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Abstract- In this paper, vibration characteristics of a rub-impact Jeffcott rotor system 

excited by mass unbalance including the eccentric mass and the initial permanent 

deflection are investigated. Through the numerical calculation, rotating speeds, mass 

eccentricities, initial permanent deflections and phase angles between the eccentric mass 

direction and the rotor initial permanent deflection direction are used as control 

parameters to investigate their effect on the rub-impact rotor system with the help of 

bifurcation diagrams, Poincare maps, frequency spectrums and orbit maps. Result 

shows that these two kinds of mass unbalance have great but different effect on the 

dynamic characteristic of the rubbing rotor system. Different motion characteristics 

appear with the varying of these control parameters, and complicated motions such as 

periodic and quasi-periodic vibrations are observed. Corresponding results can be used 

to diagnose the rub-impact fault and decrease the effect of rub impact in the rotor 

system with mass unbalance. 
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1. INTRODUCTION 

Mass unbalance of the rotor is the main factor to increase vibration and bring 

unstable characteristics to the whole rotor system [1-2]. Since the rotor-stator rub is one 

of the main faults for large rotary machines, it has attracted great concern and lots of 

research work has been done by many researchers. Cao and Ma [3] investigated 

nonlinear dynamic characteristics of rub-impact rotor system with fractional order 

damping. From the study, various complicated dynamic behaviors and types of routes to 

chaos were found, including period doubling bifurcation, sudden transition and quasi-

periodic from periodic motion to chaos. Jawaidi [4] investigated dynamics of a rigid 

rotor supported by load-sharing between magnetic and auxiliary bearings for a range of 

realistic design and operating parameters. Many phenomena were found and studied. 

Zhang and Meng [5] carried out an analytical investigation on the stability of the rub 
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solutions of the rotor system in MEMS. Numerical calculation demonstrated the 

complex nonlinear motion forms in this system.  

Although much work has been done respectively on the research of rotor mass 

unbalance and rotor-stator rubbing impact, the vibration characteristics of this kind of 

rub-impact rotors with mass unbalance have rarely been studied specially in the 

literature. Due to mass unbalance’s ubiquity, great effect on the vibration of the rub-

impact rotor system and rub’s large threat to the safe operation of the rotor system, 

Therefore, in this paper attention is paid to the research of vibration characteristics of 

rub-impact rotors with mass unbalance. 

2. PHYSICAL MODEL AND EUATIONS  

Rub-impact forces in the O-xy coordinate system are [6]:  
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when r h , the rub doesn’t happen. When r h , the rub happens. Carrying out 

the nondimensional procedure, the governing motion equations are as follows: 

When ˆ 1.0R r h  , the rub doesn’t happen, and the nondimensional motion 

equations are: 
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When ˆ 1.0R r h  , the rub happens, and the nondimensional motion equations 

are: 
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Where: x̂ x h , ŷ y h , ˆ
rK K K , 

02C M  , 
0 K M   the natural frequency of 

the shaft, 
0   the frequency ratio, 

me h  , 
0 0r̂ r h , 

0T t , ' d dT . 

Since the nondimensional governing equations of motion have been got above, 

they are transferred into a set of first order differential equations ( )u f u . Then the 

fourth-order Runge-Kutta method is used to integrate this set of equations. According to 

the analysis need, some parameters can be used as the control parameters such as the 

rotor rotating speed, the initial permanent deflection and so on, while other parameters 

keep fixed during every time of calculation. To get the stable result, a small integration 
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step has to be chosen to avoid the numerical divergence at the point where derivatives 

of 
xF  and 

yF  are discontinuous. In this paper, the integration step is chosen to be 

2 /500 , i.e., within one period, there are 500 times of integral calculation. Generally, 

long time marching computation is required to obtain a convergent orbit. In this paper, 

during every calculation, results of the first 500 periods are abandoned, and then results 

of the next 100 periods are got to carry out various kinds of analysis. To study the 

vibration characteristics of the rubbing rotor system with mass unbalance, bifurcation 

diagrams, Poincare maps, frequency spectrums and orbit maps are employed. They are 

all useful and effective ways to illustrate the motion behavior of the rotor system. 

3. NUMERICAL SIMULATION OF MOTIONS OF THE ROTOR SYSTEM 

3.1. Effect of Rotor Rotating Speeds 

Although many parameters such as the system damping and the frictional 

coefficient between the rotor and the stator can be used to investigate the vibration 

characteristics of the rub-impact system, the most common and useful parameter used is 

the rotor rotating speed. The whole starting process can be observed by using the 

rotating speed to simulate the rub-impact rotor system. The parameters used during 

computations are:  =0.12, K̂ =30.0, 0.12  . 
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(c) 

0̂r =0.8,
0 / 4  , =0.2 

Figure 1. Bifurcation diagram 

Fig.1.(a) is the bifurcation diagram of the rub-impact rotor’s vibration which is 

excited only by the eccentric mass. Fig.1.(b) is the bifurcation diagram of the rub-

impact rotor’s vibration which is excited only by the initial permanent deflection. 

Fig.1.(c) is the bifurcation diagram of the vibration excited by these two kinds of mass 

unbalance jointly. Very clearly from Fig.1, different shapes of three diagrams 

demonstrate that the eccentric mass and the initial permanent deflection have different 

influence to the vibration of the rubbing rotor system and both contribute a lot to the 

vibration characteristics of the rub-impact rotor system. As shown in Fig.1.(a), the rub-

impact motion excited only by the eccentric mass keeps synchronous with period-one 

for the whole calculating rotating speed range. Fig.2 shows that only one point is 

correspondingly shown in the Poincare map, only one peak appears in the frequency 

spectrum, and the orbit of the rotor center is an ellipse. All these further demonstrate the 

motion is period-one motion. From Fig.1.(b), it can be seen that when the rotating speed 

ratio is from 0.0 to 1.1, the motion is period-one. From 1.1 to 1.6, the motion is quasi-

periodic, then the motion transits to period-one motion again for the higher speed ratios. 

This can be seen from Fig.3. It illustrates the rubbing motion excited only by the initial 

permanent deflection at  =1.2. The Poincare map is a closed circle, several peaks 

appear in the frequency spectrum, and the rotor center orbit is irregular. These prove 

that the motion is quasi-periodic. 

From Fig.1.(c), it can be seen that when the rotating speed ratio is from 0.0 to 1.1, 

the motion is period-one, from 1.1 to 2.4, the motion is quasi-periodic, then the motion 

transits to period-one motion again for the higher speed ratios. This motion type is 

clearly different from the one excited only by the eccentric mass in Fig.1.(a) and the one 

excited only by the initial permanent deflection in Fig.1.(b). Fig.4 demonstrates that the 

motion in this case at  =1.5 is quasi-periodic as analyzed above. 
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(a) Poincare map 
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Figure 2. Motion excited by =0.2 at  =1.5 
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(a) Poincare map          
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(c) spectrum of frequency 

Figure 3. Motion excited by 
0̂r =0.8,

0 / 4  at  =1.2 
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(a) Poincare map             
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(b) orbit       
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Figure 4. Motion excited jointly by  and 
0̂r  at  =1.5 
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3.2. Effect of the Eccentric Mass 

 

Eccentric mass is one of the mass unbalance to excite the motion of the rotor 

system, so it’s essential to study its effect on dynamic characteristic of the rub-impact 

rotor system. Fig.3 are bifurcation diagrams of rotor’s vibration at different rotating 

speeds using the mass eccentricity ratio   as the control parameter. The initial 

permanent deflection is not included in this analysis and is set as 0.0. 
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Figure 5. Bifurcation diagram using  as the control parameter 
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(c) spectrum of frequency 

Figure 6. Motion with  =0.3 at  =1.0 
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(c) spectrum of frequency 

Figure 7. Motion with  =0.3 at  =1.5 

As shown in Fig.5.(a), when the rotating speed ratio is not high like 1.0, the motion 

of the rub-impact rotor system keeps synchronous with period-one for the whole 

calculating range. Further demonstration is shown in Fig.6 with  =0.3 at  =1.0 that 

only one point is correspondingly shown in the Poincare map, only one peak appears in 

the frequency spectrum, and the orbit of the rotor center is an ellipse. All these further 

demonstrate the motion is period-one motion. 

As shown in Fig.5. (b), at =1.5 when the mass eccentricity ratio   is from 0.0 to 

0.26, the motion is period-one. From 0.26 to higher values of the mass eccentricity ratio, 

the motion keeps quasi-periodic. In Fig.7 with  =0.3 at  =1.5, the Poincare map is a 

closed circle, several peaks appear in the frequency spectrum, and the rotor center orbit 

is irregular. These prove that the motion is quasi-periodic. 

3.3. Effect of the Initial Permanent Deflection 

The initial permanent deflection is another one of the mass unbalance to excite the 

motion of the rotor system, it’s also important to study its effect on dynamic 

characteristic of the rub-impact rotor system. Fig.8 is bifurcation diagrams of rotor’s 

vibration at different rotating speeds using the initial permanent deflection ratio 
0̂r  as 

the control parameter. The mass eccentricity is not included in this analysis and is set as 

0.0. 
0  is fixed as / 4 . 
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Figure 8. Bifurcation diagram using
0̂r as the control parameter 
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(a) Poincare map 
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Figure 9. Motion with
0̂r =0.8 at  =1.0 
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(a) Poincare map              
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Figure 10. Motion with
0̂r =0.8 at  =1.5 

As shown in Fig.8.(a), when the rotating speed ratio is at 1.0, the motion of the 

rub-impact rotor system keeps synchronous with period-one for the initial deflection 

ratio ranging from 0.0 to 1.0. Further demonstration is shown in Fig.9 with 
0̂r =0.8 at 

 =1.0. 

As shown in Fig.7.(b), at =1.5 when the initial permanent deflection ratio 
0̂r  is 

from 0.0 to 0.7, the motion is period-one. From 0.7 to higher values of the initial 

permanent deflection ratio, the motion keeps quasi-periodic. Further demonstration is 

shown in Fig.10 with 
0̂r =0.8 at  =1.5. 

3.4. Effect of Phase Angles between the Eccentric Mass Direction and the Rotor 

Deflection Direction 

As shown in above equations (2) and (3), the phase angle between the eccentric 

mass direction and the rotor deflection direction is an important factor to influence the 
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amplitude of the rotor center, so it’s meaningful to study its effect on the rub-impact 

vibration characteristics of the rotor system. Fig.11 are the bifurcation diagrams of the 

rotor vibration at different rotating speed ratio   using the phase angle 
0  as the control 

parameter with 
0̂r =0.8,  =0.2. 
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(c)  =1.8                        (d)  =2.0 

Figure 11. Bifurcation diagram using
0 (  ) as the control parameter 

From Fig.11.(a), when  =1.0, the motion of the rub-impact rotor system keeps 

synchronous with period-one for the calculating phase angle ranging from 0.0 to180 . 

From Fig.11.(b), when  =1.5, for the phase angle from 0.0 to105 , the motion is quasi-

periodic. Form 95 to180 , the motion transits to period-one motion. Shown in Fig.11.(c), 

when   increases up to 1.8. the motion keeps quasi-periodic for the phase angle 

ranging from 0.0 to 86 , then transits to period-one for the rest phase angle. In Fig.11. 

(d), when  =2.0, the quasi-periodic motion range is for the phase angle from 0.0 to 75 , 

the motion for the rest phase angle is period-one. A clear trend can be seen from above 

analysis that with the increase of rotating speeds, the quasi-periodic motion range 

declines, correspondingly the period-one motion range increases. 
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4. CONCLUSIONS 

In this paper, vibration characteristics of a rub-impact Jeffcott rotor system excited 

by mass unbalance including the eccentric mass and the initial permanent deflection are 

investigated. From numerical calculation, rotating speeds, mass eccentricities, initial 

permanent deflections and phase angles between the eccentric mass direction and rotor 

initial permanent deflection direction are used as the control parameters to investigate 

their effect on the rub-impact rotor system. Result shows that these two kinds of mass 

unbalance: eccentric mass and initial permanent deflection have great but different 

effect on the dynamic characteristic of the rubbing rotor system. Periodic, quasi-

periodic motions appear with the varying of these control parameters. Because the 

quasi-periodic motion is the route to chaos, it indicates that the system has the potential 

to become chaotic. These results can be used to diagnose the rub fault and direct the 

work to decrease the effect of rub impact in the rotor system with mass unbalance. 
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