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Abstract

The symmetry and energy levels of icosahedral Cq are studied. Explicit matrix
representations of the icosahedral group are constructed. Projection operators are obtained
to simplify eigenvalue problem. We summarize role of the group theory to specify energy
levels of Cagy.

1. INTRODUCTION

Many spectroscopic probiems require the computation of projection operators. To
calcudate these operators, mairix representations of & pomt group, m appropriate dimension
must be camed out. The software packages Mathematica and GAP are much more
versatile for this purpose. We demonstrate with a specific example how Mathematica and
GAP are useful for computing matrix representations of a pomt group and projection
operators of molecular system.

It 1s well known that molecular and crystallographic pomt groups can be constructed by
breaking svmmetries of Special Orthogonal Group SO(3)[1]. There are a number of
interesting work about construction of crystallographic and molecular pomt groups[2].
Synunetry breaking method 1s 2 simple way for Mathametica and GAP users to construct
these point groups.

Group theory has been applied in many different felds of physics, such as, classification of
eigenfunctions, analysis of different types of phase transitions m solids, classification of
energy levels of atomic, molecular, solid state and nuclear systems. In many cases, these
applicaticns require matrix representations of correspondmg group{3.4].

In recent years, there have been some reports on calculation of the energy levels of
icosahedral Cs and its various compounds[S]. Since Cs has high symmetry with
symmetric group I, .ihe computations sre based on group theoretical analysis. Many
quasicrystals have icosahedral structure, and crystallographic description of 1 quasicrystals
is purely mathematical

The purpose of thus paper is threefold. Firsily, we develop a systematic method to
construct matrix representation of a pomt group. Secondly we compute projection
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operators of icosahedral point group which has great interest for physicists who study Ceq
molecule or quasicrystals. Lastly, we demonstrate a specific example.

2. FINITE SUBGROUPS OF §0(3)

The irreducible representation of SO(3) are all real. SO(3) is a subgroup of SU(2) and
generators of SU(2) can be writen as e'®  where J are angular momentum operator and
closed under commutation

[3,,3,]=i1, [1,.5,]=4, [I,.5,]=1, . (1)

To obtain the standard form of the commutation relationship of SO(3) algebra, we can
write

Js _.._._(1 £il,) (2)

N2
with the relation

Table 1. Generators and generation relations of the polvhedral subgroups of SO(3)

Finite subgroups of SO(3) (enerators Generatiou relations
Cn (CyChC) \\]TEJ ) A”._.:_.]
127},
D, (Dihedral) A= E’\"P(’*ﬂ'"") A"=B=C=1

B = Exp(inJ )

T (Tetrahedral) A= Exp(iwj‘ i é? e )jji A’=B’=(AB)’=1, B=AC
C= Exp(;nJ )
eo{D)
O (Octahedral) . xp(m 0+, 43, )) A'=B’=(AB)*=1
3J_

2r(cl), +1J )3
e (1_..__,._,_____
= 5\2+0

B- Exp(lazi_ﬁ?__tﬂ_z)

o=1(1-v5), 1=1(1+5)

I (icosahedral) A’=B*=C"=1, C=AB
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The operators L. J. and J; act on a basic vector $(jm) such as

J ) jm) = ‘f(_,f' Fm)jtm+Dg(jmt 1)
S jm) = mg jm)

4)

since the range of m is bounded from j to -}, the uunitary representations of SO(3) has
dimension 2j+1, when j takes ioteger values. The generation relations of the finite
subgroups of SO(3) are given in the iast column of Table 1.

The molecudar and/or crystallograplic point groups can be classified as cychic groups C,,
dihedral groups D, tetrahedral group T, octahedral group O, icosahedral group 1. In the
following table, we list the generators and generation relations of finite subgroups of
SO(3).

Detailed descripiion of the groups {,, D,. T, and O were studied m previously[1]. Smce
we are dealing with icosahedra! group I, we construct irreducible matrix representations of
the corresponding group. Icosahedral group has five ureducible representations with
dimensions 1, 3, 4, and 3. It is obvious that one dimensional matrix representations of the
J’s are obtamed from FEqn(4) for the values of j=0.

2.1 Construction of 3 and 5 dimensional matrix representations of I group

The breaking of SO{3) to icosahedral group i1s made by finding vacuum expectation values
for ¢. In a mathematcal pomt of view the icosahedral group generators can be obtamed by
choosmg the w and I's in the form of Table 1. To obtain 3x3 matrix representations of
icosahedral group j. are taken as | From Egn{4), we obtamn J's and from last row of the
table, we find the generators A and B which are complex matrices. These are transformed
to a real base by choosmg the field y=T¢ .

i o
X =:/'§='(¢i11)+¢(1" 13)

i
, = —=={(p{11})—- (1 -1 5
e = 7= (1D (1-1) ()
%: = ¢(10)

that transforms 3 dimensional representation to real field. The other 3x3 representation of
I group can be obtained by replacing ¢ and v m Table 1 and transforming to a real field
with the (=T given in Eqn(3). The representations are given in Appendix 1.

In this case, 5x3 matrix generstor are carried out for j=2 as in j=1 case. The 5 dimensional
geunerators are transformed to real base by choosing the base vectors which transforms
5x5 matrix representations that are given iIn Appendix 1, mto real field. The diagonal
generator in Appeedix | are obtained by multiplying A and B at the last column of Table
1
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% ='%'{¢(22)+¢‘2'2))
w’f

Xz = = (0{22) ~ $(2 - 2))

J
1
= —{$(21)~ (2~ 1) 6
Xz \/EN’( )= o( ) (6)

i, .
= —=(P2D)+¢(2 - 1))
e =75 (92D +6(2 - 1)
%s = $(20)

2.3. Construction of 4 dimensional matrix representations of I group

Even dimensional representations of the group cannot be obtained as odd dimensional
representations, because 2j+1 always give odd dimension for mteger values of j. Four
dimensional representations are obtained by taking j=6 which gives 13x13 generators of
SO(3). The conjugate classes of 13 dimensional representation are given in Table 2 and we
have checked that this representation can be decomposed as

=143 447, (7)

IS
102

The choice of the basis given in Egn (8) transform these matrices to real matrnices. After a
few attempts 13 dimeusion generators are blockdiogonalized and 4 dimensional matnix
representations given it Appendix | are obtaimed.

a3

~%;(¢f6éi>+¢(6«6)) X ~~—--<¢<63)+<p<o~»

v \r-

= ($(66) - 0(6 - 6)) J--(¢(6’)+¢(6 3

Ig~

e

|4

X3 ='7§7(¢(65)"¢(6"5» Xo 37'2:'(¢’(62)+'¢(6—2))
Xo = (@65 +0(6-5) 1o = (46D +6(6~ 1) 15
V2 V2
1
o= 0060 -8(6-4) 1, = 7‘=(¢(61) +6(6-1))

"/~(¢(64)+¢(6 4)  Ap= T(¢(bl)+¢(6 1)
= ¢(60)

All these calculations are easily made by preparing a simple program in Mathematica.
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3. PROJECTION OPERATORS AND MOLECULAR ORBITALS

The frequently used method for establishing permissible quantum states for a molecule
involved use of projection operators[6]. Projection operators based on the group
representations are ofien used for formulating appropriate linear combinations of a set of
basis functions. The operator for the k™ irreducible representation of dimension 1y
belonging to a group of order h is defined as

—I—;-Z');(R,)R, (9)
R

where D represents the irreducible matrix form | Ry is the symumetry operations, n, is the
dimension of the irreducible representation and g is the order of the group. In this section,
we develop a method to obtain projection operators for Ce molecule. K is well known
that Hiickel molecular orbital theory 1s very useful for large carbon systems. For large
carbon systemis Hiicke! determinant must be block diagonal form. This can be done by
projection operators.

Table 2. Character table for the full icosahedral group L. The last two row demonstrates
the characters of site symmetry matiices a'}d the \,hara\,te's of 13x13 matrices.
L | E 12Cs 12Cs 20C; 15C, 1 128y m,. 208, 150

AT I 111 L1
Fi.l 3 = -0 0 -1 3 -0 T 0 -1 R.R.R,
Fei3 -« 1 0 -1 3 1 - 0 -l
Gyldmm<q 8- -9 ¢ 4 < &b -1 @
H{s 0 o - 1 s 0 0 -1 1
A1 1 1 A S (S B B B
Fi.i 3 T -0 0 =3 =3 o -7 1 X,¥.Z
Ful3 o 1 0 <1 -3 w1 g 0 1
G4 -1 -1 1 0 -4 I 1 -1 0
H.|$ 0 -1 1 -5 0 0 1 -
Yoirel 60 O c o6 0 © 0 o0 4
w13 ¢ 0t 1 1 <13 5 -l -]

Icosahedral Cs; molecule mcludes sixty carbon stoms i a site. The position vectors from
the center of molecule to the i atom in a site can be found by choosing a radial vector ry
for an atom and the other vectors are obtamed from

=gl L9

'

where g; are 3 dimensional group elements and are given in Appendix 1. Site symmetry
matrix generators (60x60) of 1, are constructed by trausforining each position vector using
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3x3 generators.

i, 7=1,2...60 (11)

where D and F are 60 dimension matrix generators of the group and the characters yg. are
presented in Table 2. Decomposition of Y. in terms of irreducible representations are

given

=A, + T, +T, +2G, +3H, +2T,, +2T,, +2G, +2H,  (12)

valtP

We now want to obtain projection operators which blockdisgonalize Hiickel Hamiltonian
matrix in the form of the Eqn(12). We carried out all elements of the group in GAP and
from Equ(9), we obtained projection operators.

The molecular orbitals of I, site are formed by followmg a simple way. We choose a basis
vector ¢; and the wave vectors of each atom llli_ik are written in terms of base vectors ¢;
are

= Po,. (13)

The molecular orbital for I site obtawed from Eqn(13) are given i Appendix 2.

4. AN APPLICATION: ENERGY LEVELS OF Cg;

In previous section. we have classified the atomic orbitals and wave functions according to
the irreducible representations of 1. In this section, we will find the energy eigenvalues of
Ceo molecule. It is known that energy expectation value of i state of a molecule is given
by

E, =:/ l.;Hz\tl»\
= N2[C2{0;H]o,) +CiCy (o, 10, )] (14)
= o +2N2C,C, (6;Ho, )

where o = { ¢ H* ¢;) and N;, C; are scalar coefficients. According to the Hiickel

approximation, in evaluating E; we can neglect any integra! form <¢ i iH‘(bk} in Eqn(14), if

/

¢; and ¢y refer to non-adjaceut atoms. For Cg molecule each atom are bonded to three
neighborhood atom with two smgle bond #nd one double bond. In this case , we neglect
the mteraction between further atoms and we can write

for double bond
(o o) -{}

15
B, for single bond (13)

To simplify our problem we can make another approximation. Since P, and B, are
double and single bonds respectively, one can choose B, =28,. We bave taken o=0 in
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our calculations according to the Huckel approximation. The Hamiltonian matrix 1s
computed from Egn{14), for each representation of I, group and eigenvalues of these
matrices are giver i Appendix 2. As shown frora Figure 1, there are antibonding and
bonding ecergy levels. Eigenvalues of block diagonalized Hamiltoman matrices give two
different energv levels which correspond to one irreducible representation (T:,,G,, etc..)
Larger energy represents antibondmg eanergies, smaller energy represents bonding energies
of an electron i an atom.

4 -
3 Ji [ Tl,;.\ le Hu*
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A R WA N A I Hﬂﬁ
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] A
-6

Figure I. Molecular Energy levels of Cg

4. DISCUSSION

The paper preseuts a systematic way to construct the molecular orbitals and energy
eigenvalues of Cso molecule. The projection operators are also used to simplify vibrational
energy probiem, by taking direct product of P;’s by 3x3 matrix representations. The
energy values of C¢; are classified according to their symmetry.
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APPENDIX |
IRREDUCIBLE MATRIX GENERATORS OF ICOSEHEDRAL GROUP

(=1 0 0) (-t o 1)
g](?’):i 0 -1 '\)J gl(s)z:: -0 i 1—'
(L I 201 t o)
(L o 0 0‘) (- 33 \//E -\/’:*]
{0 -t 0 O 1l =z -3 Js .
&®=lo o | o] gﬂm-gtﬂg 2o
\0 ¢ ¢ _U —7\1'/-3- 0 —\/5 -3
1 00 0 0
010 0 0
g(3)={0 0 1t C 0
1000 -1 0
\0 0 0 0 -
L 3-45 -5 35 245
T3S 4 —VB+S) o 4
g)=gl V15 30+ -1 SB-1+45) 245
Reyd 0 V3(~1++/5) 4 4
2‘\/5— 4 “'2\/5 = 0
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APPENDIX 2
ENERGY MATRICES AND ENERGY EIGENVALUES OF Cy
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