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Abstract-In this study, a matrix method based on Legendre collocation points on
interval [-1,1] is proposed for the approximate solution of the some first order nonlinear
ordinary differential equations with the mixed conditions in terms of Legendre
polynomials. The method by means of Legendre collocation points, transforms the
differential equation to a matrix equation which corresponds to a system of nonlinear
algebraic equations with unknown Legendre coefficients. Also, the method can be used
for solving Riccati equation. The numerical results show the effectuality of the method
for this type of equations. Comparisons are made between the obtained solution and the
exact solution.
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1. INTRODUCTION

Nonlinear ordinary differential equations are frequently used to model a wide
class of problems in many areas of scientific fields; chemical reactions, spring-mass
systems bending of beams, resistor-capacitor-inductance circuits, pendulums, the
motion of a rotating mass around another body and so forth [1,2]. These equations have
also demonstrated their usefulness in ecology, economics, biology, astrophysics and
engineering. Thus, methods of solution for these equations are of great importance to
engineers and scientists. However many important differential equations can be solved
by well known analytical techniques, a greater number of physically significant
differential equations can not be solved [1,3,4].

Moreover, nonlinear differential equations play afundamental role in control
theory; for example, optimal control, filtering and estimation and order reduction,
etc.[5,6] .

We consider the approximate solution of the first order nonlinear ordinary

differential equation
N ()Y (%)) +Q0x ) y(x ) Y'(x) + R(%)Y'(X) + S ) y(x) + T (x)y* (%) = 9(x;) 1)

a<x<b
under the mixed condition

ay(a) + By(b) = 1 )

where N(x), Q(x),R(x),S(x),T(x) and g(x) are the functions defined on a < x < b;
the real coefficients «, § and A are appropriate constants.
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Our purpose is to obtain an approximate solution of (1) in the following Legendre
polynomial form
N

y(x) = z a,P, (x), -1<x<1 3)
n=0

where a,,, (n = 0,1,2, ..., N) are unknown Legendre coefficients.
Here P,(x), n=0,1,2...N are the Legendre polynomials defined by
n
, 2]
— Nk (M (2n— 2k a2k . _
P, () = o Z( DF () (" 5) e, n=012..

k=0

w3
[E]: n—1

2 )

n even

n odd

2. FUNDAMENTAL MATRIX RELATIONS

Let us consider the nonlinear differential equation (1) and find the matrix forms
of each term in the equation. Firstly, we consider the solution y(x) defined by a
truncated series (3) and then we can convert to the matrix form

y(x) = P(x)A (4)
where

P(x) = [Py(x) P(x) ... Py(x)]

A= [ao a ... Ay ]T

Let us write the solution y'(x), y(x)y'(x) and (y’(x))2 in the matrix form. Firstly, if
we differentiate expression (4) with respect to x, we obtain

y (x) =P (XA
=P(x)IITA (5)

where if n is even

0000 0 0 0
1000 0 0 0
0300 0 0 0

n={1 05 0 0 0 0
0307 --2N-3 0 0
1050« 0  2N-1 0J 0.
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if nisodd
0 0 0O 0 0 0]
1 000 0 0 0
0 3 00 0 0 0
ImI={1 0 5 0 0 0 0
1 2N -3 0 0
0307 - 0 2N -1 O_(N+l)x(N+1)

On the other hand, the matrix form of expression y?(x) is obtained as

PO 0 - 0 Ta,A
yz(X)={1 X %(3X2—1) } 0 P(:X) 0 al:A
0 0 - PX|[a.A
or shortly
y2(x) = P(x)P*(x)A" o
where
PO 0 - O
o] O PO 0]
S

A" =[a,A a,A - a Al
:[aoao Qpdy r- pdy 3 - qady cr Ayd Ay, - aNaN]

By using the expression (4), (5) and (6) we obtain

y(x)y' (x) = P)P* (x)(M")"A" (7)
Following a similar way to (6), we have

O'(x))? = P()I"P*(x)(")*A” (8)

where
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. O m" --- 0
my'e=. . .
3. MATRIX RELATIONS BASED ON COLLOCATION POINTS

Let us use the collocation points defined by

b—a

X, =a+ i, i=012..,N 9)

in order to
a=xy<x<-<x,=b

By using the collocation points (9) into Eq. (1), we obtain the equation

N (x;)(Y'(%; )’ +QO) Y)Y (%) + ROG)Y'(%;) + S(Xi)y(xi)+T(Xi)y2(Xi) =g(x)
i=012,..,N ;a<x<b

(10)

By using the relations (4), (5), (6), (7) and (8); the system (10) can be written in the
matrix form
(NPO"P*(IT)* + QPP*(IIT)* + TPP*)A* + (RPIT + SP)A = G

or briefly
WA*+VA =G (11)
where
N(x,) 0 - 0 Qx,) 0 - 0
I e P IR
L 0 0 N(XN) 0 0 Q(XN)
R(x,) O - 0 S(Xx,) 0 - 0
S e T
0 0 - R(Xy) 0 0 - S(xy)
T(Xo) 0 0 g(xo)
T 0 T(fq) - 0 G- g(:xl)

6 0 T().(N) g(;(N)
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P(Xo) Po(xo) Pl(XO) Pz(xo) PN(XO)
p— P(Xl) _ PO(Xl) Pl(Xl) PZ(Xl) PN(Xl)
P().(N) PO(.XN) Pl(;(N) PZ(.XN) PN(.XN)
P(,) 0 -+ 0
P* () = 0 P(?(l) 0
0 0 - P(Xy)

4. METHOD OF SOLUTION

Therefore, the fundamental matrix equation (11) corresponding to Eq. (1)
can be written in the augmented form

WA* + VA =G
or
[W; V; G] 12)

where
W = [w,, | = NPO"P*(I")* + QPP*(M")* + TPP* ; p,q=0,1,2,..N

V = [v,,] = RPI" + SP.
We can find the corresponding matrix equation for the condition (2), using the

relation (4), as follows:
{aP(a) + BP(b)}A = [1] (13)

so that

P(a) = [1 a %(3a2 —1) ]

P(b) = [1 b %(3192 ~1) ]

We can write the corresponding matrix form (13) for the mixed condition (2) in
the augmented matrix form as
[Z;0: 2] (14)
where
Z=[zy2z; - zy] = aP (a) + BP(b)
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Z=1[z]=|1a %(3612—1) ---]+[1 b %(31»2—1) ]

0=[00 - 0]ixv+1)-
To obtain the approximate solution of Eq. (1) with the mixed condition (2) in the
terms of Legendre polynomials, by replacing the row matrix (14) by the last row of

the matrix (11), we obtain the required augmented matrix:

Woo Wo, Wy, Won ; Voo Vo Voz Von : g(xo)
Wi Wiy Wi, T Wiy ; Vio Vi Vi, o Vin - g (Xl)
[W;V; G]= . . . . . . . . . R :
Wyao Wnaa Wyap o WN—l,N ; VN—l,O V-1 VN—l,Z VN—1,N : g(XN)
| 0 0 0 0 N z, Z, Iy o A

or the corresponding matrix equation

WA*+VA=G (15)
where
- 1T 1 [ alx) ]
Wi W, Won Voo Voi Von g(x )
Wi, Wi, Wiy Vio Vi 1N G = . '
W = L | V= oo
0(Xna
Whio Wi WNan Vnio Vinaa VNan )
0 0 0 | 7, 7y | - -

The unknown coefficients set {ay, a;, ..., ay} can be determined from the nonlinear
system (15). As a result, we can obtain approximate solution in the truncated series
form (3).

5. ACCURACY OF SOLUTION

We can check the accuracy of the method. The truncated Legendre series in (3)
have to be approximately satisfying Eq. (1). For each x = x; € [a,b], i = 1,2,...,N

E(x) = ‘N ()Y (%, )? +Q) Y)Y (%) + RO Y' (%) +S(x) y(%) + T (X, )y? (X)) = 9(x; )‘ =0
and E(x;) < 107 (k; is any positive integer).
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If max(107*) = 107* ( k is any positive integer) is prescribed, then the truncation
limit N is increased until the difference E(x;) at each of the points x; becomes smaller
than the prescribed 107* [7-13].

6. NUMERICAL EXAMPLES

In this section, two numerical examples are given to show the accuracy and
efficiency of the presented method.

Example 6.1. Let us first consider the first-order nonlinear differential equation
') —x*y(x) =1-x° (16)
with condition

y-D)+2y1)=1 , -1<x<1

and the approximate solution y(x) by the truncated Legendre polynomial
2

y(x)=ZanPn , -1<x<1

n=0

where
N(x) = 1,Q(x) = 0,R(x) = 0,S(x) = —x2,T(x) = 0,g(x) =1 — x3

For N = 2 the collocation points become
Xog = —1,x1 = 0,x2 = 1.

From the fundamental matrix equations for the given equation and condition
respectively are obtained as

NPITP*(NT)*A* + SPA = G

and
{P(-D)+2P()} A=[1]
so that
(1 0 O [Qo 2 1 -1 1
N=|0 1 0|, A=|a|,G=|1|,P=]1 O -—-1/2
0 0 1 %) 0 1 1 1
0 0 O 0 0 O -1 0 O 0 0 O
Q=0 0 0|, R=]0 0 O|,S=|0 O O], T=10 0 O
0 0 O 0O 0 O 0O 0 -1 0 0 O
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1 -1100 0 000
P°=l0 0 0 1 0 -1/2 0 0 O 0 00
L1 4 M=[1 00
00 000 O 0 3 0

A" =[apay apay apa; a1ap a1a; a1Q; Ax0¢ A0 azaz]T-

The augmented matrix for this fundamental matrix equation is calculated

0000100 -3 -9 ; -11 -1: 2
W:V;G]=slo 0 001200 0 0 ; 00 0 :1

00000000 O ; 3 1 3 :1
or

alz - 3a2a1 —9a22 — Qy +a1 —daz = 2
a12=1

3a0+a1+3a2=1

From the obtained system, the coefficients a,, a; and a, are found as
a0=0,a1=1and a2=0
Hence we have the Legendre polynomial solution

y(x) =x

Example 6.2. Consider the following nonlinear differential equation (Riccati Equation )
given by

xy —xy+y?=e¥ —1<x<1 (17)
with the initial condition

y(0) =1.
So that

N(x) =0,Q0(x) =0,R(x) =1,5(x) = —x,T(x) = 1,g(x) = e%*

The solutions obtained for N = 3,4,5 are compared with the exact solution is e*,
which are given in Fig 1. We compare the numerical solution and absolute errors for
N = 3,4,5in Table 1.
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Table 1. Comparison of the absolute errors of Example 6.2

Present method

x; Exact Solution y(x;)  Absolute Errors y(x;)  Absolute Errors  y(x;)

N=5

Absolute Errors

-1. 0.367879  0.334323 3.355627E-02 0.375008 7.129406E-03  0.366674
-0.8  0.449329  0.435370 1.39587 E-02 0.451714 2.385336 E-03  0.449005
-0.6 0548811  0.544421 4.390231 E-03  0.549368 5.565309 E-04  0.548751
-0.4  0.67032 0.669516 8.033632 E-04  0.670368 4.796019 E-05  0.670313
-0.2  0.818730  0.818696 3.456772 E-05  0.818712 1.854363 E-05 0.818729
0.0 1.000000  1.000000 0.0 1.000000 0.0 1.000000
0.2  1.221403  1.221468 6.545648 E-05  1.221431 2.867506 E-05  1.221406
0.4 1491825 1491141 6.837805 E-04  1.491807 1.730121 E-05  1.491826
06 1822119  1.817058 5.060605 E-03  1.82153 5.891915E-04  1.822062
0.8 2225541  2.20726 1.828079 E-02  2.222601 2.940306 E-03  2.225153
1.0 2.718282  2.669787 4.8495 E-02 2.708624 9.658009 E-03  2.716702

1.205123E-03
3.23411 E-04

5.977526 E-05
6.920744 E-06
1.547447 E-06
0.0

2.751472 E-06
1.205291 E-06
5.722084 E-05
3.87694 E-04

1.579906 E-03

3

Exact solution
O Present method for N=3
LI  Present method for N=4

£

2.5
Present method for N=5

y(X)
tn

-1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8

Figure 1. Numerical and exact solution of Example 6.2 for N = 3,4,5

7. CONCLUSION
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A Legendre collocation method for the approximate solutions of the some first
order nonlinear ordinary differential equations on the interval [-1,1] is analyzed in this
study. A considerable advantage of the method is that the Legendre coefficients of the
solution are found very easily by using computer programs. For this reason, this process
is much faster than the other methods. Legendre collocation method gives well results
for the different values N . The method can also be extended to the high order nonlinear
ordinary differential equations with variable coefficients, but some modifications are
required.
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