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Abstract- In this paper, we use Chebyshev approximations in the process of He’s 
variational iteration method for finding the solution of differential-algebraic equations.
This allows us to make integration at each of the iterations possible and at the same 
time, obtain a good accuracy in a reasonable number of iterations. Numerical results 
show that using Chebyshev approximation is much more efficient than using Taylor 
approximation which is more popular.

  First, an index reduction technique is implemented for semi-explicit differential-
algebraic equations, then the obtained problem is solved by He’s variational iteration 
method. The scheme is tested for some high index differential-algebraic equations and 
the results demonstrate reliability and efficiency of the proposed method. 

Key words- Chebyshev approximation, Variational iteration method, Differential 
algebraic equations

1. INTRODUCTION

   Many physical problems are governed by a system of differential-algebraic 
equations (DAEs), and finding the solution of these equations has been the subject of 
many investigations in recent years.
        In 1999, the variational iteration method (VIM) was proposed by He [1-3]. This 
method is now widely used by many researchers to study linear and nonlinear problems. 
The method introduces a reliable and efficient process for a wide variety of scientific 
and engineering applications. It is based on Lagrange multiplier and it has the merits of 
simplicity and easy execution. Unlike the traditional numerical methods, VIM needs no 
discretization, linearization, transformation or perturbation. The method gives rapidly 
convergent successive approximations of the exact solution if such a solution exists; 
otherwise a few approximations can be used for numerical purposes. The VIM was 
successfully applied to autonomous ordinary and partial differential equations [1–14].
Recently in [15] the VIM has been implemented for finding the solution of differential-
algebraic equations. To avoid tedious integration, in the latter paper the Taylor 
approximation is used. 
In this paper, we are going to use the Chebyshev approximation instead of Taylor 
approximation. Examples show that this procedure is much more efficient. 
        It is well known that the eigenfunctions of certain singular Sturm-Liouville 

problems allow the approximation of functions ]b,a[C where truncation error 
approaches zero faster than any negative power of the number of basic functions used in 
the approximation, as that number (order of truncation  ) tends to infinity [16]. This 
phenomenon is usually referred to as '' spectral accuracy ''. In this work, we are using 
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first kind orthogonal Chebyshev polynomials  0kkT which are eigenfunctions of 

singular Sturm-Liouville problem:
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2. DAEs AND REDUCING INDEX

       It is well known that the index of DAEs is a measure of the degree of singularity of 
the system and also widely regarded as an indication of certain difficulties for numerical 
methods. So, DAEs can be difficult to solve when they have a higher index, i.e., an 
index greater than 1 [17]. In this case, an alternative treatment is the use of index 
reduction methods [17-19].

   
In this section, we briefly review the reducing index method for DAEs which is 
mentioned in [18]. Consider the linear (or linearized) semi-explicit DAEs:
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where jA , B and C are smooth functions of t , f0 ttt  , nn
j R)t(A  , m,,1j  , 

knR)t(B  , nkR)t(C  , 2n , nk1  and CB is nonsingular (DAE has 
index 1m  ) except possibly at a finite number of isolated points of t . The 

inhomogenities are nR)t(q  and R)t(r  . Now suppose that CBis non-singular, from 
(1a), we can write
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Substituting (2) into (1a) implies that 
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So, problem (1) transforms to the over-determined system:
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]t,t[t,0rCX f0
Now system (3) can be transformed to a full-rank DAE system with n equations and 
n unknowns with index m [18]. Here, for simplicity, we consider problem (1) when 

1m  (problem has index2 ).

Theorem 1: Consider problem (1) with index 2 , 2n   and 1k  . This problem is 
equivalent to the following index -1DAE system: 
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q̂XEXE 01                                                                                                           (4)
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Proof: presented in [18].

In this paper, first we implement this proposed index reduction method to linear semi-
explicit DAEs. Then we employ the VIM using Chebyshev approximation to solve the 
obtained problem. Furthermore, we use some examples to demonstrate the efficiency 
and effectiveness of the proposed method.

3. HE’S VARIATIONAL ITERATION METHOD

     In this section, we briefly review the main points of the powerful method, known 
as the He’s variational iteration method. This method is a modification of a general 
Lagrange multiplier method proposed by Inokuti [20]. In the VIM, the differential 
equation 

)t(g)]t(u[N)]t(u[L  ,   (6)
is considered, where L and N are linear and nonlinear operators, respectively, and )t(g
is an inhomogenous term . Using the method, the correction functional  

ds)]s(g)]s(u~[N))s(u(L[)t(u)t(u
t

0
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is considered, where is a general Lagrange multiplier, nu is the n -th approximate 

solution and nu~  is a restricted variation which means 0u~n  . In this method, first we 
determine the Lagrange multiplier that can be identified via variational theory, i.e., the 
multiplier should chosen such that the correction functional is stationary, i.e., 

0)t),t(u(u~ n1n   . Then the successive approximation nu , 0n  of the solution 

u will be obtained by using any selective initial function 0u and the calculated 

Lagrange multiplier  . Consequently, n
n

ulimu


 . It means that, by the correction 

functional (7) several approximations will be obtained and therefore, the exact solution
emerges as the limit of the resulting successive approximations.
        To perform the VIM, in general, for an arbitrary natural number  , )t(g  express in 
Taylor series,
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In this paper, we suggest that )t(g  be expressed in Chebyshev series,



M. Ghovatmand, M.M. Hosseini and M. Nilli972
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where )t(Ti  is the first kind of orthogonal Chebyshev polynomial,

,1)t(T0 
,t)t(T1 

,1t2)t(T 2
2 

and in general,
,TtT2T 1kk1k                     1k  .

 In the next section, this method is successfully applied for solving differential-algebraic 
equations.

4. TEST PROBLEMS

   In this section, to show the ability and efficiency of the proposed method, some 
examples are presented. In all the examples, to simplify the computations, for an 
arbitrary natural number  , every coefficient function )t(g is expressed in Chebyshev 
series (9). The results are compared with the case in which Taylor expansion is used 
with the same number of terms. The algorithms are performed by Maple 12 with 20 
digits precision.

Example 1: Consider index-2 problem:
,qByAXX                          (10a)
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From Theorem 1, problem (10) can be converted to the index-1 DAE:
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with ,1)0(x1  and 0)0(x 2  . To solve the new problem, we transform the algebraic 

equation (11a) in the iterative form with respect to 2x and by the He’s variational 

iteration method and using (7), we construct the correction functional in 1x -direction 
for the differential equation (11b). Therefore, we obtain the following
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where )n(
2x~ is considered as a restricted variation ,i.e., 0x~ )n(

2  . By taking the 
variation from both sides of the correction functional (12b), we have 
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By substituting the optimal value (14) into functional (12b), we obtain the following
iteration formula:
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Now, we expand the coefficient functions te and )sin(t at 0t  and tse  at st  by 
Taylor series expansion with 10v  as follow:

,ttttttttt1e 9
362880

18
40320

17
5040

16
720
15

120
14

24
13

6
12

2
1t     (16a)

,ttttt)tsin( 9
362880

17
5040

15
120

13
6
1                                       (16b)

     
.)st()st()st()st(

)st()st()st()st(st1e

9
362880

18
40320

17
5040

19
720
1

5
120

14
24
13

6
12

2
1ts





(16c)

So after 16 iterations, (15) and (16) yield:
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In the alternative method, we expanded the coefficient functions te , )sin(t and tse  by 
Chebyshev series with the same number of terms. Using (15) and (16), after 16
iterations, we obtain
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For the sake of comparison, we have illustrated the absolute errors for )16(
1x and 

)16(
2x using both Taylor and Chebyshev cases in figures 1 and 2. These figures, 

obviously, show the superiority of using Chebyshev approximation instead of Taylor 
approximation in this example. It should be noted that in order to increase the rate of 

convergence, we have used )1n(
2x  instead of )n(

2x in (15b) for computing )1n(
1x  .

Fig. 1. Absolute errors of using Taylor polynomials for computation of __x )1n(
1



and ...x )1n(
2

  in Ex. 1.  
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       Fig. 2. Absolute errors of using Chebyshev polynomials for computation of 

__x )1n(
1

  and ....x )1n(
2

  in Ex. 1.

Example 2: Consider index-2 problem:
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Similar to example 1, we transform the algebraic equation (18a) in the iterative form 
with respect to 1x  and construct the suitable correction functional in 2x -direction by 
using (7) for the differential equation (18a). Therefore, system (18) is expressed as
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By substituting this value into correction functional (19b), the following iteration 
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In the alternative method, we expanded the coefficient functions te , )tsin( and tse 

by Chebyshev series with the same number of terms. Using (17) and (18), after 18
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For the sake of comparison, we have illustrated the absolute errors for 
)18(

1x and )18(
2x using both Taylor and Chebyshev cases in table 1. This Table, 

obviously, shows the superiority of using Chebyshev approximation instead of Taylor 

approximation in this example. In this example, we have used )1n(
1x  instead of )n(

1x in 

(22b) to compute )1n(
2x  .    

Table 1

The comparison between the results mentioned in Figures 1 and 2 and Table 1  show the 
power of the proposed method of this paper, for these examples.

5. CONCLUSION

        The variational iteration method (VIM) has been successful for solving many 
application problems. However, difficulties may arise in dealing with determining the 
components mu , (7).  To overcome these difficulties the modified VIM is proposed 
using Chebyshev polynomials and is applied for solving differential algebraic equations
in this paper. The results are compared with the VIM using Taylor series. Numerical 
results show that using Chebyshev approximation is much more efficient than using 
Taylor approximation which is more popular. The proposed method can be easily 
generalized for more functional equations.
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