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Abstract-In this study, a matrix method based on Legendre collocation points on 

interval [-1,1] is proposed for the approximate solution of the some first order nonlinear 

ordinary differential equations with the mixed conditions in terms of Legendre 

polynomials. The method by means of Legendre collocation points, transforms the 

differential equation to a matrix equation which corresponds to a system of nonlinear 

algebraic equations with unknown Legendre coefficients. Also, the method can be used 

for solving Riccati equation. The numerical results show the effectuality of the method 

for this type of equations. Comparisons are made between the obtained solution and the 

exact solution. 
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1. INTRODUCTION 

 

           Nonlinear ordinary differential equations are frequently used to model a wide 

class of problems in many areas of scientific fields; chemical reactions, spring-mass 

systems bending of beams, resistor-capacitor-inductance circuits, pendulums, the 

motion of a rotating mass around another body and so forth [1,2]. These equations have 

also demonstrated their usefulness in ecology, economics, biology, astrophysics and 

engineering. Thus, methods of solution for these equations are of great importance to 

engineers and scientists. However many important differential equations can be solved 

by well known analytical techniques, a greater number of physically significant 

differential equations can not be solved [1,3,4]. 

              Moreover, nonlinear differential equations play afundamental role in control 

theory; for example, optimal control, filtering and estimation and order reduction, 

etc.[5,6] . 

 We consider the approximate solution of the first order nonlinear ordinary  

differential equation  
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 )()()()()()()()()()())()(( 22

 (1) 

under the mixed condition 

    𝛼𝑦 𝑎 + 𝛽𝑦 𝑏 = 𝜆               (2) 

where 𝑁 𝑥 , 𝑄 𝑥 , 𝑅 𝑥 , 𝑆 𝑥 , 𝑇 𝑥  and 𝑔 𝑥  are the functions defined on 𝑎 ≤ 𝑥 ≤ 𝑏; 

the real coefficients 𝛼, 𝛽  and 𝜆  are appropriate constants. 
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  Our purpose is to obtain an approximate solution of (1) in the following Legendre 

polynomial form 

          𝑦 𝑥 =  𝑎𝑛𝑃𝑛

𝑁

𝑛=0

 𝑥 ,         − 1 ≤ 𝑥 ≤ 1                                                                       (3) 

where 𝑎𝑛 ,  𝑛 = 0,1,2, … , 𝑁 
 
are unknown Legendre coefficients.  

Here  𝑃𝑛 𝑥 , 𝑛 = 0,1,2 …𝑁  are the Legendre polynomials defined by  

          𝐏𝑛 𝑥 =
1

2𝑛
  −1 𝑘  

𝑛
𝑘
  

2𝑛 − 2𝑘
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2. FUNDAMENTAL MATRIX RELATIONS 
  

           Let us consider the nonlinear differential equation (1) and find the matrix forms 

of each term in the equation. Firstly, we consider the solution 𝑦(𝑥) defined by a 

truncated series (3) and then we can convert to  the matrix form 

 

          𝑦 𝑥 = 𝐏 𝑥 𝐀                                                                                                       (4) 

where 

𝐏 𝑥 =  𝐏0 𝑥   𝐏1 𝑥 …   𝐏𝑁 𝑥                                                                                 
 

𝐀 =  𝑎0  𝑎1  …  𝑎𝑁   𝑇                                                                                                   

 Let us write the solution 𝑦′ 𝑥 , 𝑦 𝑥 𝑦′ 𝑥  
 
and  𝑦′ 𝑥  

2
 in the matrix form. Firstly, if 

we differentiate expression (4) with respect to 𝑥, we obtain 

 

          𝑦′(𝑥) = 𝐏′(𝐱)𝐀 

                     = 𝐏(𝑥)𝚷𝐓𝐀                 (5) 
 

where if 𝑛  is even    
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if 𝑛 is odd 
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On the other hand, the matrix form of expression 𝑦2(𝑥) is obtained as 
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or  shortly 

 

          𝑦2 𝑥 = 𝐏 𝑥 𝐏∗ 𝑥 𝐀∗              (6) 

                                                                                                                                                                                       

where  
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By using the expression (4), (5) and (6) we obtain 

 

          𝑦 𝑥 𝑦′ 𝑥 = 𝐏(𝑥)𝐏∗(𝑥)(𝚷𝐓)∗𝐀∗            (7) 

 

Following a similar way to (6), we have   

 

             (𝑦′(𝑥))2 = 𝐏 𝑥 𝚷𝐓𝐏∗ 𝑥  𝚷𝐓 ∗𝐀∗            (8) 

 

where 
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3. MATRIX RELATIONS BASED ON COLLOCATION POINTS 
 

 Let us use the collocation points defined by  

 

             𝑥𝑖 = 𝑎 +
𝑏 − 𝑎

𝑁
𝑖   ,    𝑖 = 0,1,2, … , 𝑁                                                                           (9) 

in order to 

              𝑎 = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑛 = 𝑏 
             

By using the collocation points (9) into Eq. (1), we obtain the equation  
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  (10)
 

 

By using the relations (4), (5), (6), (7) and (8); the system (10) can be written   in the 

matrix form  

           𝐍𝐏𝚷𝐓𝐏∗(𝚷𝐓)∗ + 𝐐𝐏𝐏∗(𝚷𝐓)∗ + 𝐓𝐏𝐏∗ 𝐀∗ +  𝐑𝐏𝚷𝐓 + 𝐒𝐏 𝐀 = 𝐆 

or briefly 

          𝐖𝐀∗ + 𝐕𝐀 = 𝐆                  (11) 

 

where                                                                                                                                                                             
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4. METHOD OF SOLUTION

 

  

               Therefore, the fundamental matrix   equation (11)  corresponding to Eq. (1) 

can be written in the augmented form 

 

              𝐖𝐀∗ + 𝐕𝐀 = 𝐆                     

or 

  )12(GV;W;

 

where 

𝐖 =  𝑤𝑝𝑞  = 𝐍𝐏𝚷𝐓𝐏∗(𝚷𝐓)∗ + 𝐐𝐏𝐏∗(𝚷𝐓)∗ + 𝐓𝐏𝐏∗  ;    p, q = 0,1,2, … N 

 

            𝐕 =  𝑣𝑝𝑞  = 𝐑𝐏𝚷𝐓 + 𝐒𝐏. 

We can find the corresponding matrix equation for the condition (2), using the 

relation (4), as follows: 

          𝛼𝐏 𝑎 + β𝐏(b) 𝐀 =  𝜆                        (13)
 

so that 

            𝐏 𝑎 =  1  𝑎  
1

2
 3𝑎2 − 1   ⋯ 

 

            𝐏 𝑏 =  1  𝑏  
1

2
 3𝑏2 − 1   ⋯  

  We can write the corresponding matrix form (13) for the mixed condition (2) in 

the augmented matrix form as 

                 𝐙 ; 𝟎 ∶ 𝜆           (14)
 

where   

                𝐙 =  𝑧0 𝑧1  ⋯  𝑧𝑁 = α𝐏  a + β𝐏(b) 
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                𝐙 =  𝒛𝒊 =  1  𝑎  
1

2
 3𝑎2 − 1   ⋯ +  1  𝑏  

1

2
 3𝑏2 − 1   ⋯  

             𝟎 = [0 0 ⋯  0]1× 𝑁+1 . 
 

To obtain the approximate solution of Eq. (1) with the mixed condition (2) in the 

terms of Legendre polynomials, by replacing the row matrix (14) by the last row of 

the matrix (11), we obtain the required augmented matrix: 
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or the corresponding matrix equation 

𝐖 𝐀∗ + 𝐕 𝐀 = 𝑮                                                                                                                           (15)
  

where 
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The unknown coefficients set  𝑎0, 𝑎1, … , 𝑎𝑁  can be determined from the nonlinear 

system (15). As a result, we can obtain approximate solution in the truncated series 

form (3).
 

 

5. ACCURACY OF SOLUTION 

 

 We can check the accuracy of the method. The truncated Legendre series in (3) 

have to be approximately satisfying  Eq. (1). For  each 𝑥 = 𝑥𝑖 ∈  𝑎, 𝑏 , 𝑖 = 1,2, … , 𝑁    

0)()()()()()()()()()())()(()( 22  iiiiiiiiiiiii xgxyxTxyxSxyxRxyxyxQxyxNxE

and  𝐸(𝑥𝑖) ≤ 10−𝑘𝑖   (𝑘𝑖  is any positive integer). 
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 If max 10−𝑘𝑖 = 10−𝑘  ( 𝑘 is any positive integer) is prescribed, then the truncation 

limit 𝑁 is increased until the difference 𝐸(𝑥𝑖)  at each of the points 𝑥𝑖   becomes smaller 

than the prescribed 10−𝑘  [7-13].  

6. NUMERICAL EXAMPLES 

 

           In this section, two numerical examples are given to show the accuracy and 

efficiency of the presented method. 

 

Example 6.1. Let us first consider the first-order nonlinear differential equation  

 

           𝑦′(𝑥) 2 − 𝑥2𝑦 𝑥 = 1 − 𝑥3                   (16)   

                                                                                               

with condition 

 

          𝑦 −1 + 2𝑦 1 = 1        , −1 ≤ 𝑥 ≤ 1 
 

and the approximate solution 𝑦(𝑥)   by the truncated Legendre polynomial 

         𝑦 𝑥 =  𝑎𝑛P𝑛

2

𝑛=0

   , −1 ≤ 𝑥 ≤ 1 

where  

         N 𝑥 = 1, Q 𝑥 = 0, R 𝑥 = 0, S 𝑥 = −𝑥2 , T 𝑥 = 0, g 𝑥 = 1 − 𝑥3 

For 𝑁 = 2  the collocation points become 

 

              𝑥0 = −1, 𝑥1 = 0, 𝑥2 = 1. 
    

From the fundamental matrix equations for the given equation and condition 

respectively are obtained as  

 

        𝐍𝐏𝚷𝐓𝐏∗ 𝚷𝐓 ∗𝐀∗ + 𝐒𝐏𝐀 = 𝐆 

and 

             ( 1) 2 (1) 1  Ρ Ρ Α  

so that 

𝐍 =  
1 0 0
0 1 0
0 0 1

  ,   𝐀 =  

𝑎0

𝑎1

𝑎2

  , 𝐆 =  
2
1
0
  , 𝐏 =  

1 −1 1
1 0 −1/2
1 1 1

  

         

𝐐 =  
0 0 0
0 0 0
0 0 0

  ,   𝐑 =  
0 0 0
0 0 0
0 0 0

  ,  𝐒 =  
−1 0 0
0 0 0
0 0 −1

  ,  𝐓 =  
0 0 0
0 0 0
0 0 0
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,  𝚷 =  

0 0 0
1 0 0
0 3 0

  

𝐀∗ =  𝑎0𝑎0   𝑎0𝑎1   𝑎0𝑎2   𝑎1𝑎0   𝑎1𝑎1   𝑎1𝑎2   𝑎2𝑎0   𝑎2𝑎1   𝑎2𝑎2 
𝑇. 

 

The augmented matrix for this fundamental matrix equation is calculated 

 

 














 



1:313;000000000

1:000;000010000

2:111;930010000

G;V;W  

or  

             𝑎1
2 − 3𝑎2𝑎1 − 9𝑎2

2 − 𝑎0 + 𝑎1 − 𝑎3 = 2 

             𝑎1
2 = 1 

             3𝑎0 + 𝑎1 + 3𝑎2 = 1 

 

From the obtained system, the coefficients 𝑎0, 𝑎1 and 𝑎2 
are found as 

             𝑎0 = 0 , 𝑎1 = 1 and  𝑎2 = 0 

Hence we have the Legendre  polynomial solution 

            𝑦 𝑥 = 𝑥  

 

Example 6.2. Consider the following nonlinear differential equation (Riccati Equation ) 

given by 

 

            𝑥𝑦′ − 𝑥𝑦 + 𝑦2 = 𝑒2𝑥 , −1 ≤ 𝑥 ≤ 1           (17) 

with the initial condition 

 

           𝑦 0 = 1. 

So that 

 

           N 𝑥 = 0, 𝑄 𝑥 = 0, 𝑅 𝑥 = 1, 𝑆 𝑥 = −𝑥, 𝑇 𝑥 = 1, 𝑔 𝑥 = 𝑒2𝑥  
 

The solutions obtained for  𝑁 = 3,4,5  are compared with the exact solution is 𝑒𝑥 ,  

which are given in Fig 1. We compare the numerical solution and absolute errors for  

𝑁 = 3,4,5 in Table 1. 
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Table 1. Comparison of the absolute errors of Example 6.2 
Present method 

 

                                                                                             

                                                         𝑁 = 3                                     𝑁 = 4                                       𝑁 = 5  

 𝒙𝒊   Exact Solution    𝒚(𝒙𝒊)       Absolute Errors     𝒚(𝒙𝒊)      Absolute Errors     𝒚(𝒙𝒊)      Absolute Errors    

 
 -1.        0.367879       0.334323         3.355627E-02        0.375008        7.129406E-03       0.366674       1.205123E-03                         

-0.8       0.449329       0.435370         1.39587 E-02         0.451714        2.385336 E-03      0.449005       3.23411 E-04       

-0.6       0.548811       0.544421         4.390231 E-03       0.549368        5.565309 E-04      0.548751       5.977526 E-05 

-0.4       0.67032         0.669516         8.033632 E-04       0.670368        4.796019 E-05      0.670313       6.920744 E-06 

-0.2       0.818730       0.818696         3.456772 E-05       0.818712        1.854363 E-05      0.818729       1.547447 E-06 

 0.0       1.000000       1.000000         0.0                          1.000000        0.0                        1.000000         0.0 

 0.2       1.221403       1.221468         6.545648 E-05       1.221431         2.867506 E-05     1.221406       2.751472 E-06 

 0.4       1.491825       1.491141         6.837805 E-04       1.491807        1.730121 E-05      1.491826       1.205291 E-06 

 0.6       1.822119       1.817058         5.060605 E-03       1.82153          5.891915 E-04      1.822062       5.722084 E-05 

 0.8       2.225541       2.20726           1.828079 E-02       2.222601        2.940306 E-03      2.225153       3.87694 E-04 

 1.0       2.718282       2.669787         4.8495 E-02           2.708624        9.658009 E-03      2.716702       1.579906 E-03 

 
Figure 1. Numerical and exact solution of Example 6.2 for N = 3,4,5 

 

7. CONCLUSION 
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          A Legendre collocation method for the approximate solutions of the some first 

order nonlinear ordinary differential equations on the interval [-1,1] is analyzed in this 

study. A considerable advantage of the method is that the Legendre coefficients of the 

solution are found very easily by using computer programs. For this reason, this process 

is much faster than the other methods. Legendre collocation method gives well results 

for the different values N . The method can also be extended to the high order nonlinear 

ordinary differential equations with variable coefficients, but some modifications are 

required. 
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