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Abstract- In this study, we present a reliable numerical approximation of the some first 

order nonlinear ordinary differential equations with the mixed condition by the using a 

new Taylor collocation method. The solution is obtained in the form of a truncated 

Taylor series with easily determined components. Also, the method can be used to solve 

Riccati equation. The numerical results show the effectuality of the method for this type 

of equations. Comparing the methodology with some known techniques shows that the 

existing approximation is relatively easy and highly accurate. 
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1. INTRODUCTION 

 

 Nonlinear ordinary differential equations are frequently used to model a wide 

class of problems in many areas of scientific fields; chemical reactions, spring-mass 

systems bending of beams, resistor-capacitor-inductance circuits, pendulums, the 

motion of a rotating mass around another body and so forth  1,2 . These equations here 

also demonstrated their usefulness in ecology, economics, biology, astrophysics and 

engineering. Thus, methods of solution for these equations are of great importance to 

engineers and scientists  3,4 . 

In this paper, for our aim we consider the first order nonlinear ordinary  

differential equation of the form 

         2 2
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ( )) ( )P x y x Q x y x R x y x S x y x y x T x y x g x       , a x b               (1) 

under the mixed conditions 

         (a) + (b) =y y                                                                                                    (2) 

and look for the approximate solution in the form 

        
( )

0

( )
( ) ( - ) ,                ,       

!

nN
n

n n

n

y c
y x y x c y a c b

n

                  (3) 

which is a Taylor polynomial of degree N at x c , where    0,1, ,ny n N 
 
are the 

coefficients to be determined. Here          ,  ,  ,  ,  P x Q x R x S x T x  and  g x  are the 

functions defined on bxa  ; the real coefficients ,     and   are appropriate 

constants. Note that, if ( ) ( ) 0S x T x 
 
in Eq. (1), it is a Riccati Equation ]85[  . 
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2. FUNDAMENTAL MATRIX RELATIONS 
  

            Our aim is to find the matrix form of each term in the nonlinear equation given 

by Eq. (1). Firstly, we consider the solution ( )y x  defined by a truncated series (3) and 

then we can convert to  the matrix form 

              )( ()x xy  X Y                                                                                                       (4)        

where 

              2( - ) ( - ) ( )1 - Nx c x c x cx    X 
 

             
 0 1

T

Ny y yY  . 

  If we differentiate expression (4) with respect to x , we obtain 
             

              
( ) ( )y x x  X Y  

                         ( )x X BY                                                                                                          (5) 

where 

            

0 1 0 0

0 0 2 0

0 0 0

0 0 0 0

N
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 
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  
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

    





 .     

On the other hand, the matrix form of expression  2 ( )y x  is obtained as 
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or briefly 

            *2 *( ) ( ) ( )xy x x X X Y                                                                                          (6)                                                                                   

where 

           *

( ) 0 0

0 ( ) 0

0 0 ( )
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x

x

x
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 
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  ,  

             

             0 1

*

Ny y
T

yY Y Y Y ,  8 . 

                       

               

By using the expression (4), (5) and (6) we obtain 

          
* * *( )( ) ( ) ( )xx xy y x  X X B Y .                                                                                (7) 
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Following a similar way to (6), we have  

           
2 * * *( ( )) ( ) ( )xy x x  X BX B Y                                                                                  (8)                                                                         

where  

           *

0 0

0 0

0 0

 
 
 
 
 
 



B

B
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 .         

 

3. MATRIX RELATIONS BASED ON COLLOCATION POINTS 
 

 Let us use the collocation points defined by  

    ,      0,1,...,i

b a
x a i i N

N


                                                                                          (9) 

in order to 

            0 1 .na x x x b   
  

By putting the collocation points (9) into Eq. (1), we get the equation 
                                         

  
 

              
2 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ( )) ( )
i i i i i i i i i i i i

P x y x Q x y x R x y x S x y x y x T x y x g x                   (10)   

              0,1, ,  i N 
 
;    

i
a x b  . 

By using the relations (4), (5), (6), (7) and (8); the system (10) can be written   in the 

matrix form  
              

                * * * * * *       PX QXB Y RXX SXX B TXBX B Y G                                

or shortly 

            
* WY VY G                                                                                                                   (11)                                                                                                        

where 
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4. METHOD OF SOLUTION

 

  

                The fundamental matrix equation (11) corresponding to Eq. (1), can be 

written as 

            * WY VY G      
or 

             W;V :G                                                                                                                             (12) 

where  

             
pqw    W PX QXB

 

             pq

* * * * *  v     V RXX SXX B TXBX B .
 

We can find the corresponding matrix equation for the condition (2) , using the 

relation (4), as follows: 

             
    ( ) ( )a b  X X Y                                     (13)                                                       

so that 

             

   

   

( ) 1

( ) 1 .

N

N

a a c a c

b b c b c

   
 

   
 

X

X



  

We can write the corresponding matrix form (13) for the mixed condition (2) in the 

augmented matrix form as 

              
 ;  :  Z 0                                                                                                                            (14) 

where 

             0 1 N[z  z   z ] = (a)+  (b) Z X X
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          1  + 1

N N

j
z a c a c b c b c           Z  

 

                 1x(N+1)[0  0   0 ]0  .
  

 

To obtain the approximate solution of Eq. (1) with the mixed condition (2) in the 

terms of Taylor polynomials, by replacing the row matrix (14) by the last row of 

the matrix (11), we obtain the required augmented matrix: 

 

00 01 02 0N 00 01 02 0N 0

10 11 12 1N 10 11 12 1N 1

N 1,0 N 1,1 N 1,2 N 1,N N 1,0 N 1,1 N 1,2 N 1,N N

0 1 2 N

 ;  : g(x )

; : g(x )

; : ; :

; : g(x )

z z z z ; 0 0 0 0 : λ

w w w w v v v v

w w w w v v v v

w w w w v v v v
       



 
 
 

    
 
 
  

W GV

 

 

          

 

 

 

or the corresponding matrix equation 

               
* WY VY G                                                                                                               (15) 

where 
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10 11 1N
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0 1 N
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...
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 
  
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N 1,0 N-1,1 N 1,N

...
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...

0 0 ... 0

 

v v v

v v v

v v v 

 
 
 
 
 
 
  

 V   

 

 

 

                                                      

0

1

N 1

g(x )

g(x )

     

g(x )

    λ



 
 
 
 
 
 
 
 

  G 
  . 

The unknown coefficients set  0 1 Ny , y , , y can be determined from the nonlinear 

system (15). As a result, we can obtain approximate solution in the truncated series 

form (3).
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5. ACCURACY OF SOLUTION 

 

 We can check the accuracy of the solution by following procedure ]129[  : The 

truncated Taylor series in (3) have to be approximately satisfying  Eq. (1); that is, for 

each [ , ],  1,2,...ix x a b i   ,   

      2 2
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ( )) ( )( ) 0

i i i i i i i i i i i ii P x y x Q x y x R x y x S x y x y x T x y x g xE x          

and  ( ) 10 ik

iE x


 ( ik  is any positive integer). 

 If  max(10 ) 10ik k   ( k  is any positive integer) is prescribed, then the truncation limit 

N  is increased until the difference ( )iE x  at each of the points ix  becomes smaller than 

the prescribed 10 k .   

 

6. NUMERICAL EXAMPLES 

 

           In this section, two numerical examples are given to illustrate the accuracy and 

efficiency of the presented method. 

 

Example 6.1. Let us first consider the first-order nonlinear differential equation 

            
2 22 3y (x) xy(x)y (x) y (x) x y(x) y(x) 1 x            (16)                                         

with condition 

            1 2 1 1  ,    1    1y y x       

and the approximate solution ( )y x   by the truncated Taylor polynomial 

         



2

0n

n

nxyy(x)   ,    -1 ≤ x ≤ 1 

where 

                    2 3,  0,  1, , 1,   1 . P x x Q x R x S x x T x g x x          

For 2N   the collocation points become 

         0 1 21, 0, 1x x x    . 

From the fundamental matrix equations for the given equation and condition 

respectively are obtained as 

         
   * * * * * *       PX QXB Y RXX SXX B TXBX B Y G

 
and  

             ( 1) 2 (1) 1  X X Y  

so that 

          

1 1 1

1 0 0
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 
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1 0 0
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0 0 1

 
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 
  
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0 0 0

0 0 0

0 0 0

 
 


 
  

Q   ,  

1 0 0

0 1 0

0 0 1

 
 


 
  

R   ,  

1 0 0

0 0 0

0 0 1

 
 


 
  

S   ,  

1 0 0

0 1 0

0 0 1

 
 


 
  

T    

           

           *

1 1 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 1 1

 
 


 
  

X   ,  

0 1 0

0 0 2

0 0 0

 
 


 
  

B  

           

            0 0 0 1 0 2 1 0 1 1 1 2 2 0 2 1 2 2

* T
y y y y y y y y y y y y y y y y y yY . 

 

The augmented matrix for this fundamental matrix equation is calculated 

 

           

1 1 1 ; 1 0 1 1 0 0 1 0 1 : 2

; : 0 0 0 ; 1 1 1 0 1 0 0 0 0 : 1

3 1 3 ; 0 0 0 0 0 0 0 0 0 : 1

     
       
  

W GV . 

 

From the obtained system, the coefficients 0 1,y y  and 2y are found as  

            0 0y    ,  1 1y    and  2 0y  . 

Hence we have the Taylor polynomial solution 

           

           ( )y x x .  

 

Example 6.2. Consider the following nonlinear differential equation (Riccati Equation ) 

given by 

 2 2xxy xy y e                                                                                                     (17) 

with the initial condition 

           (0) 1y  . 

So that 20, 1, 0, ( ) , ( ) , ( ) 1, ( ) 0, ( ) 0, ( ) .xa b c P x x Q x x R x S x T x g x e           

 

The solutions obtained for 3,5,7N   are compared with the exact solution is ex
,  which 

are given in Fig 1.We compare the numerical solution and absolute errors for 3,5,7N    

in Table 1. 
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Table 1. Comparison of the absolute errors of Example 6.2 
Present method 

 

                                                                                             
                                               3N                                   5N                                     7N   

i
x    Exact Solution    ( )

i
y x        Absolute Errors     ( )

i
y x       Absolute Errors    ( )

i
y x       Absolute Errors    

 
 0.0       1.000000         1.00000         0.0                         1.00000          0.0                         1.00000          0.0                          

 0.1       1.105171         1.10529         1.192369 E-04       1.105184        1.259568 E-05      1.105172       8.648132 E-07       

 0.2       1.221403         1.221161       2.421382 E-04       1.221451        4.798519 E-05      1.221406       3.468062 E-06 

 0.3       1.349859         1.347611       2.247413 E-03       1.349952        9.291372 E-05      1.349867       7.789426 E-06 

 0.4       1.491825         1.484642       7.182218 E-03       1.491936        1.117825 E-04      1.491838       1.363126 E-05 

 0.5       1.648721         1.632254       1.64674 E-02         1.648755        3.378159 E-05      1.648742       2.025157 E-05 

 0.6       1.822119         1.790446       3.167322 E-02       1.821857        2.6133 E-04          1.822144       2.564376 E-05 

 0.7       2.013753         1.959218       5.453511 E-02       2.012794        9.589406 E-04      2.013778       2.532079 E-05 

 0.8       2.225541         2.13857         8.697101 E-02       2.223214        2.326954 E-03      2.225551       1.044657 E-05 

 0.9       2.459603         2.328503       1.311006 E-01       2.454868        4.734986 E-03      2.459568       3.485946 E-05 

 1.0       2.718282         2.529015       1.892663 E-01       2.709606        8.675577 E-03      2.718145       1.372364 E-04 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

x

y
(x

)

 

 
Exact solution

Present method for N=3

Present method for N=5

Present method for N=7

 
Figure 1. Numerical and exact solution of Example 6.2 for N = 3,5,7  
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7. CONCLUSION 
           

         In this study, a new Taylor approximation method for the solution of a class of 

first order nonlinear differential equations has been presented. The principal advantage 

of this method, at the around x c , is the capability to succeed in the solution up to all 

term of Taylor expansion. It is seen from Example 6.2 that Taylor collocation method 

gives well results for the different values N . Also it is important to note that Taylor 

coefficients of the solution are found very simply by using the computer programs. 
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