions:

N1 = 1
4

(
ξ2
− ξ

)(
η2
− η

)
N2 = 1

4

(
ξ2 + ξ

)(
η2
− η

)
N3 = 1

4

(
ξ2 + ξ

)(
η2 + η

)
N4 = 1

4

(
ξ2
− ξ

)(
η2 + η

)
N5 = 1

2

(
1− ξ2

)(
η2
− η

)
N6 = 1

2

(
ξ2 + ξ

)(
1− η2

)
N7 = 1

2

(
1− ξ2

)(
η2 + η

)
N8 = 1

2

(
ξ2
− ξ

)(
1− η2

)
N9 =

(
1− ξ2

)(
1− η2

) , (9)

for ξ, η ∈ [−1, 1]. The same functions are also used to describe the geometry of each discrete element
according to the principles of the isoparametric FE formulation. The coordinate change between the
physical domain and the parent element is accomplished through the relations shown below

x(e) =
9∑

i=1

Ni(ξ, η)x(e)i , y(e) =
9∑

i=1

Ni(ξ, η)y(e)i , (10)

where the couple x(e)i , y(e)i defines the coordinates of the i-th node of the generic element. For the sake
of conciseness, these quantities can be collected in the corresponding vectors x(e), y(e):

xe =
[

x(e)1 · · · x(e)9

]T
, ye =

[
y(e)1 · · · y(e)9

]T
. (11)

The Jacobian matrix J related to the coordinate change (10) can be now introduced in order to
evaluate the derivatives with respect to the natural coordinates of the parent element:
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J =

 ∂x(e)
∂ξ

∂y(e)

∂ξ
∂x(e)
∂η

∂y(e)

∂η

 =


9∑
i=1

x(e)i
∂Ni
∂ξ

9∑
i=1

y(e)i
∂Ni
∂ξ

9∑
i=1

x(e)i
∂Ni
∂η

9∑
i=1

y(e)i
∂Ni
∂η

 =
[

Bξ
Bη

][
x(e) y(e)

]
=

[
Bξx(e) Bξy(e)

Bηx(e) Bηy(e)

]
, (12)

where the vectors Bξ, Bη collect the derivatives of the shape functions (9) with respect to ξ, η

Bξ =
[
∂N1
∂ξ · · ·

N9
∂ξ

]
, Bη =

[
∂N1
∂η · · ·

N9
∂η

]
. (13)

At this point, the compatibility equations can be presented to define the strain components in
each element. In particular, the membrane strains are given by

ε
(e)
x =

∂u(e)
x
∂x

= Bxu(e)
x , ε(e)y =

∂u(e)
y

∂y
= Byu(e)

y ,γ(e)xy =
∂u(e)

y

∂x
+
∂u(e)

x
∂y

= Bxu(e)
y + Byu(e)

x . (14)

On the other hand, the bending and twisting curvatures can be defined as follows:

k(e)x =
∂φ

(e)
x

∂x
= Bxφ

(e)
x , k(e)y =

∂φ
(e)
y

∂y
= Byφ

(e)
y , k(e)xy =

∂φ
(e)
y

∂x
+
∂φ

(e)
x

∂y
= Bxφ

(e)
y + Byφ

(e)
x . (15)

Finally, the shear strains assume the following definitions:

γ
(e)
xz =

∂u(e)
z
∂x

+ φ
(e)
x = Bxu(e)

z + Nφ
(e)
x ,γ(e)yz =

∂u(e)
z
∂y

+ φ
(e)
y = Byu(e)

z + Nφ
(e)
y . (16)

Note that the derivatives of the shape functions with respect to the physical coordinates x, y are
introduced and collected in the corresponding vectors Bx, By. They can be computed as follows by
inverting the Jacobian matrix (this procedure is admissible if its determinant is greater than zero):[

Bx

By

]
= J−1

[
Bξ
Bη

]
. (17)

The following matrix notation can be used to collect and define the strains previously introduced
in (14)–(16): 

ε
(e)
x

ε
(e)
y

γ
(e)
xy

k(e)x

k(e)y

k(e)xy

γ
(e)
xz

γ
(e)
yz



=



Bx 0 0 0 0
0 By 0 0 0

By Bx 0 0 0
0 0 0 Bx 0
0 0 0 0 By

0 0 0 By Bx

0 0 Bx N 0
0 0 By 0 N





u(e)
x

u(e)
y

u(e)
z

φ
(e)
x

φ
(e)
y


⇔ η(e)

8×1
= B

8×(9×5)
u(e)

(9×5)×1
. (18)

The vector η(e) collects the aforementioned strain components. Such terms are needed to compute
the stress resultants in each element by means of the constitutive relation shown below in matrix form:
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N(e)
x

N(e)
y

N(e)
xy

M(e)
x

M(e)
y

M(e)
xy

T(e)
x

T(e)
y



=



A11 A12 A16 B11 B12 B16 0 0
A12 A22 A26 B12 B22 B26 0 0
A16 A26 A66 B16 B26 B66 0 0
B11 B12 B16 D11 D12 D16 0 0
B12 B22 B26 D12 D22 D26 0 0
B16 B26 B66 D16 D26 D66 0 0
0 0 0 0 0 0 κA44 κA45

0 0 0 0 0 0 κA45 κA55





ε
(e)
x

ε
(e)
y

γ
(e)
xy

k(e)x

k(e)y

k(e)xy

γ
(e)
xz

γ
(e)
yz



, (19)

in which N(e)
x , N(e)

y , N(e)
xy are the membrane forces, M(e)

x , M(e)
y , M(e)

xy the bending and twisting moments,

and T(e)
x , T(e)

y the shear stresses. On the other hand, κ stands for the shear correction factor.
For moderately thick and thick plates, which are commonly studied through the FSDT, the shear
correction factor is generally assumed equal to 5/6. Nevertheless, the same structural model can be
employed to accurately investigate the mechanical behavior of thin plates, which are usually analyzed
in the theoretical framework provided by the classical laminated plate theory (CLPT), taking the
Kirchhoff hypothesis into account. This theory neglects the shear stresses, and the same circumstance
can be obtained from the FSDT by setting 106 as the shear correction factor. In other words, the effect
of shear stresses is negligible if the shear stiffness is extremely large [71].

The stress resultants can be also expressed as follows in extended matrix form in terms of nodal
displacements, having in mind the definitions (18)



N(e)
x

N(e)
y

N(e)
xy

M(e)
x

M(e)
y

M(e)
xy

T(e)
x

T(e)
y



=



A11Bx + A16By A12By + A16Bx 0 B11Bx + B16By B12By + B16Bx

A12Bx + A26By A22By + A26Bx 0 B12Bx + B26By B22By + B26Bx

A16Bx + A66By A26By + A66Bx 0 B16Bx + B66By B26By + B66Bx

B11Bx + B16By B12By + B16Bx 0 D11Bx + D16By D12By + D16Bx

B12Bx + B26By B22By + B26Bx 0 D12Bx + D26By D22By + D26Bx

B16Bx + B66By B26By + B66Bx 0 D16Bx + D66By D26By + D66Bx

0 0 κA44Bx + κA45By κA44N κA45N
0 0 κA45Bx + κA55By κA45N κA55N





u(e)
x

u(e)
y

u(e)
z

φ
(e)
x

φ
(e)
y


(20)

or in compact matrix form
S(e)
8×1

= C
8×8

B
8×(9×5)

u(e)

(9×5)×1
, (21)

where the meaning of the constitutive operator C can be deduced from Equation (19). It should
be observed that the mechanical properties are the same in each element, and the corresponding
coefficients are defined as (

Ai j, Bi j, Di j
)
=

NL∑
k=1

zk+1∫
zk

Q
(k)
i j

(
1, z, z2

)
dz, (22)

where Q
(k)
i j represents the stiffnesses of the k-th orthotropic layer, which can be oriented as θ(k).

Once the orientation of the fibers is defined, the following relations are employed to compute the

coefficients Q
(k)
i j :
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Q
(k)
11 = Q(k)

11 cos4 θ(k) + 2
(
Q(k)

12 + 2Q(k)
66

)
sin2 θ(k) cos2 θ(k) + Q(k)

22 sin4 θ(k)

Q
(k)
12 =

(
Q(k)

11 + Q(k)
22 − 4Q(k)

66

)
sin2 θ(k) cos2 θ(k) + Q(k)

12

(
sin4 θ(k) + cos4 θ(k)

)
Q
(k)
22 = Q(k)

11 sin4 θ(k) + 2
(
Q(k)

12 + 2Q(k)
66

)
sin2 θ(k) cos2 θ(k) + Q(k)

22 cos4 θ(k)

Q
(k)
16 =

(
Q(k)

11 −Q(k)
12 − 2Q(k)

66

)
sinθ(k) cos3 θ(k) +

(
Q(k)

12 −Q(k)
22 + 2Q(k)

66

)
sin3 θ(k) cosθ(k)

Q
(k)
26 =

(
Q(k)

11 −Q(k)
12 − 2Q(k)

66

)
sin3 θ(k) cosθ(k) +

(
Q(k)

12 −Q(k)
22 + 2Q(k)

66

)
sinθ(k) cos3 θ(k)

Q
(k)
66 =

(
Q(k)

11 + Q(k)
22 − 2Q(k)

12 − 2Q(k)
66

)
sin2 θ(k) cos2 θ(k) + Q(k)

66

(
sin4 θ(k) + cos4 θ(k)

)
Q
(k)
44 = Q(k)

44 cos2 θ(k) + Q(k)
55 sin2 θ(k)

Q
(k)
45 =

(
Q(k)

44 −Q(k)
55

)
sinθ(k) cosθ(k)

Q
(k)
55 = Q(k)

55 cos2 θ(k) + Q(k)
44 sin2 θ(k)

, (23)

where the quantities Q(k)
i j are defined below in terms of the engineering constants of the corresponding

layer, which are the Young’s moduli E(k)
11 , E(k)

22 , the shear moduli G(k)
12 , G(k)

13 , G(k)
23 , and the Poisson’s

ratio ν(k)12 :

Q(k)
11 =

E(k)
11

1− ν(k)12 ν
(k)
21

, Q(k)
22 =

E(k)
22

1− ν(k)12 ν
(k)
21

, Q(k)
12 =

ν
(k)
12 E(k)

22

1− ν(k)12 ν
(k)
21

, Q(k)
66 = G(k)

12 , Q(k)
44 = G(k)

13 , Q(k)
55 = G(k)

23 . (24)

It should be recalled that the Poisson’s ratio ν(k)21 can be evaluated by using the well-known relation

for orthotropic materials ν(k)21 = E(k)
22 ν

(k)
12 /E(k)

11 .
The engineering constants are computed by means of the Halpin–Tsai approach, once the

mechanical features of the reinforcing fibers and the epoxy resin of the orthotropic fiber-reinforced
layers are known. As highlighted in [35], this methodology can be applied by using Hill’s elastic
moduli and a semi-empirical approach. The reinforcing fibers are modeled as a transversely isotropic
material, and the following engineering constants are required to characterize them: the Young’s
moduli EF

11, EF
22, the shear modulus GF

12, and the Poisson’s ratios νF
12, νF

23. The Hills’s elastic moduli of
the fibers kF, lF, mF, nF, pF are given by:

kF =
EF

22

2
(
1− νF

23 − 2νF
21ν

F
12

) , lF = 2νF
12kF, mF =

1− νF
23 − 2νF

21ν
F
12

1 + νF
23

kF,

nF = 2
(
1− νF

23

)EF
11

EF
22

kF, pF = GF
12

. (25)

On the other hand, the epoxy resin is modeled as an isotropic medium characterized by its Young’s
modulus EM and its Poisson’s ratio νM. The Hill’s elastic moduli of the matrix kM, lM, mM, nM, pM are
defined below:

kM =
EM

2(1 + νM)(1− 2νM)
, lM = 2νMkM, mM =

(
1− 2νM

)
kM,

nM = 2
(
1− νM

)
kM, pM =

(
1− 2νM

)
kM

. (26)

At this point, the overall mechanical properties of the composite material can be computed in
terms of the Hill’s elastic moduli k, l, m, n, p:
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k =
kM(kF + mM)VM + kF(kM + mM)VF

(kF + mM)VM + (kM + mM)VF

l = VFlF + VMlM +
lF − lM
kF − kM

(k−VFkF −VMkM)

m = mM
2VFmF(kM + mM) + 2VMmFmM + VMkM(mF + mM)

2VFmM(kM + mM) + 2VMmFmM + VMkM(mF + mM)

n = VFnF + VMnM +

(
lF − lM
kF − kM

)2

(k−VFkF −VMkM)

p =
(pF + pM)pMVM + 2pFpMVF

(pF + pM)VM + 2pMVF

, (27)

where VF, VM are the volume fractions of the fibers and of the matrix, respectively. They are related by
the following relation: VM = 1−VF. In the current research, a non-uniform distribution of the fibers is
defined along the plate thickness. Therefore, the volume fraction of the reinforcing fibers turns out to
be a function of the thickness coordinate VF = VF(z) = ṼF f (k)(z), in which ṼF represents a constant
value. This idea is representative of functionally graded materials. Several distributions f (k)(z) can be
introduced toward this aim, and can be applied in each layer separately. The following functions are
used in this paper:

f (k)(z) =



f (k)UD(z) = 1

f (k)O (z) = 1−
1
2

∣∣∣∣∣∣2(z− zk)

zk+1 − zk
−

2(zk+1 − z)
zk+1 − zk

∣∣∣∣∣∣
f (k)X (z) =

1
2

∣∣∣∣∣∣2(z− zk)

zk+1 − zk
−

2(zk+1 − z)
zk+1 − zk

∣∣∣∣∣∣
f (k)V (z) =

z− zk
zk+1 − zk

f (k)A (z) =
zk+1 − z
zk+1 − zk

. (28)

For the sake of completeness, these functions are depicted in Figure 2.
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Once the Hill’s elastic moduli (27) are computed, the engineering constants of the k-th fiber
reinforced composite layer can be evaluated as well. The definitions shown below are required for
this purpose:

E(k)
11 = n−

l2

k
, E(k)

22 =
4m

(
kn− l2

)
kn− l2 + mn

, ν(k)12 =
l

2k
, G(k)

12 = G(k)
13 = p, G(k)

23 = m. (29)

It should be noted that these quantities are all functions of the thickness coordinate z due to

the relations (28). As a consequence, the material properties Q
(k)
i j defined in (23) depend also on the

coordinate z, and the integrals in (22) have to be computed numerically. The function “trapz” embedded
in MATLAB was employed toward this aim.
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At this point, the Hamilton’s variational principle can be applied to obtain the equations of motion
and the corresponding weak form [23]. As a result, it is possible to write the dynamic fundamental
system in each element as follows:

K(e)
(9×5)×(9×5)

u(e)

(9×5)×1
+ M(e)

(9×5)×(9×5)

¨
u
(e)

(9×5)×1
= 0, (30)

where the stiffness matrix of the element is denoted by K(e), whereas the mass matrix is identified

by M(e). On the other hand, the vector
¨
u
(e)

collects the second-order derivatives with respect to the
time variable t of the nodal displacements (7). By definition, the stiffness matrix K(e) assumes the
following aspect:

K(e) =

∫
x

∫
y

BT
(9×5)×8

C
8×8

B
8×(9×5)

dxdy =


K11 K12 K13 K14 K15

K21 K22 K23 K24 K25

K31 K32 K33 K34 K35

K41 K42 K43 K44 K45

K51 K52 K53 K54 K55


, (31)

where the operators Ki j of size 9 × 9 are illustrated in Appendix A. Analogously, the mass matrix M(e)

can be written as follows:

M(e) =

∫
x

∫
y

NT
(9×5)×5

m
5×5

N
5×(9×5)

dxdy =


M11 0 0 M14 0

0 M22 0 0 M25

0 0 M33 0 0
M41 0 0 M44 0

0 M52 0 0 M55


, (32)

where the operators Mi j of size 9 × 9 are also illustrated in Appendix A. The matrix m instead collects
the inertia terms and assumes the definition shown below:

m =


I0 0 0 I1 0
0 I0 0 0 I1

0 0 I0 0 0
I1 0 0 I2 0
0 I1 0 0 I2


, (33)

in which

Ii =

NL∑
k=1

zk+1∫
zk

ρ(k)zidz, (34)

where ρ(k) is the density of the k-th layer. Its value can be obtained by means of the rule of mixture,
combining the densities of the reinforcing fibers ρ(k)F and of the matrix ρ(k)M :

ρ(k) = VFρ
(k)
F + VMρ

(k)
M . (35)

Note that the density is also a function of the thickness coordinate z due to the through-the-thickness
variation of the volume fraction of the fibers. Therefore, the integrals in (34) have to be computed
numerically as well.
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2.1. Numerical Evaluation of the Fundamental Operators

It is well-known that the integrals in definitions (31) and (32) require a tool to be computed
numerically. In the current research, the Gauss–Legendre rule is used. According to this approach, the
infinitesimal area dxdy is evaluated in the master element as follows, through the determinant of the
Jacobian matrix: dxdy = detJdξdη. Consequently, the integral of a generic two-dimensional function
F(x, y) can be written as ∫

x

∫
y

F(x, y)dxdy =

1∫
−1

1∫
−1

F(ξ, η)detJdξdη. (36)

At this point, the integral is converted into a weighted linear sum by introducing the roots of
Legendre polynomials ξI, ηJ and the corresponding weighting coefficients WI, WJ:

1∫
−1

1∫
−1

F(ξ, η)detJdξdη ≈
M∑

I=1

N∑
J=1

F
(
ξI, ηJ

)
detJ|ξI ,ηJ

WIWJ. (37)

The values of the roots of Legendre polynomials and the corresponding weighting coefficients
used in the numerical integration are listed in Table 1. Recall that the full integration is performed by
setting N = M = 3. On the other hand, the reduced integration is accomplished for N = M = 2 as far
as the shear terms are concerned. In other words, the elements of the stiffness matrix which involve the
mechanical properties A44, A45, A55 are computed by means of the reduced integration. This procedure
aims to avoid the shear locking problem as highlighted in the book by Reddy [14]. For the sake of
completeness, the roots of Legendre polynomials are also depicted in Figure 1, for both the full and
reduced integrations.

Table 1. Roots of Legendre polynomials and weighting coefficients for the numerical integration.

N, M ξI, ηJ WI, WJ

2 ±1/
√

3 1

3 ±
√

3/5 5/9

0 8/9

Finally, the assembly procedure is performed to enforce the C0 compatibility conditions among
the elements in which the reference domain is divided. In other words, the model is characterized by
continuous displacements at the interfaces of the elements. The global discrete system of governing
equations assumes the following aspect:

K
Ndo f s×Ndo f s

u
Ndo f s×1

+ M
Ndo f s×Ndo f s

¨
u

Ndo f s×1
= 0, (38)

where the number of degrees of freedom is given by Ndo f s = 5×NP, NP being the number of nodes of
the discrete domain. With reference to Equation (38), K, M clearly stand for the global stiffness and
mass matrices, whereas u is the vector of the nodal displacements of the global system defined below:

u =
[

ux,1 · · · ux,NP uy,1 · · · uy,NP uz,1 · · · uz,NP φx,1 · · · φx,NP φy,1 · · · φy,NP

]T
, (39)

in which the numbering is performed following the scheme in Figure 3. Finally,
¨
u is the vector that

collects the second-order time derivatives of the nodal displacements.
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2.2. Natural Frequency Analysis

Once the discrete fundamental system (38) is defined and the proper boundary conditions are
enforced, the separation of variables provide the following relation:(

K−ω2M
)
d = 0, (40)

in which ω represents the circular frequencies of the structural system, whereas the vector d collects the
corresponding modal amplitudes. The natural frequencies of the plate can be evaluated as fn = ω/2π.
It can be observed that the expression (40) is a generalized eigenvalue problem. In the present research,
the function “eigs” embedded in MATLAB was employed to obtain the natural frequencies and the
mode shapes of the laminated composite plates.

3. Numerical Applications

The formulation illustrated in the previous section was implemented in a MATLAB code.
The current approach was first validated by means of the comparison with the semi-analytical
solutions provided by Reddy in his book [23], for both thin and thick simply-supported plates with an
antisymmetric cross-ply layup. In these circumstances, a uniform distribution of the fiber was assumed
along the plate thickness.

The convergence analysis was also performed for the sake of completeness. Subsequently, the
natural frequencies of functionally graded orthotropic laminated plates are discussed. The geometry
of the plates considered in the numerical applications was defined by Lx = Ly = 1 m, whereas their
lamination scheme was given by

(
0
◦

/90
◦

/0
◦

/90
◦
)
. The four layers were characterized by the same

value of ṼF = 0.6, whereas their thickness was assumed as 2.5 × 10−3 m for thin plates and as 2.5 ×
10−2 m for the thick ones. The mechanical properties of the constituents (Carbon fibers and epoxy
resin) are listed in Table 2.

Table 2. Mechanical properties of the layer constituents.

Constituent Young’s Moduli Shear Moduli Poisson’s Ratios Density

Carbon fibers
EF

11 = 230 GPa GF
12 = 50 GPa νF

12 = 0.20
ρF = 1800 kg/m3

EF
22 = 15 GPa νF

23 = 0.25

Epoxy resin EM = 3.27 GPa - νM = 0.38 ρM = 1200 kg/m3
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3.1. Convergence and Accuracy

The convergence analysis was performed by increasing the number of discrete elements up to
256, which means 16 elements along each principal direction. The results of this test are presented in
Table 3 for a thin plate and in Table 4 for the thicker ones, in terms of the first ten natural frequencies.
A very good accuracy was obtained by using only eight finite elements per side, for both cases under
consideration. In particular, the percentage error for the first mode shapes was lower than 0.4%
if 64 elements were used. Therefore, the formulation and the numerical approach were validated.
Only the bending mode shapes were considered in the analyses.

Table 3. Convergence features of the numerical approach and comparison of the first ten natural
frequencies (Hz) with the semi-analytical solutions provided by Reddy [23] for a simply-supported
thin plate with a through-the-thickness uniform distribution of the reinforcing fibers. CLPT: classical
laminated plate theory.

Mode CLPT Ref. [23]
4 Elements
Ndofs=125

16 Elements
Ndofs=405

64 Elements
Ndofs=1445

256 Elements
Ndofs=5445

1 43.9262 44.4153 43.9592 43.9284 43.9265
2 123.1041 135.1515 124.3804 123.1900 123.1096
3 123.1041 135.1515 124.3804 123.1901 123.1096
4 175.6547 192.6267 177.6096 175.7865 175.6632
5 265.0021 505.8042 278.5590 265.9668 265.0653
6 265.0021 505.8084 278.5590 265.9668 265.0653
7 300.0618 533.0928 313.2389 300.9965 300.1230
8 300.0618 533.0928 313.2389 300.9965 300.1230
9 395.0350 751.5685 415.3231 396.4841 395.1299
10 465.3946 838.4999 515.4317 470.6168 465.7466

Table 4. Convergence features of the numerical approach and comparison of the first ten natural
frequencies (Hz) with the semi-analytical solutions provided by Reddy [23] for a simply-supported
thick plate with a through-the-thickness uniform distribution of the reinforcing fibers. FSDT: first-order
shear deformation theory.

Mode FSDT Ref. [23]
4 Elements
Ndofs=125

16 Elements
Ndofs=405

64 Elements
Ndofs=1445

256 Elements
Ndofs=5445

1 397.3772 400.9285 397.6161 397.3928 397.3782
2 939.4637 987.3930 946.0547 939.9116 939.4924
3 939.4637 987.3930 946.0547 939.9116 939.4924
4 1285.7309 1295.8113 1293.1889 1286.2465 1285.7646
5 1640.7304 2202.4349 1687.2607 1644.1525 1640.9552
6 1640.7304 2219.9298 1687.2607 1644.1525 1640.9552
7 1869.3853 2219.9298 1905.9136 1872.1146 1869.5668
8 1869.3853 2224.7306 1905.9136 1872.1146 1869.5668
9 2313.9852 2486.7150 2349.5762 2316.8723 2314.1827
10 2372.3369 3354.9399 2442.9101 2385.5578 2373.2355

For completeness, the convergence features of the proposed approach are presented in graphical
form in Figure 4, where the relative error er = fn/ fn,exact − 1 was computed for increasing values of the
degrees of freedom (Ndo f s). The graphs are presented in logarithmic scale. It can be observed that a
good convergence was reached for both thin and thick plates.
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3.2. Natural Frequency Analysis of Functionally Graded Orthotropic Plates

In this section, four different through-the-thickness fiber distributions are analyzed. These four
schemes, as well as the functions f (k) employed in each layer, are summarized in Table 5. The layers
were numbered from the bottom to the top surface of the plate. As far as the mechanical and geometric
features of the plates are concerned, the same values of the previous section were used. Due to
the results of the convergence analyses, the plates were discretized by using ten finite elements
per side. The first fourteen natural frequencies of a simply-supported thin plate for the various
through-the-thickness distributions of the reinforcing fibers specified in Table 5 are presented in Table 6,
whereas Table 7 collects the same results for a simply-supported thick plate. Finally, the first six mode
shapes are also depicted in graphical form. In particular, Figure 5 presents the mode shapes related to
the thin plates, whereas the same results for the thick plates are shown in Figure 6. Note that the mode
shapes assumed different aspects by varying the through-the-thickness distributions of the fibers in the
four layers, keeping their orientation constant. Analogously, the values of natural frequencies were
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affected by the non-uniform distribution of the fibers along the thickness of the structures, for both
thin and thick configurations.

Table 5. Definition of the through-the-thickness distribution of the reinforcing fibers.

Scheme Layer 1 Layer 2 Layer 3 Layer 4

Scheme 1 f (1)UD f (2)UD f (3)UD f (4)UD
Scheme 2 f (1)O f (2)O f (3)O f (4)O
Scheme 3 f (1)X f (2)X f (3)X f (4)X
Scheme 4 f (1)V f (2)UD f (3)UD f (4)A

Table 6. First fourteen natural frequencies (Hz) of a simply-supported thin plate for several
through-the-thickness distributions of the reinforcing fibers.

Mode Scheme 1 Scheme 2 Scheme 3 Scheme 4

1 43.9271 33.5339 35.0923 34.5204
2 123.1397 93.9281 97.6817 96.4943
3 123.1397 93.9281 97.6817 96.4994
4 175.7093 134.1367 140.3692 138.0894
5 265.4059 202.3576 209.7406 207.6677
6 265.4059 202.3576 209.7406 207.6780
7 300.4527 229.2791 239.2330 235.8151
8 300.4527 229.2791 239.2330 235.8250
9 395.6415 302.0350 316.0631 310.9587

10 467.6067 356.4637 368.9774 365.6794
11 467.6067 356.4637 368.9774 365.6944
12 494.2235 376.9847 392.0326 387.3268
13 494.2235 376.9847 392.0326 387.3477
14 565.8001 431.8446 451.1608 444.3823

Table 7. First fourteen natural frequencies (Hz) of a simply-supported thick plate for several through-the-
thickness distributions of the reinforcing fibers.

Mode Scheme 1 Scheme 2 Scheme 3 Scheme 4

1 397.3836 306.5341 318.4900 319.8942
2 939.6493 734.9017 753.9989 780.5089
3 939.6493 734.9017 753.9989 780.5337
4 1285.9465 1008.8635 1036.0206 1077.1948
5 1642.1651 1300.8952 1322.6235 1405.6371
6 1642.1651 1300.8952 1322.6235 1405.6638
7 1870.5349 1480.8980 1510.3561 1600.6668
8 1870.5349 1480.8980 1510.3561 1600.6865
9 2315.2138 1839.1055 1872.3302 1997.7076

10 2377.9654 1899.9655 1921.4452 2077.7168
11 2377.9654 1899.9655 1921.4452 2077.7322
12 2545.0693 2031.1334 2059.3510 2219.4198
13 2545.0693 2031.1334 2059.3510 2219.4394
14 2888.3228 2306.5360 2339.2521 2523.7454
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4. Conclusions

A FE formulation was presented and implemented to investigate the natural frequencies of
functionally graded orthotropic thin and thick plates with cross-ply layups. The layers of the structures
were modeled as fiber-reinforced materials with orthotropic features. The fibers were characterized
by a gradual variation of their volume fraction along the thickness of the plates. Toward this aim,
several functions depending on the thickness coordinate were introduced. Their effects on the
free vibrations were discussed. The research proved that the natural frequencies, as well as the
corresponding mode shapes, were affected by the non-uniform placement of the fibers in the thickness
direction. In particular, the dynamic response of laminated plates could be changed by varying the
through-the-thickness distributions of the volume fraction of the reinforcing fibers, keeping the fiber
orientation and the thickness of the various layers constant. The same considerations were deduced
for thin and thick plates.
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Appendix A

The following definitions are required to compute the terms of the element stiffness matrix K(e)

introduced in Equation (31). Recall that the operator at issue is symmetrical. The submatrices K(e)
i j for

i, j = 1, 2, . . . , 5 assume the following aspects:

K11 =
∫
x

∫
y

(
BT

x

(
A11Bx + A16By

)
+ BT

y

(
A16Bx + A66By

))
dxdy

K12 =
∫
x

∫
y

(
BT

x

(
A12By + A16Bx

)
+ BT

y

(
A26By + A66Bx

))
dxdy

K13 = 0
K14 =

∫
x

∫
y

(
BT

x

(
B11Bx + B16By

)
+ BT

y

(
B16Bx + B66By

))
dxdy

K15 =
∫
x

∫
y

(
BT

x

(
B12By + B16Bx

)
+ BT

y

(
B26By + B66Bx

))
dxdy

(A1)

K21 = KT
12

K22 =
∫
x

∫
y

(
BT

y

(
A22By + A26Bx

)
+ BT

x

(
A26By + A66Bx

))
dxdy

K23 = 0
K24 =

∫
x

∫
y

(
BT

y

(
B12Bx + B26By

)
+ BT

x

(
B16Bx + B66By

))
dxdy

K25 =
∫
x

∫
y

(
BT

y

(
B22By + B26Bx

)
+ BT

x

(
B26By + B66Bx

))
dxdy

(A2)

K31 = KT
13

K32 = KT
23

K33 =
∫
x

∫
y

(
BT

x

(
κA44Bx + κA45By

)
+ BT

y

(
κA45Bx + κA55By

))
dxdy

K34 =
∫
x

∫
y

(
BT

x

(
κA44N

)
+ BT

y

(
κA45N

))
dxdy

K35 =
∫
x

∫
y

(
BT

x

(
κA45N

)
+ BT

y

(
κA55N

))
dxdy

(A3)
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K41 = KT
14

K42 = KT
24

K43 = KT
34

K44 =
∫
x

∫
y

(
BT

x

(
D11Be

x + D16By
)
+ BT

y

(
D16Bx + D66By

))
dxdy +

∫
x

∫
y

N
T
κA44Ndxdy

K45 =
∫
x

∫
y

(
BT

x

(
D12By + D16Bx

)
+ BT

y

(
D26By + D66Bx

))
dxdy +

∫
x

∫
y

N
T
κA45Ndxdy

(A4)

K51 = KT
15

K52 = KT
25

K53 = KT
35

K54 = KT
45

K55 =
∫
x

∫
y

(
BT

y

(
D22By + D26Bx

)
+ BT

x

(
D26By + D66Bx

))
dxdy +

∫
x

∫
y

N
T
κA55Ndxdy

(A5)

Analogously, the following definitions are needed to evaluate the terms of the element mass
matrix M(e) introduced in Equation (32), which also turns out to be symmetrical. The submatrices
M(e)

i j , for i, j = 1, 2, . . . , 5 assume the following aspects:

M11 =
∫
x

∫
y

N
T

I0Ndxdy

M14 =
∫
x

∫
y

N
T

I1Ndxdy
(A6)

M22 =
∫
x

∫
y

N
T

I0Ndxdy

M25 =
∫
x

∫
y

N
T

I1Ndxdy
(A7)

M33 =

∫
x

∫
y

N
T

I0Ndxdy (A8)

M41 = MT
14

M44 =
∫
x

∫
y

N
T

I2Ndxdy (A9)

M52 = MT
25

M55 =
∫
x

∫
y

N
T

I2Ndxdy (A10)
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