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Abstract- In this paper, we propose a new iterative algorithm to solve the matrix 

equation =TAXB CX D E . The algorithm can obtain the minimal Frobenius norm 

solution or the least-squares solution with minimal Frobenius norm. Our algorithm is 

better than Algorithm II of the paper [M. Wang, etc., Iterative algorithms for solving the 

matrix equation =TAXB CX D E , Appl. Math. Comput. 187, 622-629, 2007]   
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1. INTRODUCTION 

 

Let m n
R  denote the set of m n  real matrices. For a matrix m nA R , we denote 

its transpose by TA . A B  is the Kronecker product of two matrices A  and B . 

In this paper, we will discuss the following matrix equation  

  

= ,TAXB CX D E                                                                                               (1) 

 

 where m lA R , n pB R , m nC R , ,l p m pD E  R R  are given matrices, and 
l nX R  is unknown matrix to be found. 

When Eq.(1) is not consistent, we will consider the least square problem  

  

.min
T

X

AXB CX D E                                                                                     (2) 

 

Eq.(1) has an important role in system theory and control theory [1, 2], for 

example, eigenstructure assignment [3], observer design [4], system control with 

constraint input [5] and fault detection [6] 

It is very difficult to solve Eq.(1) and Eq.(2) by means of matrix decomposition. 

By such way, we can only solve some special cases. In [7, 8, 9, 10], 

=T T TA XB B X A D  was studied by means of GSVD, CCD and SVD, respectively. By 

similar methods, =T TA X X A B  and =T T T TAXA AZB BZ A D   were discussed in 

[11] and [12], respectively. 

In [13], the authors have studied Eq.(1) and Eq.(2), and proposed two iterative 

algorithms, which come from the famous conjugate gradient (CG) method. In this 

paper, we will propose a new iterative algorithm, which is better than those in [13]. 
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2. A NEW ITERATIVE ALGORITHM 

  

In this section, we present a new iterative algorithm for Eq.(1) and Eq.(2). First, we 

combine Theorem 4.3.8 and Corollary 4.3.10 of [14] into the following result. 

 

Lemma 1.  Let  

 
=1 =1

( , ) = .
l k

T

ij ij

i j

P l k E E  

Then, for arbitrary ,m n p qA B  R R , we have  

 v ( ) = ( , )v ( )Tec A P m n ec A                                              (3) 

 = ( , ) ( ) ( , ),TB A P m p A B P n q                                    (4) 

 where ( , )P i j  is a permutation matrix and  

 1( , ) = ( , ) = ( , ) .TP i j P j i P j i   

 

 

From Lemma 1, it is easy to know that Eq.(1) and Eq.(2) are equivalent to  

 [ ( ) ( , )]v ( ) = v ( )T TB A D C P l n ec X ec E                                          (5) 

and  

 
2[ ( ) ( , )]v ( ) v ( ) ,min

T T

X

B A D C P l n ec X ec E                                (6) 

respectively. 

Next, we review the LSQR algorithm proposed by Paige and Sauders [15] for 

solving the following least squares problem:  

                                        

         2min
nx R

Mx f


                                                                                            (7) 

 with given m nM R   and mf R , whose normal equation is  

                                

              = .T TM Mx M f                                                                                      (8) 

 

 

Algorithm 1 (Algorithm LSQR)  

 

(1)Initialization. 

1 1 1 1 1 1 1 0 1 1 1 1= , = , = , = 0, = , = .Tu f v M u h v x       

(2)Iteration. For =1,2,i  

 (i) bidiagonalization 

 (a) 1 1 =i i i i iu Mv u     

 (b) 1 1 1 1= T

i i i i iv M u v      

 (ii)construct and use Givens rotation 

 
2 2

1=i i i     

 1 1 1= / , = / , =i i i i i i i i ic s s         
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1 1 1= , = , =i i i i i i i i ic c s         

 (iii) update x  and h  

 
1= ( / )i i i i ix x h    

 
1 1 1= ( / )i i i i ih v h     

 (iv) check convergence.  

 

It is well known that if the consistent system of linear equations =Mx f  has a 

solution * ( )Tx R M , then *x  is the unique minimal norm solution of =Mx f . So, if 

Eq.(8) has a solution * ( ) = ( )T Tx R M M R M , then *x  is the minimum norm solution 

of Eq.(7). It is obvious that 
kx  generated by Algorithm LSQR belongs to ( )TR M  and 

this leads to the following result. 

 

Theorem 2. The solution generated by Algorithm LSQR is the minimum norm 

solution of Eq.(7) or consistent equation =Mx f .  

 

Now, we can derive our new algorithm, which is based on the above Algorithm 

LSQR. We have known that Eq.(2) is equivalent to Eq.(6), namely  

  

2min
nx

Mx f



R

                                                                                                  (9) 

where  

 = ( ) ( , ) , = v ( ) .T T mp nl mpM B A D C P l n f ec E    R R  

Next, we will apply ALgorithm LSQR to Eq.(9). The vector iteration of LSQR will be 

rewritten into matrix form so that the Kronecker product can be released. To this end, it 

is required to transform the matrix-vector products of Mv  and TM u  back to a matrix-

matrix form. Notice that we do not want to construct the matrix M  explicitly. 

Let m ( )at a  represent the matrix form of a vector a , or the inverse operation of 

operator vec . For ,nl mpv u R R , let = m ( ) , = m ( )l n m pV at v U at u  R R , then we 

have  

m ( ) = m ([ ( ) ( , )] )T Tat Mv at B A D C P l n v    

= m (( )v ( ) ( ) ( , )v ( ))T Tat B A ec V D C P l n ec V    

= .TAVB CV D  

m ( ) = m ([ ( , ) ( )] )T T T Tat M u at B A P l n D C u    

= m (( )v ( ) ( ( , ) ( ) ( , )) ( , )v ( ))T T Tat B A ec U P l n D C P p m P m p ec U    

 = m (( )v ( ) ( )v ( ))T T Tat B A ec U C D ec U    

 = T T TA UB DU C  

 

By combining the above equalities and the LSQR algorithm, we now propose the 

following matrix-form LSQR algorithm to evaluate the minimum-norm solution of 

Eq.(2) and consistent equation Eq.(1). 
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Algorithm 2 (LSQR-M)   
(1). Initialization. 

0 1 1 1= 0( ), = , = / ,l n

FX E U E R    

1 1 1 1 1 1 1= , = , = / ,T T T

FV A U B DU C V V V     

1 1 1 1 1 1= , = , = .H V      

(2). Iteration. For =1,2,i  

1 = ,T

i i i i iU AV B CV D U    

1 1 1 1 1= , = /i i F i i iU U U        

1 1 1 1= ,T T T

i i i i iV A U B DU C V      

1 1 1 1 1= , = / ,i i F i i iV V V        

2 2

1= ,i i i     

1 1 1= / , = / , = ,i i i i i i i i ic s s         

 1 1 1= , = , = ,i i i i i i i i ic c s         

1= ( / )i i i i iX X H   , 

1 1 1= ( / ) ,i i i i iH V H     

(3). check convergence.  

 

Algorithm II(CG) of [13] need eight matrix-matrix products per iterative step, our 

algorithm need only four matrix-matrix products. Therefore, calculated amount of our 

algorithm should be less than that of Algorithm II. Furthermore, when solving bad-

condition system, our algorithm work more reliably and more stably.  

 

3. NUMERICAL EXAMPLES 

 

In this paper, we will use some numerical examples to illustrate the efficiency of 

our algorithm. The computations are carried out at a PC computer, with software 

MATLAB 7.0. The machine precision is 52 162 2  . 

Example 1. Consider inconsistent matrix equation  

                                           

= ,TAX X D E                                                                                              (10) 

 where  
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10 7 0 6
9 14 5 0 3

13 9 8 23
8 0 14 9 1

= ,= ,0 1 24 8
9 18 6 17 0

7 10 6 0
0 28 17 14 7

19 0 9 12

1 21 11 9 12

3 11 43 4 44

= .39 17 9 37 40

17 15 17 1 18

6 26 61 4 7

A

E

 
  

      
   

         

  
 
 
 
 

 
  

 

 

The normal equation of Eq.(10) is  

      

= .T T T T T T T TA AX A X D DX A DD X A E DE                                             (11) 

 

By Algorithm II(CG) of [13], after 75 iterative steps, we have  

  

76

0.8919 2.1007 0.3799 2.3249 1.8777

1.0846 2.6603 1.2421 1.0505 0.4321
= ,

0.2809 0.1802 1.8048 1.6891 2.1657

0.2263 6.6782 3.7120 1.7252 2.5619

X

 
 
 
 
 

  

 

which satisfy  

 
11

76 76 76 76 76= = 6.94422 10T T T T T T T TR A E DE A AX A X D DX A DD X            

and  

 76 76 = 35.4543.TE AX X D    

By our algorithm, after 24  iterative steps, we can obtain the same solution 24X  as the 

above 76X , and 11

24 =1.5630 10 .R    

Figure 1 gives an intuitive comparison about 10( )klog R  s of two algorithms.  
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Figure  1. Comparison about 10( )klog R  s of two algorithms in Example 1. 

 

From Figure 1, we can see that our algorithm is more reliable and more stable than 

Algorithm II(CG) in [13]. 

 

Example 2. Let = (8), = (8), = (8,8)A Hilb D pascal E ones , where ,Hilb pascal  

and ones  are functions in Matlab. Then inconsistent equation Eq.(10) is bad-

conditioned. 

Figure 2 gives an intuitive comparison about 10( )klog R  s of two algorithms.  

 

   
Figure  2. Comparison about 10( )klog R  s of two algorithms in Example 2. 

 

Although our algorithm can obtain better results than Algorithm II(CG) in [13], its 

stability is not good. For very ill-conditioned system, our algorithm cannot also work 

very well and therefore, preconditioning techniques must be considered. 
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