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Abstract - In this paper we study a numerical method for n-th order fuzzy differential
equations based on Seikkala derivative with initial value conditions. The Runge-Kutta
method is used for the numerical solution of this problem and the convergence and
stability of the method is proved. By this method, we can obtain strong fuzzy solution.
This method is illustrated by solving some examples.

Keywords - Fuzzy numbers, n-th order fuzzy differential equations, Runge-Kutta
method, Lipschitz condition.

1.INTRODUCTION

The topic of fuzzy differential equations (FDEs) have been rapidly growing in recent
years. The concept of the fuzzy derivative was first introduced by Chang and Zadeh [1],
it was followed up by Dubois and Prade [2] by using the extension principle in their
approach. Other methods have been discussed by Puri and Ralescu [3] and Goetschel
and Voxman [4]. Kandel and Byatt [5] applied the concept of fuzzy differential equation
(FDE) to the analysis of fuzzy dynamical problems. The FDE and the initial value
problem (Cauchy problem) were rigorously treated by Kaleva [6,7], Seikkala [8], He
and Yi [9], Kloeden [10] and by other researchers (see [11,15]). The numerical methods
for solving fuzzy differential equations are introduced in [16-18].

Buckley and Feuring [20] introduced two analytical methods for solving n-th-order
linear differential equations with fuzzy initial value conditions. Their first method of
solution was to fuzzify the crisp solution and then check to see if it satisfies the
differential equation with fuzzy initial conditions; and the second method was the
reverse of the first method, they first solved the fuzzy initial value problem and the
checked to see if it defined a fuzzy function.

In this paper, a numerical method to solve n-th-order linear differential equations with
fuzzy initial conditions is presented. The structure of the paper is organized as follows:
In Section 2, we give some basic results on fuzzy numbers and define a fuzzy derivative
and a fuzzy integral. Then the fuzzy initial values is treated in Section 3 using the
extension principle of Zadeh and the concept of fuzzy derivative. It is shown that the
fuzzy initial value problem has a unique fuzzy solution when f satisfies Lipschitz
condition which guarantees a unique solution to the deterministic initial value problem.
In Section 4, the Runge-Kutta method of order 4 for solving n-th order fuzzy differential
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equations is introduced. In Section 5 convergence and stability are illustrated. In Section
6 the proposed method is illustrated by solving several examples, and the conclusion is
drawn in Section 7.

2. PRELIMINARIES

An arbitrary fuzzy number is represented by an ordered pair of functions
(u(r),u(r)) forall r €[01], which satisfy the following requirements [2]:

u(r) is a bounded left continuous non-decreasing function over [0,1] ,
u(r) is a bounded left continuous non-increasing function over [0,1] ,
u(r) <u(r),0<r<1.

Let E be the set of all upper semi-continuous normal convex fuzzy numbers with
bounded « -level intervals.
2.1. Lemma [23]

Let [v(a),v(a)] , & € (0] be a given family of non-empty intervals. If
(i) [V(a). V(@)= [v(B).v(p)] for O<a<p,
and
(if) [Ligpoy(ak).LijpoV(ak )]=[v(@). V()]
whenever («,) is a non-decreasing sequence converging to « € (0,1], then the family
[v(a),v(a)] , & € (0], represent the « -level sets of a fuzzy number v in E. Conversely

if [v(a),v(a)],a € (0]1], are « -level sets of a fuzzy number v e E , then the conditions
(i) and (ii) hold true.
2.2. Definition [8]

Let | be a real interval. A mapping v:1 — E is called a fuzzy process and we
denoted the « -level set by [v(t)], =[v(t,@),v(t,a)] .
The Seikkala derivative v'(t) of v is defined by

V], =lv (o). (ta)l,
provided that is a equation defines a fuzzy number Vv'(t) €E .

2.3. Definition [20]
suppose u and v are fuzzy sets in E. Then their Hausdorff
D:ExE — R, U{0},

D(u,v) = sup max{]u(@) -y(a) Llu(er) -v(e) [},
i.e. D(u,v) is maximal distance between « level sets of u and v.
3. FUZZY INITIAL VALUE PROBLEM

Now we consider the initial value problem
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{x‘”) t) =w(tx X,....x" D), (3.1)

X(0)=2,,..xX"2(0)=a, ,

where y is a continuous mapping from R, xR" into Rand a, (0<i<n)are fuzzy

numbers in E. The mentioned n-th order fuzzy differential equation by changing
variables

Y0 = x(0), ¥,®) = X©),.... ¥, (O =x"7 (1),
converts to the following fuzzy system

y1' = fl(t!yl""’yn) )

, ' (3.2)
yn = fn (t! yl""’yn) '

¥ =y"=a,..y,(0=y," =a,,
where f, (L<i<n) are continuous mapping from R, x R"into R and y,'” are fuzzy
numbers in E with « -level intervals

v, =1y."(@).y, ()] for i=1,..n and 0<a <1.

We call y=(y,,...,y,)"is a fuzzy solution of (3.2) on an interval I, if
yi(t,a)=min{f;(t,u;,...u,); u; e[ﬁ(t,a),y_j(t,a)]}:i(t,y(t,a)), (3.3)

Yi(t, @) = max{f, (t,u,,...u,); u; €[y, (ta),y; (tLa)l}= T (t y(t.a), (3.4)
and N
i0.0)=y," @, ¥,0.2)=Y," (@).
Thus for fixed « we have a system of initial value problem in R*". If we can solve it
(uniquely), we have only to verify that the intervals, [y;(t, ) ,y_j(t,a)] define a fuzzy

number y; (t) € E. Now let y*/() = (y," (@).... y " (@))" and

Y (@) = (v, (@),... v, (@))", with respect to the above mentioned indicators,
system (3.2) can be writhen as with assumption

{y’(t) =F(t, »(1)), (3.5)

y(0) =y e E".

With assumption y(t, ) =[y(t,a), p(t,@)]and y'(t, ) =[y'(t,a), y'(t, @)]

where - -
yta) =t a),..yta), (3.6)
yt.a) =yt a)...y(ta), (3.7)
y'(ta) =y ta)..yta), (3.8)

y(ta) = ta)..yta), (3.9)
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and with assumption F(t, y(t,))=[ F(t, y(t,x)) ,f(t,y(t,a))] ,where
F(t,y(t,a)) = (f.(t, p(t,@)),..., T, (t, p(t, @))" (3.10)
F(t,y(t.a) = (f,t yt.))... f,t,yt.a), (3.12)
y (t) is a fuzzy solution of (3.5) on an interval | forall « € (0,1], if
Y(ta)=E(t y(t a));
yta)=Fyta) (3.12)
y0,0) = y"(@) , y0.a) =" (@)
or

{ y'(ta)=F(t yta)), (3.13)

¥(0,2) = y"(a).
Now we show that under the assumptions for functions f,, for i=1,...,n how we can
obtain a unique fuzzy solution for system (3.2).

3.1. Theorem
If f (t,u,,...,u,) fori=1,...,n are continuous function of t and satisfies the

Lipschitz condition in « = (uj,...,u,)" in the region
D={(t,u)|tel =[01], —o <u, <o fori=1,...,n} with constant L, then the initial
value problem (3.2) has a unique fuzzy solution in each case.
Proof. Denote G = (F,F)' =(f,,..., f., f,,..., f.)' where
f.(t,u)=min{f,(t,u,,...,u,); u; ely, y_J] for j=1,...,n}, (3.14)
f(t,u)=max{f,(t,u,,..,u,); u; ly,, y,], for j=1..n}, (3.15)

and p=(,9)" = (Y1 Yo Y1 ¥o)' € R®". It can be shown that Lipschitz condition
of functions f, imply
IFtt.2)-Ftz)I<Lllz-2"|.
This guarantees the existence and uniqueness solution of
y'(t) = F(t, y(1), L
y(0) = y[O] _ (X[O]’y[ ])Zt c R
Also for any continuous function y™:R, — R®" the successive approximations
Py = plol j; F(s,y™(s))ds, t>0, m=12,. (3.17)
converge uniformly on closed subintervals of R, to the solution of (3.16). In other
word we have the following successive approximations
y, "=y, + j; f,(s,y™(s)ds, fori=L...n, (3.18)

—[m+1]

—p  (tz .
y, )=y, +Lfi(s,y[m](s))ds, fori=1,..,n. (3.19)

(3.16)
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By choosing y* = (y™ (@),y (a)) in (3.16) we get a unique solution
y )= a),y(t,@)) to (3.3) and (3.4) for each « < (0].
Next we will show that y(t,«a) = ([_y(t,a),}(t,a)],defines a fuzzy number in E"for
each 0<t<T,i.e.that y=(y,,..,Y,)" isafuzzy solution to (3.14) and (3.15). Thus we
will show that the intervals [y, (t, a),V,.(t, a)],
for i=1,...,n satisfy the conc?tions of Lemma (2.1). The successive approximations
pll = o c g

P ) = plol ¢ j; F(s,y™(s))ds, t>0, m=12,. (3.20)
where the integrals are the fuzzy integrals, define a sequence of fuzzy numbers
Y ) = (v, ™ (0),..., y, ™ (t))" for each 0<t<T . Hence

[y, cly™®],, ifo<a<p<l,
which implies that

™Ay CAlcly ™ ta)y,  ta)], (0<a<ps),
since, by the convergence of sequences (3.16) and (3.19) , the end points of [yi[m] (1)1,
converge to y; (t, ) and y;(t,) that means

vt a) - yita) and Y, " (ta) > V(). (3.21)

Thus the inclusion property (i) of Lemma (2.1) holds for the intervals
M(t, a),y_,.(t, a)], for 0 < a <1 For the proof of the property (ii) of Lemma (2.1), let

(«,) be anon-decreasing sequence in (0,1] converging to « . Then

¥(@,) = y™@) and ¥ (@,) > ¥ (), because of y¥ < E". But by the
continuous dependence on the initial value of the solution (3.16), y(t,a,) —> y(t,a)
and y(a,) > y(a),this means (ii) holds for the intervals ([y(t, ), y(t, )], for

0<a <1.Hence by Lemma (2.1), y(t) € E"and so y is a fuzzy solution of (3.1). The
uniqueness follows from the uniqueness of the solution of (3.16).

4. THE RUNGE- KUTTA METHOD OF ORDER 4

With before assumptions, the initial values problem (3.2) has a unique solution, such
asy=(Y,....Y,) €E". for found an approximate solution for (3.2) with the Runge-
Kutta method of order 4, we first define

ki (t, p(t, a))=min{f, (t,s,,....s,); s; € [ﬁ(t,a),y_j(t,a)]}, (1<i,j<n)
K (t y(t.))=max{f,(t.,.....5,); s, €ly; (ta).y; L)},



940 S. Abbasbandy, T. Allahviranloo and P. Darabi

ki (t, y(t, @)= min{fi(t+g,81,---,8n): s; e[zt y(t,a),h), 2, (t p(t.2) W)},

K63t )= Min{f(E425,08,)1 5, €[2, (0000, 0) 2, 6y )T

ki (t, y(t,@))=min{f (t+h,s,,....5,); s e[@(t,y(t,a),h),Z—,-s(t,y(t,a),h)]},
ki (t, y(t, )= min{f (t+h,s,,...s,); 5; €[2;5(t, p(t.@),h), 2,5 (t, p(t,2), W]},
such that o

2, (6 ¥t F)= Y, (6.@) K, 4 (),
2063t = Y, 6@+ K, 4 (),
2, €@ 0)= ¥, () + DK () D)

2,y €)=Y, (@) + Ky ) ),
2,5t 3t ). h)= y, (t.@) + bk, (¢, (6 ). ),

2j5(t y(t @), )=y, (L) +hk st y(ta) h),

now we consider the following relations

F(t p(t @), h) = ki (4 y(t, @) + 2K,y (6 p(t @), h) + 2Ky (6 p(t @), h) + K (8, p(E, @), h),
Gi(t, y(t, @), h) =Ky (t, p(t, @) + 2K, (t, p(t, @), h) + 2K, (t, p(t, @), h) + ki, (¢, (t, @), D),
and suppose that the discrete equally spaced grid points {t, =0,t,,...t, =T} is a
partition for interval [0,T]. If the exact and approximate solution in the i-th « cut at
t ,0<m<N are denoted by [y,"™(a).y; (a)]and [w,™(a).w " («)] respectively,

then the numerical method for solution approximation in the i-th coordinate « cut, with
the Runge-Kutta method is

W) = w M (a) + LR G @), W) =y ),

w @) =w " (@) +%Gi tyw"(@).h), W @=y, (@),

where [w, ()], =[w,(t.a),w t.@)], w" (@) =[w™ (@), " (@)]

W™ (@)= (" (@) .. w, (@) and W (@) = (W (@)W, (@)

F(t,w™ (a),h) = % (F,t,w™ (), h),...,F., (t, w™ (),h))", (4.22)
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G (t,w™ (a),h) = %(G1 &, W™ (@), h),... G (t, w™ (), h))". (4.23)

The Runge-Kutta method for solutions approximation « -cut of differential equation
(3.13) is as follow

wim (@) = wiml () +hH(t, wm™ (),h), wid (@) = y[0] (@) (4.24)
where

H (b, w™ (@),1) = [F (b w™ (0),1), G (8™ (), )],
and

F'(t,, w" (a),h) = %[ﬁ (ts '™ () + 2k (8, '™ (), 1) + 2K, (8, w(@), D) + K, (t,, wit, @), h) ] (4:25)

G (t,,w" (a),h) =%[k7(tm,wf"'f () + 2k (8, w™ (), ) + 2k, (), w(@2), ) + K, (,,, w(t, ), 1] (4.26)

and also
k;@w™ (), h) = (k; (t,w"™ (@), h).... K, (t.w™ (). )",
K, W™ (), h) = k;; &, W™ (), h),.... K, (t, w™ (), h))". (i=1,2,3,4)

5. CONVERGENCE AND STABILITY

5.1. Definition [24]
A one-step method for approximating the solution of a differential equation

y'(t) = Fty(1),
{y(O) =y eR",
which F is a n-th ordered as follow f =(f,,.., f,)'and f,:R, xR" > R(@<i<n),
Is @ method which can be written in the form
wi™ =l hy(t, wl™ h), (5.28)
where the increment function w is determined by F and is a function of t_, wi"l and h
only.

(5.27)

5.2. Theorem
If w(t, y,h) satisfies a Lipschitz condition in y, then the method given by (5.28) is
stable.

5.3 . Theorem
In relation (3.5), if F(t,y)satisfies a Lipschitz condition in y, then the method
given by (4.24) is stable.

5.4. Theorem
If

w™ (@) = wl" (@) + hy(t,, W™ (@), h), W (@) = Y™ (@) (5.29)
where
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w(t ,w™(a),h)=[w,(t, ,w™(x),h),w,(t, ,w™(x),h)] is a numerical method for
approximation of differential equation (3.13), and w,and w,are continuous in t, y, h
for 0<t<T,0<h<h,andall y,and if they satisfy a Lipschitz condition in the region
D={(t,u,v,h)|]0<t<T, —o<u, v, —o<V, <+0, 0<h<h) i=1..,n}
necessary and sufficient conditions for convergence above mentioned method is

w(t y(ta) h) =F(t y(t a)). (5.30)
Proof: Suppose that y(t, y(t,«),0) = F(t, y(t,a)), since, F(t, y(t,«)) satisfying the
conditions of theory (3.1), then the following equation

"(t) = F(t, y(1)),
{y (0= F. ) .31
y(0) =y (a),
has a unique solution such as
y(t, @) = ([y(t, @), p(t, )], where y(t,a) = (y(t,@)...., y(t,a)) and y(t, @) =
(y(t,),..., y(t,&))' . We will show that the numerical solutions given by (5.29)
convergent to the y(t). By the mean value theorem,
Y=y M, 00y, +0,h),  for0<6, <1, (5.32)
vV T (1 Gih p(t, +8ih),  for0< 8 <1, (5.33)
with assumption (= (y,,...w,)' and v = (... ,,)". From equation
(5.29) obtain the following relations
w " (@) = w " (@) + hy, (¢, w™ (), h), (5.34)
w " @) =w, " (@) +hy, (&, w™ (@), h), (5.35)

and subtracting (5.32) , (5.33) from (5.34) , (5.35) respectively, and setting
" (@) = (" (@) " (@),
where B
" (@) = elt, @) = W™ (@)~ y" (@) and € (@) =e(t, @) =w (@) -y (@),
we get N
e (@) =" (@) + My, (t,, W™ (@), h) — i (t,, " (@), h) + v, (t,,, »™ (@), h)
—, (tn, Y™ (@),0) +y; (t,, ™ (@),0) - fi(t, + 0,0, y(t, +6;h))}
on the other way, with respect to the relation of v (t,,, '™ (),0) - f,(t,, y™ (@))

we can write
it ¥™ (@).0) - fi(t, + 60, y(t, +6h) |

SNLG, + LY I (G + 0,1 - % (6) [ +L, Y1y, G + 80~ ¥, (8,

=hL,6,+ L, Y lyi(t, +&0,MO.h [+L D |yi(t, +£6,hoh|=hL,,
- i=1 - i=1
then



Numerical Solution of N-Order Fuzzy Differential Equations 943

m+ m 3 m —[m]
le," (@) |<|e™ (@) [+hL D e, (@) [+le; (@) [}+h*L, +hL,
2|18

<|&,™ ()| +nhL, max{| e, ™ (@) | +nhL, max fe; " (@) | +h (L, + L,).
— <jsn = <J<n
On the other hand

m m —I[m] , —[m]
max{le; " (@) [} =k & ()] max{le; (o) [ =k/| & ()

1<J<

with assumption k; = max{k,, k'}and M =L, +L,, we can write

e ™ (@) <16, (@) | +nhk, Ll e, ™ (@) [ +Ie, " (@) [}+ M, h? 66
<16, () | +2nhk,L, max{l e, ™ (@) |, 6, " (@) [}+ M,h?, |

similarly, we can obtain the following relation
e () |<le " (@) |+2nhk, L max{le, (@) | Je; () [}+M b7, (5.37)

Now, we input L =max{L;,L’}and M = max{M,, M,} so the relations (5.36) and
(5.37) can be written as follow

16" @)] <|e,™(@)]+2nhkLmax{le," (@) le;" (o) [}+Mh?,
e, ( )<le (a)|+2nhkLmax{|e_i[m](a)|,|ei ™ (@) [}+ Mh?.

Denote ¢™ e [m](a)|+|e "(@)]. Then By virtue of lemma (5.7)
e ™ () < (1+4nhkL)"e” (&) + 2Mh? (L+4nhkL)" ~1
4nhkL
where e =" (a )| +le," (a)].Then
4mnklh —[m] e4mnk|h
le,"(a) |<e™" x e + M 5 hkLh and |e, (a)le'™ xe!” +M ol h.
il n n
In particular
N (0] 4Nnklh —IN] (0] e4NnkIh
e, (o) < e*™™ x e, + M h and |e (a)ke™™" xe™ +M h.
— 2nhkL 2nhkL
Since & () =¢," () =0, and h =% we obtain
IN] e4Nnk|h IN] e4Nnk|h IN] e4Nnk|h
e (a)|gM h and| e a)lkKM h.Then || e () ||< 2M h,
lle, ()l T e, ()|l T e () |l L

if h—0 we get || e (a) ||~ 0, so the numerical solution (5.29) converge to the
solutions (5.31). Conversely, suppose that the numerical method (5.29) convergent to
the solution of the system (5.31). With absurd hypothesis we suppose that (5.30) is not
correct. Then w(t, y(t,«),0) =g(t, y(t,)) # F(t, y(t,«)). Similarly, we can proof that
the numerical method of (5.29) is convergent to the solution of following system
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{u (=9t y(1), 5,38
u(0) = y*(a),
then y(t,a) = u(t). Since g(t, y(t,)) = F(t, y(t,)), suppose that F and g differ at
some point (t,, y(t,,«)). If we consider the initial values problem (5.31) and (5.38)
starting from (t,, y(t,,«)) we have

Yt a)=F(t,, y(t, )= g(t,, y(t., a)) = g(t,, u(t,)) = u'(t,).
which is a contradiction.

5.5. Corollary
The Runge-Kutta proposed method by (4.24) and is convergent to the solution of the
system (3.13) respectively.

6. EXAMPLE

6.1. Example. Consider the following fuzzy differential equation with fuzzy initial
value

y"(t)=2y"(t)+3y'(t)  (0<t<Il),

y0O)=B+ab-a)

y'0)=(-3+a,-1-a)

y"'(0) =8+ a,10—a)
the eigenvalue-eigenvector solution is as follows:

1 7 54 11 1 7 4 19 "
y(t,r) = (—§+Ee +(Z+ re’,——+-—e +(7—r)e ).

The Runge-Kutta solution is as follows and Figures 1 and Table 1 show the obtained
results:

3 4 h2 h3 7h4
[m+1] [m] [m] [m]

W, =w,  +(h+—+—)w, " +(—+—+ W,
— W 6 4)—2 (2 3 24 YW
w, o w ™ (h +E+E)w_[m+1] + (E-Fh—a + 7 )w_[m]
' ' 6 4°° 2 3 2477

3 4 2 4
&[M:&[mu(mhu—?g +—52 )%[m]+(_32 +h3+72 w, ™,

—[m+ —[m 3 4 —1m 2 —[m

7h? 10h®* 61h* [m]
+ + w,
2 3 24 —

2 3 4
2h+7h +1Oh +61h )Ws[ ].
3 24

3 4
%[m”] = %[m] +(3h +3h? +%+%)%[m] +(2h+

—[m+ —[m 3 4 —1m
3[ N =W3[ ]+(3h+3h2+%+%)ws[ T
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0.2r
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0 1 1 1 1 1 1 1 J
25 3 35 4 45 5 5.5 6 6.5
. . . : 1 1.
Fig. 3: Comparing obtained solution forh :Z' h= > in t=0.5,
1 . 1
h ==(solid), h = =(dashed)
4 2
Table 1.
t [1000] [500] [500] [250] 74\ [250] [125]
D(w, (), wy (1)) D(wy (1), wy (1), D(wy ™ (), wy (1)

0.2  4.2994e-007 1.7281e-006 6.9784e-006
04  6.6132e-007 2.6164e-006 1.0237e-005
0.6  2.3060e-006 9.1653e-006 3.6200e-005
0.8  5.6995e-006 2.2687e-005 8.9883e-005
1 1.2208e-005 4.8627¢-005 1.9292e-004

7. CONCLUTION

In this paper an numerical method for solving n-th order fuzzy linear differential
equations with fuzzy initial conditions is presented. In this method a n-th order fuzzy
linear differential equation is converted to a fuzzy system which will be solved with

the Runge-Kutta method of order 4.
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