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Abstract- Linearizability criteria for systems of two cubically semi-linear second

order ordinary differential equations (ODEs) were obtained by geometric means us-

ing real symmetry analysis (RSA). Separately, complex symmetry analysis (CSA)

was developed to provide means to discuss systems of two ODEs. It was shown

that CSA provides a class of linearizable systems of two cubically semi-linear ODEs.

Linearizability criteria for this class were also developed. It is proved that the two

classes of linearizable systems of two ODEs, provided by CSA and RSA, are inequiv-

alent under point transformations.
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1. INTRODUCTION

Nonlinear ODEs are notoriously difficult to solve. Using perturbation methods one

can approximate the nonlinear ODE by a linear ODE. However these techniques

may miss key features of the nonlinearity, which could be important for the phe-

nomenon under discussion. Though these approximations could be improved by an

iterative series, its convergence would then need to be proved. Numerical schemes

also suffer from the same problems. All the first and linear second order ODEs

are equivalent under the change of dependent and independent variables [15]. Lie

derived a canonical method for obtaining the exact solution of an ODE, or system

of ODEs, provided these are invariant under certain transformations [14].

For second order ODEs to be linearizable they must be at most cubic in the first

derivative and the coefficients of the terms must satisfy a system of four equations

involving two auxiliary functions. Tressé [23] eliminated the auxiliary functions to

reduce to two constraint equations involving higher derivatives of the coefficients

with respect to the independent and dependent variables. Lie did not extend to

systems or higher order ODEs. His work has since been extended to third and

provided. A different approach [20] was also adopted for the linearization of third

fourth order ODEs [6, 7, 8, 9, 12, 13, 21], where explicit linearizability criteria were
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order ODEs. Linearizability conditions for systems of a class of second order quadrat-

ically semi-linear ODEs were derived in terms of the coefficients of the equations [16].

They provided procedures for constructing the linearizing transformations. This was

then extended to obtain linearizability conditions along with the linearizing trans-

formations for a class of systems of cubically semi-linear ODEs [17]. Separately

a classification of linearizable systems of quadratically semi-linear ODEs, [18] had

been provided.

In the above mentioned paper [17] the linearizability of systems of two semi-linear

ODEs of two dependent variables, were worked through explicitly. A linearizable

class of systems of semi-linear ODEs appeared in CSA [1, 2], where linearizability

criteria for such systems were derived. The question arises whether the two classes

are distinct, have some overlap or are identical under point transformations. In this

paper we address this issue, and find that they are distinct.

The plan of the paper is as follows. The second section is on preliminaries,

where real and complex symmetry approaches are reviewed. Necessary and sufficient

conditions for the linearization of the two classes of linearizable systems are stated.

In the third section it is proved that there does not exist any point transformation

that maps one system to the other. The fourth section contains a summary and

discussion on all the classes of linearizable systems obtained by CSA and RSA.

2. PRELIMINARIES

2.1. Geometric linearization

The geometric linearization procedure is based on regarding the system of second

order ODEs as a (projective) system of geodesic equations. The system of geodesic

equations is

x
′′i + Γi

jkx
′jx

′k = 0, i, j, k = 1, ....., n, (2.1)

where the prime refers to total differentiation with respect to the parameter s and Γi
jk

are the Christoffel symbols, which depend on xi and are given in terms of the metric

tensor. These are symmetric in the lower indices and the number of coefficients is

n2(n + 1)/2. A necessary and sufficient condition for a system of n second order

quadratically semi-linear ODEs for n dependent variables of the form (2.1) to be

linearizable via point transformation and admit sl(n + 2,R) symmetry algebra is

that the Riemann tensor vanishes [17]. Following Aminova and Aminov [5], the

system (2.1) can be projected down by one dimension as

xa′′ + Abcx
a′xb′xc′ +Ba

bcx
b′xc′ + Ca

b x
b′ +Da = 0, (2.2)
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where a = 1, ......, n − 1, and the prime denotes differentiation with respect to the

parameter xn. The coefficients in terms of the Γa
bc’s are

Abc = −Γ1
bc, Ba

bc = Γa
bc − 2δa(cΓ

1
b)1, Ca

b = 2Γa
1b − δabΓ

1
11, Da = Γa

11. (2.3)

For a concrete comparison of the systems obtained by the two different approaches

in the present section, consider the simplest non-trivial case, namely systems of two

second order ODEs. This can be done with the help of (2.2) which reads as

f
′′
+ α1f

′3 + 2α2f
′2g

′
+ α3f

′
g

′2 + β1f
′2 + 2β2f

′
g

′
+ β3g

′2

+γ1f
′
+ γ2g

′
+ δ1 = 0,

g
′′
+ α1f

′2g
′
+ 2α2f

′
g

′2 + α3g
′3 + β4f

′2 + 2β5f
′
g

′
+ β6g

′2

+γ3f
′ − γ4g

′ − δ2, (2.4)

where prime denotes differentiation with respect to the independent variable x and

the coefficients are in general functions of x, f, g. The above system is linearizable

if the coefficient functions satisfy the fifteen conditions given in [17]. These fifteen

conditions were derived using the flat space requirement for the corresponding sys-

tem of three geodesic equations of type (2.2), imposed by means of the vanishing of

the Riemann tensor

(Γi
j2)x − (Γi

j1)f + Γi
m1Γ

m
j2 − Γi

m2Γ
m
j1 = 0,

(Γi
j3)x − (Γi

j1)g + Γi
m1Γ

m
j3 − Γi

m3Γ
m
j1 = 0,

(Γi
j3)f − (Γi

j2)g + Γi
m2Γ

m
j3 − Γi

m3Γ
m
j2 = 0. (2.5)

These equations reduce to the fifteen linearizability conditions for semi-linear sys-

tems of two ODEs.

2.2. Complex linearization

Consider a second order ODE in general form

u
′′
= w(x, u, u

′
), (2.6)

where u(x) is a complex function of a single real variable x and prime denotes

differentiation with respect to x. We can break the complex function into real and

imaginary parts

u(x) = f(x) + ig(x), (2.7)

to obtain a system of two second order ODEs for the two parts

f
′′
= w1(x, f, g, f

′
, g

′
), g

′′
= w2(x, f, g, f

′
, g

′
). (2.8)

Inequivalence of Classes of Linearizable Systems of ODEs 925



The nonlinearity of (2.6) leads to a nontrivial system of coupled equations (2.8).

The invariance of ODEs of the form (2.6) can be used to study the invariance of

the systems of the same order (2.8). Notice that not every system of two ODEs can

be obtained from a scalar ODE by treating the dependent variable as a complex

function of a real (independent) variable. In [2], the linearizing transformations

of ODEs of the form (2.6) were used to linearize systems of two ODEs of the form

(2.8). If w is a nonlinear function, i.e if it is cubically semi-linear it will give two real

functions, w1 and w2, which are also cubically semi-linear. Thus, we can generate

some general systems of two second order semi-linear ODEs that can be candidates

for linearization. A class of systems of two semi-linear ODEs

f
′′
= A1f

′3 − 3A2f
′2g

′ − 3A1f
′
g

′2 + A2g
′3 +B1f

′2 − 2B2f
′
g

′ −B1g
′2

+C1f
′ − C2g

′
+D1,

g
′′
= A2f

′3 + 3A1f
′2g

′ − 3A2f
′
g

′2 − A1g
′3 +B2f

′2 + 2B1f
′
g

′ −B2g
′2

+C2f
′
+ C1g

′
+D2, (2.9)

was obtained from a second order ODE of the form

u
′′
(x) = A(x, u)u

′3 +B(x, u)u
′2 + C(x, u)u

′
+D(x, u), (2.10)

where A,B,C,D are complex valued functions of x and u, so the coefficients in (2.9)

Aj, Bj, Cj, and Dj are functions of x, f, g. The system (2.9) is linearizable if and

only if the coefficient functions satisfy the conditions

12A1,xx + 12C1A1,x − 12C2A2,x − 6D1A1,f − 6D1A2,g + 6D2A2,f−
6D2A1,g + 12A1C1,x − 12A2C2,x + C1,ff − C1,gg + 2C2,fg−
12A1D1,f − 12A1D2,g + 12A2D2,f − 12A2D1,g + 2B1C1,f + 2B1C2,g−
2B2C2,f + 2B2C1,g − 8B1B1,x + 8B2B2,x − 4B1,xf − 4B2,xg = 0,

12A2,xx + 12C2A1,x + 12C1A2,x − 6D2A1,f − 6D2A2,g − 6D1A2,f+

6D1A1,g + 12A2C1,x + 12A1C2,x + C2,ff − C2,gg − 2C1,fg−
12A2D1,f − 12A2D2,g − 12A1D2,f + 12A1D1,g + 2B2C1,f + 2B2C2,g+

2B1C2,f − 2B1C1,g − 8B2B1,x − 8B1B2,x − 4B2,xf + 4B1,xg = 0,

24D1A1,x − 24D2A2,x − 6D1B1,f − 6D1B2,g + 6D2B2,f − 6D2B1,g+

12A1D1,x − 12A2D2,x + 4B1,xx − 4C1,xf − 4C2,xg − 6B1D1,f−
6B1D2,g + 6B2D2,g − 6B2D1,g + 3D1,ff − 3D1,gg + 6D2,fg + 4C1C1,f

+4C1C2,g − 4C2C2,f + 4C2C1,g − 4C1B1,x + 4C2B2,x = 0,
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24D2A1,x + 24D1A2,x − 6D2B1,f − 6D2B2,g − 6D1B2,f + 6D1B1,g+

12A2D1,x + 12A1D2,x + 4B2,xx − 4C2,xf + 4C1,xg − 6B2D1,f−
6B2D2,g − 6B1D2,f + 6B1D1,g + 3D2,ff − 3D2,gg − 6D1,fg + 4C2C1,f−
4C2C2,g + 4C1C2,f − 4C1C1,g − 4C2B1,x − 4C1B2,x = 0. (2.11)

Notice that the system (2.9) contains 8 distinct coefficients whereas the system (2.4)

has 15. It may appear that the system (2.9) is a subcase of the system (2.4). We

shall prove that this is not the case. These two classes do not coincide for the

cubically semi-linear case.

3. DISJOINT CLASSES OF CUBICALLY SEMI-LINEAR SYSTEMS

OF ODES

In order to investigate whether the linearizable classes mentioned above can be

related by point transformations or not, we start with a simple case i.e constant

linear transformations. We state the following theorem.

Theorem 1.

The linearizable classes of systems of ODEs provided by CSA and RSA are not

related by constant linear transformations of the form

f = aw + by, g = cw + dy. (3.1)

Proof.

It is clear that the transformations must be invertible and hence ad − bc ̸= 0.

For convenience in writing set ad − bc = 1. Using transformations (3.1) and it’s

derivatives in the system (2.9) yields

w
′′
= (A1d− A2b)[(a

3 − 3ac2)w
′3 + (3a2b− 3bc2 − 6acd)w

′2y
′
+ (3ab2

−6bcd− 3ad2)w
′
y

′2 + (b3 − 3bd2)y
′3]− (A2d+ A1b)[(3a

2c− c3)w
′3

+(3a2d− 3c2d+ 6abc)w
′2y

′
+ (3b2c− 3cd2 + 6abd)w

′
y

′2 + (3b2d− d3)y
′3]

+(B1(a− c(ab+ cd))−B2(a(ab+ cd) + c))w
′2 − (B1d+B2b)(b

2 + d2)y
′2

−2(B1c+B2a)(b
2 + d2)w

′
y

′
+ (C1 − C2(ab+ cd))w

′ − (C2(b
2 + d2)y

′

+D1d−D2b, (3.2)
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y
′′
= −(A1c− A2a)[(a

3 − 3ac2)w
′3 + (3a2b− 3bc2 − 6acd)w

′2y
′
+ (3ab2

−6bcd− 3ad2)w
′
y

′2 + (b3 − 3bd2)y
′3] + (A2c+ A1a)[(3a

2c− c3)w
′3

+(3a2d− 3c2d+ 6abc)w
′2y

′
+ (3b2c− 3cd2 + 6abd)w

′
y

′2 + (3b2d− d3)y
′3]

+(B1c+B2a)(a
2 + c2)w

′2 + (B1(b+ d(ab+ cd)) +B2(b(ab+ cd)− d))y
′2

+2(B1d+B2b)(a
2 + c2)w

′
y

′
+ C2(a

2 + c2)w
′
+ (C1 + C2(ab+ cd))y

′

+D2a−D1c. (3.3)

Equating coefficients of the cubic (in the first derivative) terms in the system (3.2),

(3.3) and (2.4), the linear independence of A1, A2 gives the following equations

b4 + d4 = 0, a4 + c4 = 0, bd(b2 + d2) = 0, ac(a2 + c2) = 0,

b2(ad− bc) = 0, c2(ad− bc) = 0, b2(ab+ cd) = 0, c2(ab+ cd) = 0. (3.4)

These equations are incompatible with invertibility, as they require a = b = c = d =

0. Thus there does not exist a constant point transformations (3.1) that maps the

linearizable system of two ODEs obtained by a scalar second order complex ODE

to a system of two ODEs provided by the geometric method.

The above analysis can now be generalized to those point transformations for

which the coefficients are functions of the dependent and independent variables. The

following theorem provides inequivalence of the two linearizable classes of systems

provided by CSA and RSA, by using general point transformations.

Theorem 2.

The linearizable classes of systems of ODEs provided by CSA and RSA are not

related by arbitrary (point) transformations of variables

f = a1w + a2y, g = a3w + a4y, (3.5)

where a1, .., a4, are functions of w, y and x.

Proof.

To establish this result, we proceed as we did in Theorem 1. We have

f
′
= a

′

1w + a
′

2y + a1w
′
+ a2y

′
, (3.6)

g
′
= a

′

3w + a
′

4y + a3w
′
+ a4y

′
, (3.7)

where

a
′

i = ai,x +w
′
ai,w +y

′
ai,y (3.8)
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and

a
′′

i = ai,xx + 2w
′
ai,xw + 2y

′
ai,xy + 2w

′
y

′
ai,wy + w

′2ai,ww

+y
′2ai,yy + w

′′
ai,x + y

′′
ai,y. (3.9)

Hence

f
′′
= (wa1,w + ya2,w + a1)w

′′
+ (wa1,y + ya2,y + a2)y

′′
+ (wa1,ww + ya2,ww

+2a1,w)w
′2 + (wa1,yy + ya2,yy + 2a2,y)y

′2 + 2{(wa1,wy + ya2,wy + 2a1,y

+2a2,w)w
′
y

′
+ (wa1,xw + ya2,xw + a1,x)w

′
+ (wa1,xy + ya2,xy + a2,x)y

′}
+wa1,xx + ya2,xx, (3.10)

g
′′
= (wa3,w + ya4,w + a3)w

′′
+ (wa3,y + ya4,y + a4)y

′′
+ (wa3,ww + ya4,ww

+2a3,w)w
′2 + (wa3,yy + ya4,yy + 2a4,y)y

′2 + 2{(wa3,wy + ya4,wy + a3,y

+a4,w)w
′
y

′
+ (wa3,xw + ya4,xw + a3,x)w

′
+ (wa3,xy + ya4,xy + a4,x)y

′}
+wa3,xx + ya4,xx. (3.11)

The coefficients of w
′′
and y

′′
appearing in (3.10) and (3.11) can be denoted by

a1 = a1 + wa1,w + ya2,w, a2 = a2 + wa1,y + ya2,y,

a3 = a3 + wa3,w + ya4,w, a4 = a4 + wa3,y + ya4,y, (3.12)

where a1, .., a4, are functions of w, y and x. Using (3.12) in (3.10) and (3.11) we

obtain

w
′′
=

1

a1a4 − a2a3
[(A1a4 − A2a2)((a

3
1 − 3a1a

2
3)w

′3 + 3(a21a2 − a2a
2
3

−2a1a3a4)w
′2y′ + 3(a1a

2
2 − a1a

2
4 − 2a2a3a4)w

′y
′2 + (a32 − 3a2a

2
4)y

′3)

+(A2a4 + A1a2)((a
3
3 − 3a21a3)w

′3 + 3(a23a4 − a21a4 − 2a1a2a3)w
′2y′

+3(a3a
2
4 − a22a3 − 2a1a2a4)w

′y
′2 + (a34 − 3a22a4)y

′3) + (A1a4 − A2a2)ρ1

+(A2a4 + A1a2)ρ2 + (B1a4 −B2a2)ρ3 − 2(B2a4 +B1a2)ρ4 − a4ρ5

+a2ρ6 + (C1a4 − C2a2)f
′ − (C2a4 + C1a2)g

′
+D1a4 −D2a2], (3.13)

y
′′
=

1

a2a3 − a1a4
[(A1a3 − A2a1)((a

3
1 − 3a1a

2
3)w

′3 + 3(a21a2 − a2a
2
3

−2a1a3a4)w
′2y′ + 3(a1a

2
2 − a1a

2
4 − 2a2a3a4)w

′y
′2 + (a32 − 3a2a

2
4)y

′3)

+(A2a3 + A1a1)((a
3
3 − 3a21a3)w

′3 + 3(a23a4 − a21a4 − 2a1a2a3)w
′2y′

+3(a3a
2
4 − a22a3 − 2a1a2a4)w

′y
′2 + (a34 − 3a22a4)y

′3) + (A1a3 − A2a1)ρ1

+(A2a3 + A1a1)ρ2 + (B1a3 −B2a1)ρ3 − 2(B2a3 +B1a1)ρ4 − a3ρ5

+a1ρ6 + (C1a3 − C2a1)f
′ − (C2a3 + C1a1)g

′
+D1a3 −D2a1]. (3.14)

Inequivalence of Classes of Linearizable Systems of ODEs 929



Where ρ1, ..., ρ6 in the above equations represent the quadratic, linear (in the first

derivative) and constant terms which are not required in the proof. These are given

in the appendix for completeness. The requirement here is that a1a4 ̸= a2a3, and

a1a4 ̸= a2a3. Now equating the coefficients of the cubic (in the first derivative) terms

appearing in the system (2.9) and the system (3.13), (3.14) we obtain the following

set of equations

a2a4(a
2
2 − 3a24) = a2a4(3a

2
2 − a24), a2a2(a

2
2 − 3a24) = a4a4(a

2
4 − 3a22),

a1a3(a
2
1 − 3a23) = a1a3(3a

2
1 − a23), a1a1(a

2
1 − 3a23) = a3a3(a

2
3 − 3a21),

a1a4(a
2
1 − 3a23) + a2a3(a

2
3 − 3a21)− 3a3(a

2
1a2 − a2a

2
3 − 2a1a3a4)

−3a1(a
2
3a4 − a21a4 − 2a1a2a3) = 0,

−a1a2(a
2
1 − 3a23) + a3a4(a

2
3 − 3a21) + 3a1(a

2
1a2 − a2a

2
3 − 2a1a3a4)

−3a3(a
2
3a4 − a21a4 − 2a1a2a3) = 0,

a2a3(a
2
2 − 3a24) + a1a4(a

2
4 − 3a22)− 3a4(a1a

2
2 − a1a

2
4 − 2a2a3a4)

−3a2(a3a
2
4 − a22a3 − 2a1a2a4) = 0,

−a1a2(a
2
2 − 3a24) + a3a4(a

2
4 − 3a22) + 3a2(a1a

2
2 − a1a

2
4 − 2a2a3a4)

−3a4(a3a
2
4 − a22a3 − 2a1a2a4) = 0,

a1(a3a
2
4 − a22a3 − 2a1a2a4)− a2(a

2
3a4 − a21a4 − 2a1a2a3)

+a3(a1a
2
2 − a1a

2
4 − 2a2a3a4)− a4(a

2
1a2 − a2a

2
3 − 2a1a3a4) = 0,

a1(a1a
2
2 − a1a

2
4 − 2a2a3a4)− a2(a

2
1a2 − a2a

2
3 − 2a1a3a4)

−a3(a3a
2
4 − a22a3 − 2a1a2a4) + a4(a

2
3a4 − a21a4 − 2a1a2a3) = 0. (3.15)

There does not exist a solution for the above set of equations other then ai = 0, i =

1, .., 4. Thus, once again, we prove in the general case that the linearizable systems

obtained by CSA and RSA can not be related by general (point) transformations of

variables.

4. CONCLUSION

Two linearizable classes of systems of cubically semi-linear ODEs were provided

by CSA and RSA. The equivalence or inequivalence of these classes was investigated

under point transformations. It was shown that they are distinct for systems of

genuinely cubically semi-linear ODEs.

There are five linearizable classes of systems of ODEs [19] obtained by group

classification having 5, 6, 7, 8, or 15 symmetry generators . The class of linearizable

systems provided by the geometric method has 15 symmetry generators. It needs to
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be investigated whether CSA provides the remaining four classes mentioned above

or not. It is not even clear that CSA is limited to these five classes as it appears

that it does not yield a Lie algebra when complex functions of a single variable

are involved [3]. These issues, i.e the classification of linearizable systems of ODEs

provided by CSA, are being investigated [4].

5. APPENDIX

The extra terms appearing in the equations (3.13) and (3.14) are:

ρ1 = 3{(a21a
′

1 − a
′

1a
2
3 − 2a1a3a

′

3)w + (a21a
′

2y − a
′

2a
2
3 − 2a1a3a

′

4)y}w
′2

−6{(a′

1a3a4 + a1a
′

3a4 + a2a3a
′

3 − a1a
′

1a2)w + (a
′

2a3a4 + a1a4a
′

4 + a2a3a
′

4

−a1a2a
′

2)y}w
′
y

′
+ 3{(a′

1a
2
2 − a

′

1a
2
4 − 2a2a

′

3a4)w + (a22a
′

2 − a
′

2a
2
4 − 2a2a4a

′

4)y}y
′2

+3{(a′2
1 a1 − a1a

′2
3 − 2a

′

1a3a
′

3)w
2 + (a1a

′2
2 − a1a

′2
4 − 2a

′

2a3a
′

4)y
2

+2(a1a
′

1a
′

2 − a
′

1a3a
′

4 − a1a
′

3a
′

4 − a
′

2a3a
′

3)wy}w
′
+ 3{(a′2

1 a2 − a2a
′2
3 − 2a

′

1a
′

3a4)w
2

+(a2a
′2
2 − a2a

′2
4 − 2a

′

2a4a
′

4)y
2 + 2(a

′

1a2a
′

2 − a
′

1a4a
′

4 − a
′

2a
′

3a4 − a2a
′

3a
′

4)wy}y
′

+(a
′3
1 − 3a

′

1a
′2
3 )w

3 + 3(a
′2
1 a

′

2 − a
′

2a
′2
3 − 2a

′

1a
′

3a
′

4)w
2y + 3(a

′

1a
′2
2 − a

′

1a
′2
4

−2a
′

2a
′

3a
′

4)wy
2 + (a

′3
2 − 3a

′

2a
′2
4 )y

3,

ρ2 = 3{(a21a
′

3 + 2a1a
′

1a3 − a23a
′

3)w + (a21a
′

4 + 2a1a
′

2a3 − a23a
′

4)y}w
′2

+6{(a1a2a
′

3 + a
′

1a2a3 + a1a
′

1a4 − a3a
′

3a4)w + (a1a2a
′

4 + a2a
′

2a3 + a1a
′

2a4

−a3a4a
′

4)y}w
′
y

′
+ 3{(a22a

′

3 + 2a
′

1a2a
′

4 − a
′

3a
2
4)w + (a22a

′

4 + 2a2a
′

2a4 − a24a
′

4)y}y
′2

+3{(a′2
1 a3 + 2a1a

′

1a
′

3 − a
′2
3 a3)w

2 + (a
′2
2 a3 + 2a1a

′

2a
′

4 − a3a
′2
4 )y

2

+2(a1a
′

2a
′

3 + a1a
′

1a
′

4 + a
′

1a
′

2a3 − a3a
′

3a
′

4)wy}w
′
+ 3{(a′2

1 a4 + 2a
′

1a2a
′

3 − a
′2
3 a4)w

2

+(a
′2
2 a4 + 2a2a

′

2a
′

4 − a4a
′2
4 )y

2 + 2(a
′

1a
′

2a4 + a2a
′

2a
′

3 + a
′

1a2a
′

4 − a
′

3a4a
′

4)wy}y
′

+(3a
′2
1 a

′

3 − a
′3
3 )w

3 + 3(a
′2
1 a

′

4 + 2a
′

1a
′

2a
′

3 − a
′2
3 a

′

4)w
2y

+3(a
′2
2 a

′

3 + 2a
′

1a
′

2a
′

4 − a
′

3a
′2
4 )wy

2 + (3a
′2
2 a

′

4 − a
′3
4 )y

3,

ρ3 = (a21 − a23)w
′2 + 2(a1a2 − a3a4)w

′
y

′
+ (a22 − a24)y

′2 + 2{(a1a
′

1 − a3a
′

3)w

+(a1a
′

2 − a3a
′

4)y}w
′
+ 2{(a′

1a2 − a
′

3a4)w + (a2a
′

2 − a4a
′

4)y}y
′
+ (a

′2
1 − a

′2
3 )w

2

+2(a
′

1a
′

2 − a
′

3a
′

4)wy + (a
′2
2 − a

′2
4 )y

2,

ρ4 = a1a3w
′2 + (a1a4 + a2a3)w

′
y

′
+ a2a4y

′2 + {(a′

1a3 + a1a
′

3)w + (a
′

2a3

+a1a
′

4)y}w
′
+ {(a′

1a4 + a2a
′

3)w + (a
′

2a4 + a2a
′

4)y}y
′
+ a

′

1a
′

3w
2 + (a

′

1a
′

4

+a
′

2a
′

3)wy + a
′

2a
′

4y
2,
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ρ5 = (wa1,ww + ya2,ww + 2a1,w)w
′2 + (wa1,yy + ya2,yy + 2a2,y)y

′2

+2{(wa1,wy + ya2,wy + 2a1,y + 2a2,w)w
′
y

′
+ (wa1,xw + ya2,xw + a1,x)w

′

+(wa1,xy + ya2,xy + a2,x)y
′}+ wa1,xx + ya2,xx,

ρ6 = (wa3,ww + ya4,ww + 2a3,w)w
′2 + (wa3,yy + ya4,yy + 2a4,y)y

′2

+2{(wa3,wy + ya4,wy + a3,y + a4,w)w
′
y

′
+ (wa3,xw + ya4,xw + a3,x)w

′

+(wa3,xy + ya4,xy + a4,x)y
′}+ wa3,xx + ya4,xx.
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