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Abstract- In this work, a class of perturbed nonlinear Schrödinger equation is studied 

by using the homotopy perturbation method. Firstly, we obtain some Jacobi-like elliptic 

function solutions of the corresponding typical general undisturbed nonlinear 

Schrödinger equation through the mapping deformation method, and secondly, a 

homotopic mapping transform is constructed, then the approximate solution with 

arbitrary degree of accuracy for the perturbed equation is researched, it is pointed out 

that the series of approximate solution is convergent. Finally, the efficiency and 

accuracy of the approximate solution is also discussed by using the fixed point theorem. 
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1. INTRODUCTION 

 

With the development of soliton theory in nonlinear science, searching for 

analytical exact solutions or approximate solutions of the nonlinear partial differential 

equations (NLPDEs) plays an important and significant role in the study of the 

dynamics of those nonlinear phenomena [1]. Many powerful methods have been used to 

handle these problems recently. For example, inverse scattering transformation [2], 

Hirota bilinear method [3], homogeneous balance method [4], Bäcklund transformation 

[5], Darboux transformation [6], projective Riccati equations method [7], the 

generalized Jacobi elliptic function expansion method [8] and so on [9]. But because of 

the complexity of NLPDEs, people can't find the exact solutions for many of them 

especially with disturbed term. Researchers had to develop some approximate methods 

for nonlinear theory, such as multiple-scale method [10], variational iteration method 

[11], indirect matching method [12] etc. The main essence of these methods is the study 

of nonlinear problems dealt with linear problems by using the approximate expansion. 

 

The homotopy analysis method (HAM) was firstly proposed in 1992 by Liao 

[13], which yields a fast convergence for most of the selected problems. It also showed 

a high accuracy and a rapid convergence to solutions of the nonlinear partial evolution 
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equations. After this, many types of nonlinear problems were solved with HAM by 

others, such as discrete KdV equation [14], a smoking habit model [15], and so on. As a 

special case of HAM, He proposed the homotopy perturbation method [HPM] [16]. 

Recently, based on the idea of HPM, Mo proposed the homotopic mapping method to 

handle some nonlinear problems with small perturbed term [17]. A great quantity of 

works about this subject have been researched by many authors, such as perturbed 

Kdv-Burgers equation [18], mid-latitude stationary wind field [19] etc. 

 

In this paper, we extend the applications of HPM to solve a class of disturbed 

nonlinear Schrödinger equation in the nonlinear optics. And many useful results are 

researched. 

 

2. MODEL AND HOMOTOPIC MAPPING 

  

Consider the following generalized nonlinear Schrödinger equation with perturbed term 
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If we let ,t x z t  ，Eq.(1) turns to the following form 
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Where f is a perturbed term, which is a sufficiently smooth function in a corresponding 

domain. ( )t  and ( )t  are the slowly increasing dispersion coefficient and nonlinear 

coefficient respectively, ( )t  represents the heat-insulating amplification or loss. The 

transmission of soliton in the real communication system of optical soliton is described 

by Eq.(2) with 0f   [20–25]. 

2
2

2

1
( ) ( ) ( ) 0

2

u u
i t t u u i t u

t x
  

 
   

 
.                                   (3)                                                                                                                                    

In Ref.[20], Serkin and Belyaeva developed an effective mathematical algorithm to 

discover and investigate infinite numbers of novel soliton solutions for Eq. (3). In 

Ref.[21], Serkin and Hasegawa discussed the problem of soliton management described 

by Eq. (3). Many exact solutions of Eq.(3) have been obtained by the authors in 

Refs.[22-25]. 
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In order to obtain the approximate solution of Eq.(2),we make the transformation 

1 1 2 2( ) ( ) , ( ), ( )iu A t e k x c t k x c t        .                               (4)                                                                                                   

With the following consistency conditions 

0
( )

1 1 2
0

( ) , ( ) ( ) ,

t
td

A t ce c t k k d
  

  
   

0

2
2 ( )

2 2 4 1
2 2 1 2 20

1
( ) ( ) ( ) , ( ) ( )

2

t
t da k

c t a k k d t t e
c

  

    
 

     .                    (5) 

Where 
1 2 2 4, , , ,k k a a c  are arbitrary nonzero constants.  

Substituting (4) into (2),we have 

'' 3 2

2 4 12 2 ( , , ) /ia a f u t x e k

      .                                      (6)                                                                                                                      

If we let 
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if u t x k f e  , Eq.(6) becomes 
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When 0f   , we have 

'' 3

2 42 0a a      .                                                 (8)                                                                                                                                            

By using the general mapping deformation method [9], we can obtain the following 

solutions of the corresponding undisturbed Eq. (3) 
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Where jF  is an arbitrary solution of the equation 2 2 4

0 2 4'
j j jj j jF a a F a F   ，we can 

obtain the twenty-two classes of solutions jF  from Ref. [26], for example, if we let 

0 0 0

2 2 2

0 2 41 , 2 1, ,a m a m a m     
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Remark 1: If we let 
2
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
  

 
. We find that 

0u  

turns to the solution 
31u  in Ref.[24],and which was degenerated to the famous 

bright-soliton solutions 
1u  in Ref.[25] when 1m . 

Eq.(8) has the solution 0 1 1 2
0

[ ( ) ]
t

cn k x k k d      . 

In order to obtain the solution of Eq.(2), We introduce the following homotopic 

mapping  ,H p ： ( )f R I R  , 

   3

0 0 4, 2 ( )H p L L p L a f           .                              (9)                                                                                                                                        

Where    , , 0,1 ,R I   
0  is an initial approximate solution to Eq.(8), and the 

linear operator L is expressed as 

  ''

2L u a   .                                  (10)                                                                                                          

Obviously, from mapping (9),  ,1 0H    is the same as Eq.(7). Thus the solution of 

Eq.(7) is the same as the solution of  ,H p  as 1p  . 

 

3. APPROXIMATE SOLUTION 

 

In order to obtain the solution of Eq.(7), set 

  2

0 1 2

0

i

i

i

p p p     




     .                               (11) 

If we let 
0 0  ，noticed the analytic properties of 

0,f   and mapping (9), we 

can deduce that the series of (11) are uniform convergence when  0,1p [16]. 

Substituting expression (11) into  , 0H u p  , expanding nonlinear terms into the power 

series in powers of p , we compare the coefficients of the same power of p  on both 

sides of the equation, we have 

0

0 0:p L L    ,                                                    (12)                                                                                                                                                    
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1

1 0: ( )p L f   ,                                                     (13)                                                                                                                                                              

 2 2

2 4 0 1 0 1: 6p L a f         ,                                       (14)                                                                                                                                           
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From (12) we have   

    0 0      .                                                   (15)                                                                                                                                       

 If we select 1 0 0   ,and from (13) we have 
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0 0( ) ( ( ))f f   . 

If we select 2 0 0   ,and from (13) we have 
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Where 
2 0a  ,

0 0 1 1( ), ( )       . 

From (4),(5),(11),(15),(16),(17) and mapping (9) we have the first and second order 

approximate Jacobi-like elliptic function solutions  1hom ,u x t  and  2hom ,u x t  of the 

generalized disturbed nonlinear Schrödinger equation (2) as follows:  
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With the same process, we can also obtain the N order approximate 

solution  hom ,n x t . 
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Remark 2: The N-order approximate solution  hom ,nu x t  is degenerated to the solitary 
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wave approximate solution and trigonometric function approximate solution when the 

modulus 1m  or 0m . 

If selecting different 
0 , we can obtain the other fifty-one types of approximate 

solutions of Eq.(2). 

 

4. COMPARISION OF ACCURACY 

 

In order to explain the accuracy of the expressions of the approximate solution 

represented by Eq.(18), we consider the small perturbation term 
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From the discussion of Section 3, we obtain the second order approximate Jacobi-like 

elliptic function solution of Eq.(19) as follows 
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Where 0 1  ，selecting an arbitrary constant such that 
2hom(0) (0)exa  ，from the 
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fixed point theorem [27], we have 2
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Therefore, from the above result, we know that the approximate solution 
2homu ,obtained 

by asymptotic method, possesses better accuracy. 

Setting 
1 2( ) 1, 1, ( ) 1, 1, 1, [0,3]A t k k t m n         and 0.01,0.001   for  

Eq.(20), we can get the comparison and simulation between 1hom ( )u   and 0 ( )u   in 

Table 1,Table 2, Fig.1 and Fig.2. From Figs. 1-2, it is easy to see that as 0 1   is a 

small parameter, the solutions 1hom ( )u   and 0 ( )u   are very close to each other. This 

behaviour is coincident with that for the approximate solution of the weakly disturbed 

evolution equation (19).  

 

Table 1. Comparison between 1hom ( )u   and 0 ( )u   when 0.01  . 

 

           1 h o m( )u              0 ( )u              Absolute error 

                                                                         
 

0.1      0.9922415192       0.9950207490         0.0027792298 

0.5      0.8854857025       0.8868188840         0.0013331815 

1        0.6524340490       0.6480542737         0.0043797754 

1.5      0.4397488886       0.4250960349         0.0146528537 

2        0.2967042854       0.2658022288         0.0309020566 

2.2      0.2586548862       0.2189185789         0.0397363073 

3        0.1965393174       0.0993279274         0.0972113900 
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Table 2. Comparison between 1hom ( )u   and 0 ( )u   when 0.001  . 

                                                                            

          1 h o m( )u               0 ( )u             Absolute error 

                                                                         
 

0.1      0.9947428260        0.9950207490        0.0002779230 

0.5      0.8866855658        0.8868188840        0.0001333182 

1        0.6484922512        0.6480542737        0.0004379775 

1.5      0.4265613203        0.4250960349        0.0014652854 

2        0.2688924345        0.2658022288        0.0030902057 

2.2      0.2228922096        0.2189185789        0.0039736307 

3        0.1090490664        0.0993279274        0.0097211390 

                                                                                        

 

 

Figure 1. Comparison between the curves of solutions 1hom ( )u   (solid line) and 

0 ( )u   (dashed line) with 0.01  . 
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Figure 2. Comparison between the curves of solutions 1hom ( )u   (solid line) and 

0 ( )u   (dashed line) with 0.001  . 

 

5. CONCLUSION 

 

We researched a class of disturbed nonlinear Schrödinger equation with variable 

coefficients by using the homotopic mapping method, which is much more simple and 

efficient than some other asymptotic method such as perturbation method etc, the 

Jacobi-like function approximate solution with arbitrary degree of accuracy for the 

disturbed equation is researched, which shown that this method can be used to the 

soliton equation with complex variables, but it is still worth to research that whether or 

not the method can be used to the system with high dimension and high order. 
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