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Abstract- In wind-power plants like in all engineering structures, vibrations are taken 

into consideration in design phases in order to avoid resonance. This condition occurs 

when the frequency of the exciting force coincides with one of the natural frequencies 

of system, which causes dangerously large amplitudes. In the present study, natural 

frequencies of the Rotor blades of NACA (National Advisory Committee for 

Aeronautics) 4415 and NASA/Langley LS(1) 421MOD series of wind-power plants that 

deliver energy to be consumed by a farm family with four persons are calculated. 

Therefore, after designing the rotors, their natural frequencies are determined first by 

Rayleigh’s Method and next by finite element method. Further for both rotor blades, 

resonance analysis is carried out by the found excitation of external forces. 

 

Key Words- Wind-power plant; Propeller blade; Vibration analysis; Resonance; Finite 

element method; Rayleigh’s Method. 

 

1. INTRODUCTION 

 

In engineering structures, a condition of resonance is encountered, when the 

frequency of the exciting force coincides with one of the natural frequencies of the 

system. This can result in dangerously large amplitudes, which leads the system to 

collapse. Therefore, in all systems exposed to vibrations and variable forces, the 

determination of natural frequencies is of great interest. 

Wind energy, an environment-friendly renewable energy resource that is utilized 

in recent years more intensively, is transformed into the mechanical energy in wind-

power plants through the rotor blades ([1], [2]). Nowadays, modern components of 

wind-power plants especially rotor blades and towers are constructed in elastic and 

slender characteristic that conducts these structures and components to inclination for 

vibration ([3], [4], [5]). Hence, vibrations in such engineering structures have to be 

investigated in design phases. 

In this regard, El Chazly [6] carried out static and dynamic analysis of a tapered 

and twisted blade but with constant chord length and symmetric aerofoil-shaped cross-

sections of NACA 0015 series. Maalawi and Negm [7] formulated and applied 

appropriate optimisation model for wind turbine design, which strongly was simplified 

by modelling symmetric aerofoil-shaped cross-sections as circle ones and by neglecting 

twist angle. Younsi et al. [8] investigated dynamical behaviours of a wind turbine blade, 

whose twist was neglected and its cross-sections were full, homogenous and made of 
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wood. Baumgart [9] developed a rod model for wind turbine blades for applications, in 

which a significant reduction in the number of co-ordinates was required. However, “the 

modelling includes uncertainties so that model shapes do not match well with 

experimentally found results.” Bechly and Clausen [10] chose a profile similar to a 

NACA 4412 series for designing a composite wind turbine blade using finite element 

analysis. The produced model, especially its mesh was simplified. 

Nevertheless, due to maximizing energy to be obtained from the plants, the 

blades of NACA and NASA/LS series used by worldwide known manufacturers of the 

wind power plants possess the following features: Tapered (variable chord length), 

twisted and asymmetric aerofoil-shaped cross-sections. Thus, these characteristics 

require highly developed software programs for modelling and additionally for 

vibration analyses of blades, which were used in this study from the same reason. 

Moreover in this research, any assumptions that provide simplifications regarding the 

forms of the blades were avoided as far as possible. 

In “wind farms” nowadays, wind turbine plants with high nominal powers 

operate. Hence a considerable amount of engineering expertise went into design of these 

plants. However, less attention was given to wind turbines, which produce low power in 

kilowatts. These plants usually deliver electrical energy to single use.  For this purpose 

in this study, a wind-power plant that will supply energy to be consumed by a farm 

family with four persons was projected, after two optimal wind rotors were designed. 

Then, vibration analyses of the rotor blades of NACA 4415 and LS 0417 series were 

executed, because these rotor blades are mostly subjected to vibrations out of the 

components of wind-power plants. 

Afterward, the each fundamental natural frequency of the both rotor blades was 

calculated by Rayleigh’s Method. Further, the natural frequencies and their directions 

were determined by the finite element method (FEM). Finally, the frequency of the 

exciting forces affecting the rotor blades was determined to evaluate possible resonance. 

  

2. MATERIAL 

2.1 Design of the rotor blades 

 

In the present study, it was assumed that a person in Turkey consumes annual 

electrical energy of 1400 kWh. Thus, the annual electrical energy that is exhausted by a 

farm family with four persons was calculated to be 5600 kWh. When the annual 

electrical energy needed by this family will be obtained only from the wind-power 

plant, the radius of the rotor required is found as follows: 

The power obtained from kinetic energy in air stream is determined by the Eq. 

(1) ([4]). 

                                                  32

2
wPw VRCP 


                                                          (1) 

Here: 

Cp= 0.40    Power coefficient 

ρ = 1.23  kg/m
3
  Density of the air 

R :    Radius of the rotor blade [m] 

Vw :    Wind velocity [m/s] 
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In this study, the wind velocity was taken as a constant of  Vw = 6 m/s that is the 

annual average wind velocity in wind-rich areas of Turkey ([4], [11], [12], [13]). When 

the wind-power affects in interval Δt, the wind energy is found as: 

                                                       tPE w  .                                                              (2) 

The Eqs. (1) and (2) deliver the annual electrical energy that is obtained from the 

wind-power plant within a year by neglecting site wind characteristics, capacity and 

availability factor. This energy value to be obtained matches the maximal use and/or 

loading of the wind power plants without considering any cost analyses: 

 

                                                 8760
2

32

wPyear VRCE 


 .                                             (3) 

By means of the Eq (3), 

87606
2

23.1
0.40  [Wh] 000 600 5 32R , 

the radius of the rotor blades (of the wind-power plant) is found as R=1.96 m, and it was 

chosen as R = 2 m, whereas Weibull wind distribution was neglected primarily due to 

focusing on the modal analysis of the blades to be determined. The blade number was 

determined as z = 3, because wind-power plants with z =3 deliver generally the highest 

level of electrical energy ([3], [4], [5]). 

In the design phase, the angle of attack was chosen as αD = 10º as well 

recommended in ([4]); the optimal twist angle was calculated by the Eq. (4): 

 

                                                            D

tip

twist
r

R



 














 arctan

3

2
.                                                       (4) 

 

In Eq. (4), r denotes the distance between the rotor hub and the chosen cross-

section. Consequently, the profiles of the blade cross-sections were drawn for each r. 

Finally, the parameters in the rotor design of the wind-power plant were determined as 

follows ([4]): 

i) Number of blades:            z = 3, 

ii) Radius of rotor (Blade length):         R=2 m, 

iii) Tip-speed ratio:                       λtip = 7  

iv) Profile of the blade:    NACA 4415  and  LS 0417 

 

                                                 

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
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rrtopt

7
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arctan

3

1
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3.1

16

3

1
)( 2

                                             (5) 

The Eq. (5) delivers the optimal chord length of the rotor blades for each cross-

section r ([4]). Further, in order to design the rotor blades, blade length (radius of the 

rotor) was divided into 11 cross-sections of the same length. The first cross-section 

begins at  r = 0.05 R and the eleventh completes at r = R. 

As an example, the optimal chord length of the profile at r = 0.05 
.
2 = 0.1 m was 

calculated from the Eq. (5) as follows, and this calculation was repeated for each cross-

section so that Table 1 was filled out: 
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        2966.0
1.07

10
arctan

3

1
sin1.0

3.1

16

3

1
)1.0( 2 




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







optt  [m] . 

 

But the chord length at r = 0.1 R in Table 1 was chosen as t = 0.2233 m to avoid 

constructive problems while assembling the blades at the rotor hub. 

 

2.2 Modelling of the rotor blades      

 

In the present study, the standard profiles of NACA 4415 and LS 0417 series 

were chosen for both rotor blades, and the coordinates of these profiles were given in 

Table 2. 

 

Table 1. Optimal chord lengths calculated from the standard profiles of NACA 4415 

and LS 0417 series 

NACA 

4415 

r   

[m] 0.1 0.29 0.48 0.67 0.86 1.05 1.24 1.43 1.62 1.81 2 

topt  

[m] 0.2233 0.2662 0.2124 0.1679 0.1367 0.1147 0.0985 0.0862 0.0765 0.0688 0.0624 

LS 

0417 

r   

[m] 0.1 0.29 0.48 0.67 0.86 1.05 1.24 1.43 1.62 1.81 2 

topt  

[m] 0.2233 0.2662 0.2124 0.1679 0.1367 0.1147 0.0985 0.0862 0.0765 0.0688 0.0624 

 

Table 2. Coordinate ratios of cross-section profiles of NACA 4415 and LS 0417 series 
 

NACA 

4415 

x/t 0 0.25 0.5 0.75 1 

yt/t 0 0.115 0.1 0.07 0 

yb/t 0 0.035 0.02 0.015 0 

 

LS 0417 
x/t 0 0.25 0.5 0.75 1 

yt/t 0 0.115 0.09 0.065 0 

yb/t 0 0.065 0.055 0.03 0 

 

Table 3. Coordinates of outer cross-section profiles of  NACA 4415 and LS 0417 series 

for r = 0.48 m 
 Outer x -53.1 0 53.1 106.2 159.3 

NACA topt=212.4 mm yt 0 24.426 21.24 14.868 0 

4415  yb 0 -7.434 -4.248 -3.186 0 

 Outer x -42.5 0 42.5 85.0 127.5 

LS 0417 topt=212.4 mm yt 0 19.55 15.3 11.05 0 

  yb 0 -11.05 -9.35 -5.1 0 

 

Table 4. Coordinates of inner cross-section profiles of  NACA 4415 and LS 0417 series 

for r = 0.48 m 
 Inner x -44.039 0 44.04 88.08 132 

NACA topt=176.6 mm yt 0 20.258 17.616 12.331 0 

4415 twist=12
0
 yb 0 -6.166 -3.523 -2.643 0 

 Inner x -42.5 0 42.5 85.0 127.5 

LS 0417 topt=176.6 mm yt 0 19.55 15.3 11.05 0 

 twist=12
0
 yb 0 -11.05 -9.35 -5.1 0 
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The blades were modelled by filling out the solid volumes between the eleven 

cross-sections ([13]). Therefore first, the coordinates of the cross-sections were 

calculated. As an example, only the calculations for the cross-section r = 0.48 m of the 

blades were given in Table 3 and 4 and all cross-sections of both were shown in Fig. 1a 

and Fig. 1b. 

Each modelled profile cross-section describes a closed curve that consists of 8 

points. As seen in Fig. 2a and Fig. 2b, to model the volume of the each blade, two 

guidelines that run at the beginning point of the curves were drawn. Further by means of 

these guidelines and the eleven cross-sections, the whole volume of the each blade was 

modelled as given in Fig. 3a and Fig. 3b. 

 

 
 

Figure 1a. Perspective view of the eleven cross-sections of NACA 4415;  Figure 1b. 

Perspective view of the cross-sections of LS 0417 series 

 

 
 

Figure 2a. Jointing the blade cross-sections with guidelines for NACA 4415 series;  

Figure 2b. Jointing the blade cross-sections with guidelines for LS 0417 series 
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Figure 3a. Solid model of the rotor blade accomplished by cross-sections of NACA 

4415 series  

Figure 3b. Solid model of the rotor blade accomplished by cross-sections of LS 0417 

series 

 

3. METHOD 

 

3.1 Vibration analysis by Rayleigh’s method      

 

Since the blades twisting along the blade axes (r) are slight, it was assumed that 

the change of initial moment of the blades in direction of the blade axes should be 

relatively insignificant. In addition, the wind power plants are machines with very low 

angular speeds (20-120 rpm). At very high wind speeds they must be stopped. Therefore 

the characteristics of the both blades were investigated by means of the Rayleigh’s 

method in the case of stopping period of the blades and in the case of its rotating period 

with very low angular speeds. According to Rayleigh’s Method, the natural frequency 

of the each blade was calculated with the Eq. (6), which is certainly the upper limit of it.  

                                             



 










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2

2

2

2

2

x

x

x

x

dxxq

dx
dx

qd
xEI

m

k



                                          (6) 

In the Eq. (6), E and I(x) denote the modulus of elasticity in N/m
2 

and the moment of 

inertia in m
4
, respectively. In the present study, weldable aluminium alloy AlMg5 was 

used as material for both rotor blades. Hence, the modulus of elasticity of this material 

was determined as 91071E   [N/m
2
] . 

In determining cross-deflection of the blade by means of the value of q in Eq. 

(6), the expression q= (x/R)
2
 is differentiated twice according to x, which is a variable 

for the radius of rotor or the blade length.  Subsequently, the following constant is 

obtained:  

const
R

q 









2

2

2 2
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Finally, the following term, in which ρ is the density of the alloy AlMg5 given as ρ = 

2700 kg/m
3
, denotes; 

        )()( xAx   . 

When arranging the Eq. (6), the equation of the natural frequency is obtained as 

follows:  


















1

0

1

0

4

2

)(

)(

x

x

x

x

dx
R

x
xA

dxxI
Econst


  

The integral terms in Eq. (6) were calculated by “MATLAB” program and the results of 

NACA 4415 series given below were obtained. 

 

       7

200

10

10762.1)(  xdxI  [m
5
] ;          5

4200

10

10155.9)( 







 dx

R

x
xA  [m

3
] 

By means of these found values, the first natural frequencies of both rotor blades of 

NACA 4415 and LS 0417 series were determined as follows:   

 

66.15531
10155.9

10762.1

2700

1071
5

79
2









const
NACA  [rad

2
/s

2
] 

 

63.124NACA      [rad/s] ;                836.19NACAf    [Hz] 

62.111LS         [rad/s] ;                765.17LSf       [Hz] 

 

 

 

 

3.2 Vibration analysis by finite element package ANSYS 

 

Vibration caused by the excitation of external forces is called forced vibration. 

The vibration is continued through periodical excitations. The amplitude of the 

vibration depends on system parameters and exciter characteristics. The Eq. (8) gives 

the general differential equation of a forced vibration: 

 

                                                     tFuKuDuM                                              (8) 

 

In the Eq. (8), M, D, and K denote the matrices of coefficients in FEM as follows ([14], 

[15], [16], [17]): 

 

  
m V

mmmm

m

m

m

T

dVHHMM
)(

)()()()()(  ;     M: Mass matrix of vibrating system, 

  
m V

mmmm

m

m

m

T

dVHHDD
)(

)()()()()(  ; D: Matrix of viscous damping coefficients, 
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  
m V

mmmm

m

m

m

T

dVBCBKK
)(

)()()()()( ;     K: Matrix of elastic spring coefficients, 

ρ
(m)

: Density of the mass of the m
th

  element 

κ
(m)

: Viscous damping coefficients 

H
(m)

: Matrix of extension 

B
(m)

: Matrix of deformation 

C
(m)

: Matrix of elasticity of the m
th

  element 

 

                                             F (t) = RB + RS +RC   ;       External forces  

 

  
m V

mmBm

m

m

BB
m

T

dVfHRR
)(

)()()()(
;    RB: Forces of volume 

  
m S

mmSmS

m

m

SS
m

T

dSfHRR
)(

)()()()(
;    RS: Forces of surface 

RC = F0  :  Single forces 

u: Displacement. 

Free vibration begins with any excitation that delivers energy to the system, and 

then, this excitation disappears. When neglecting the friction and damping, the vibration 

is theoretically continued to infinity through a steady transformation of the potential 

energy into the kinetic energy and vice versa due to the displacement and elastic 

deformation. Indeed while transforming the mechanical energy, free vibrations decrease 

with time and they damp down finally due to losses caused by frictions. 

Decrease of amplitudes depends on parameters of the system. The excitation 

determines the boundary conditions of the motion; hence, it affects amplitudes of the 

vibrations. Consequently, the main characteristic of this vibration is a function of 

physical properties of the system. In absence of viscous damping, the equation of free 

vibrations yields as follows: 

                                                              0 uKuM                                                  (9) 

When arranging the Eq. (9) according to harmonic motion, the Eq. (10) is 

obtained: 

                                                            02  ii uMK                                              (10) 

In Eq. (10),  w
2

i denotes eigenvalues, and i shows degree of freedom, and the terms {ui} 

mean eigenvectors. The square root of the eigenvalue delivers the natural frequencies 

wi. The eigenvectors of {ui} express the modes. “Mode extraction” in ANSYS as a sub-

program calculates eigenvalues and eigenvectors ([17]). 

The lowest potential and deformation energy causes the first mode that explains 

the natural frequency. The second and third modes need more energy; consequently, 

they possess more deformation energy. Generally, many natural frequencies have to be 

calculated in engineering structures that are exposed to harmonic forces. This obtained 

information is used in dynamic analyses. 

The modes, like in natural frequencies, depend on the weight and rigidity of 

structures and on distribution of the mass. Additionally, the aerodynamic elasticity of 

the rotor blades of wind-power plants has significant influence on vibrations and mode 

shapes of them. The mass moment of inertia can reflect the combined effect of all these 
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parameter. While increasing the inertia moment of mass, the natural frequency 

decreases due to the inverse ratio. 

The aim of the modal analysis is to determine the natural frequencies of a system 

in order to avoid resonance so that the natural frequencies do not take place in the 

frequency range of excitations of the system. In this context, the FEM that is used for 

modal analysis of complicated engineering structures is very suitable and sometimes the 

only method.  

In the commercial software ANSYS, different methods for calculating vibration 

modes are available. In the present study, the method of “Block Lanczos” was chosen 

for the following reasons, although it requires great data banks ([17]): 

 Satisfactory results in analyses of complicated models including solid elements, 

shell elements and beams are obtained. 

 It is suitable for modes, whose boundary conditions are not given. 

 It is favourable for analyses of modes that have to be calculated in a defined 

interval. 

In this study, the characteristics of the both blades also were investigated by 

means of the developed soft ware based on the FEM in the case of stopping period of 

the blades and in the case of its rotating period with very low angular speeds, as 

explained in section 3.1. In order to execute modal analysis within the ANSYS 

program, first, the blades were modelled and meshed (Fig. 4a and Fig. 4b). Then, type 

of the analysis was chosen; the properties of the material and the boundary conditions 

were applied. Subsequently, calculations were executed. The stresses that occur due to 

vibrations were determined and visualised in Fig. 5. So, necessary vibration modes and 

directions of rotations were obtained as given in Table 5. 

 

 
                         

Figure 4a. Meshed model of the rotor blade of NACA 4415 series;  Figure 4b. Meshed 

model of the rotor blade of LS 0417 series 
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Figure 5. Visualising of stress distribution of NACA 4415 series 

 

4. RESULTS OF ANALYSIS AND CONCLUSION 

 

Aerodynamic and elastic forces occurring cause aero-elastic vibrations, and these 

vibrations arise around all three axes. First, rotor blades generally vibrate across to the 

plane, in which the rotor rotates (1
st
 mode, Table 5). The rotor blades clap into the wind 

direction and vice versa (clap vibration) ([4]). Further, rotor blades vibrate in the plane, 

in which the rotor rotates (2
nd

 mode, Table 5). A typical vibration form of a rotor with 

three blades is such that two blades simultaneously in rotation direction and one blade 

in other direction vibrate (sway vibration) ([4]). These both types of vibrations in 3
rd

, 

4
th

, 5
th

 modes, and these vibrations and additionally torsional ones around all three axes 

in higher modes occur simultaneously (Table 5). 

The kinetic energy in the wind stream is transformed into the mechanical energy 

in the rotor shaft through the rotor blades. In this study, it was assumed that the 

generator, which is driven by the rotor shaft, is a synchronous generator. Hence, the 

rotational speed of the rotor shaft remains as constant at all events. As determined in 

section “design of rotor blades”, the following parameters were used in the Eq. (10): 

Vw = 6 m/s ;   R = 2 m ;  λtip = 7  for the profiles of NACA 4415 and LS 0417 series. 

By the Eq. (10), the angular velocity or rotational speed of the rotor blade was obtained 

as: 

                                                         
ww

p

tip
V

R

V

V 
                                                    (10) 

Ω = 21  rad/s   or   n = 200.6 rpm. 

The 1
st
 and 2

nd
 modes of the natural frequencies of the both rotor blades arise 

outside of the frequency range of the exiting force such as n1 NACA= 1188.4 rpm ;  n2 

NACA = 2711.9 rpm and n1 LS= 1059.0 rpm; n2 LS= 2374.7 rpm so that any danger of 

resonance does not exist for the both rotor as given in Fig. 6.  
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             Figure 6. Resonance zones of the rotor blade of NACA 4415 and LS 0417 

series 

 

Table 5. Values of modal vibrations and rotational directions of NACA 4415 and LS 

0417 series 

 

 NACA 4415 LS 0417    

Mode f  [Hz] ω  [rad/s] f  [Hz] ω  [rad/s] Type of vibration Direction 

1 19.806 124.45 17.649 110.89 Bending Around x axis 

2 45.197 283.99 39.578 248.68 Bending Around y axis 

3 80.061 503.04 69.774 438.40 Bending Around x and y axis 

4 142.93 898.06 126.55 795.14 Bending Around x and y axis 

5 221.13 1389.4 181.68 1141.53 Bending Around x and y axis 

6 299.74 1883.4 269.74 1694.83 Torsional bending 
Bending: Around x and y axis 

Torsion: Around z axis 

7 398.93 2506.6 360.42 2264.59 Torsional bending 
Bending: Around x and y axis 

Torsion: Around z axis 

8 520.33 3269.4 462.7 2907.23 Torsional bending 
Bending: Around x and y axis 

Torsion: Around z axis 

9 539.82 33918 599.18 3764.76 Torsional bending 
Bending: Around x and y axis 

Torsion: Around z axis 

10 644.53 4049.7 692.34 4350.1 Torsional bending 
Bending: Around x and y axis 

Torsion: Around z axis 

 

In this study, two rotor blades for a wind-power plant that produces electrical 

energy for a farm family with four persons were designed. The vibration analyses of the 

blades from NACA 4415 and LS 0417 series were executed first by Rayleigh’s Method 

and next by the FEM. By the both methods, the 1
st
 modes of free vibrations of the 

blades were calculated as ω1 NACA 124.5 rad/s and ω1 LS 111.0 rad/s. The higher 

modes of the natural frequencies and the rotational directions for both blades were 

0
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determined by the FEM. The frequency of the forced vibration was found to be fF = 

3.343 Hz that is very distant from possible resonance zones. Thus, it cannot be expected 

under these operating conditions that the blades and/or rotors do not get into resonance.  
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