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Abstract-The paper is concerned with the applicability of some new conditions for the
convergence of Newton—kantorovich approximations to solution of nonlinear singular
integral equation with shift of Uryson type. The results are illustrated in generalized
Holder space.
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1- INTRODUCTION

The theory of approximation methods and its applications for the solution of
linear and nonlinear singular integral equations (LSIE) and (NSIE) has been developed
by many authors [5,11,12,17,21]. There is a literature on the successful development of
the nonlinear singular integral equations with shift (NSIES) [1,3,4,15,18,20]. The
Noether theory of singular integral operators with shift (SIOS) is developed for a closed
and open contour ([2,10,13,14,16,18] and others). The theory of singular integral
equations with shift (SIES) is an important part of integral equations because of its
recent applications in many fields of physics and engineering, [6,14,16]. It is known
[6,7], that Weiner-Hope equations are a natural apparatus for the solution of problems
of synthesis of signais for linear systems with continuous time and stationary
parameters. If the problem of synthesis is not stationary, then the Weiner-Hope method
is not applicable and the problem is reduced to singular integral equation.

In this paper, some new conditions for the convergence of Newton-Kantorovich
approximations have been applied to solution of the following NSIES of Uryson type:
1 (k(a(t),s,u(s))

u(t)_ml 2 ds, (1.1)
in the generalized Holder space H, (@), where T is a simple smooth closed Lyapunov
contour, dividing the complex plane into two domains D’ ( the interior domain) and
D~ (the exterior domain), D=D"u D", and the homeomorphism «:I' >T is the
preserving orientation, satisfying the Carleman condition:

alalt)=a,lt)=t, tel (1.2)
and the derivative «'(¢)#0 satisfies the usual Holder condition. Moreover

k:TxT'x®R—> R is a caratheodory function (i.e k(.,.,u) is measurable on I'xI" and
k(t,s,.) is continuous on ‘R ) . Also, we suppose that the derivative
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I(t,s,u) =

Ok(t,s,u)
o (1.3)

exists and is also a caratheodory function.
The special case of our problem has been studied as nonlinear integral equation with out
shift in the Chebyshev space C, the Lebesgue space L, (1< p <o), and Orlicz space
L, [8].

2- FORMULATION OF THE PROBLEM:

Let X and Y be two Banach spaces, B(u,,R)= {u:u eX,|u —u0||<R} the closed
ball centered at u, € X with radius R>0, and F:B(u,,R)— Y is nonlinear operator.

The Newton-Kantorovich method is one of the basic tools for finding approximate
solutions of the operator
F(u)=0 (2.1)
In the corresponding iterative scheme
u, =u —Fw) Fl) (n=012,.) (2.2)

One has torequire in particular that the Frechet derivative of F at all points u, exists
and is invertible in the Banach space C(X,Y) of all bonded linear operators from X
into Y . The non-negative numbers

a= "F‘(uU)’IF(uO) ,and » :"F‘(uo)’l" (2.3)
Will be of particular interest to us in what follows.
We suppose that the Frechet derivative F'(u) of [F satisfies at each point of B(u,,R) a

condition of the form

”F‘(ul)—F‘(uz) |Sy(” u, —u, ), ul,uzeB(uo,R) (2.4)
Where z:[0,00) — [0,%0) is monotonically increasing with
lim p(r) = 0, 0<r<R (2.5)

Moreover, we assume that there is another monotonically increasing function
0:[0,00)— [0,00) such that 0<6(r) < u(r), (0<r<R), and
b

||F'(u)" " < b0 (u e B(u,,r)). (2.6)
We define three scalar functions on [0,R] by

2(r) = sup {p(u) + ) :u+v=rl, (2.7)

¢(r)=%+_:[y(t)dt—%, (0<r<R), (2.8)
and

q?(r)=%+Iﬁ(t)dz—% L(0<r<R). (2.9)

As a special case of the main theorem of [12], about the convergence of successive
approximations, we get then the following:

Theorem 2.1 [8]. Suppose that the function (2.8) has a unique zero r, €[0,R] and that
#(R)<0. Then equation (2.1) has a solution x, € B(x,,r,) this is unique in the ball
B(u,,R)
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Lemma 2.1 [8]. Suppose that the function (2.9) has a unique zero ¢, €[0,R] and that
#(R) <0 . Then the scalar sequence (r) _, defined by

=0, ro=p+—200) (n=0,1.2,..) (2.10)
1-560(r)
Converges monotonically tog.
Theorem 2.2 [8]. Under the hypotheses of Lemma 2.1 the approximations (2.2) are
defined for all n belong to the ball are converging to a solution of (2.1) and satisfy the

estimates

|| u., —u”” <r.,-r ,(n=012,.),and ||u —un" <g.-r , (n=012,.). (2.11)
Theorem 2.3 [8]. Suppose that the sequence (r), give by (2.10) converges to some
limit 7 (a). Then the approximations (2.2) are defined for all n belong to the ball
B(u,,r,(a)), and satisfy the estimate (2.11) .

We remark that the usefulness of Theorem 2.2 consists in reducing the (hard) problem
of finding zero of a nonlinear operator in a Banach space to the (possible simpler)
problem of finding zero of a scalar function.

1

3- SOME NOTATIONS AND AUXILIARY RESULTS:

Definition 3.1 [10]. We denote by @ the class of all functions (&), defined on(0,/],
where / is the length of the curve, , which satisfies the following conditions:

1. w(5) is a modulus of continuity, 2. sup ! Iw(s)ds =1, <o,
550 a)(§) 5 S
3. sup o J‘@ds =J, <o
550 a)(é‘) - s’

Definition 3.2 [10,19]. The generalized Holder space H, () is the set of all continuous
function u(¢) such that
H'(u)= supM <o,
" o(l, -1,))
For u(t) e H (w), we define the norm
e =l + HE )
Definition 3.3 [10,20]. Let 4 and A, be positive numbers and the function ()
satisfies the assumptions of Definition 3.1 we say that the function u(t)e H (w), t €',
belongs to the class H/*(w) if the following two conditions are satisfied:

[

‘u a n:lgx‘ u(t)‘ :

L |u@|, <A, tel, 2. H(u)< 4,

Definition 3.4 [16,19]. Let S: H"*(w)— H/*(w) , where 1,1, are positive constants,
denote to the operator of singular integration
(su)0)=—- [ 4, 6.1
Tirs—t
to which we associate the projection operators
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P=—(1%S), =1, (3.2)

). The Carleman shift operator

/\Nl’_‘

where I is the identity operator on H,
W:H"(0)— H"*"""(0),

is given by
(Wu)e) = ule(r)) (3.3)
Using the notation
k(a(?),s,u(s))
(Ku)y = [FeO (34)

for nonlinear singular integral operator.

Lemma 3.1 [10]. Let the function u(¢) belong to the space ¢(I") and .[%df <o

Then the following inequalities

|su], <e, Umdé . j (3.5)
o, (5)<c, U%g + 5}%@&} (3.6)

are valid, where  (5) = sup lu(t)—u(,)|> < and ¢, are constants.
\{‘?)tz\<(i
Lemma 3.2 [4]. The singular operator S is a bounded operator on the space H, (w) and

satisfies the inequality
||Su

Hy < Py "u > (37)

Hr

where p, is a constant defined as follows , =, j“’if)dg +¢, +¢,¢; C 18 positive constant.

Lemma 3.3 [4,20]. The shift operator W is a linear bounded continuously invertible
operator on the space H_(w) and satisfies the inequality

[wul,, <7, |u (3.8)
o
Where Yo :max{l,ao} and a, =sup a)u(am)( ) .
>, (5)

Now, we study the singular integral operator K defined by the equality (3.4) where the
function k =k(¢,s,u) :I'xI'x R — R satisfies the following condition

<A o*(t,-1,))+ da(s, -s,))

19919% 2952972

; 3.9)
+&E(u, —u,)); i=0,1
and for w(5),w*(5) e ® , we have
0*(8)In(l/8) < A o(5), (3.10)
& :[0,00)— [0,0) is monotonically increasing function with
lim& (r)=0; 0<r<R, (3.11)

where 4,4, and A4, are positive constants.

1272

Lemma 3.4 [20]. If the inequalities (3.9)-(3.11) are satisfied, then for every
u(t)e H*" (w) , we have (Ku)(t)e H'" (w), where A and A* depend on A ,1,
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Lemma 3.5. If the function k(z,s,u) satisfies the conditions (3.9)-(3.11), then the
operator K defined by (3.4) is bounded on H_ ().

Proof
Let k(t,s,u(s)) = f,(t,s,u(s))+k(s,s,u(s))

1@, s,u(s)) =k(t,s,u(s)) —k(s,s,u(s))
£t u(s)) = £(t,5,,u(s,))| < A'o* (|, =1, + Al a(s, - s,|)
+&, (uCs,) —us,
Where A4, =24) + A’c,(In(l/s))", hence, the norm of the operator K can be rewritten as
||Ku Ku Hrzyo{]? F+H;”([?u)},

u
L'Iﬁ(tvs7u(s)) ds
LY s—t

(3.12)

w =70

r

<

‘ ) + p, [kt u@)),
Let Mu(t) = .[ f(t : M(S))
i r
|

.[|f (s M(S))|

< —

hence,

o' (]s—1))

A’
||Mu S—.[ |s—t| |ds|.

c

T T
It is well-known, [9], that for smooth contour T there exist a number m" such that
|ds| <m"dr where m’is a positive constant. From Definition 3.1, we have

< A
2n@/8) r o zin@rs)

Suppose|t, —t,| < o,, fix an arbitrary number n, 1<n<o,/|t,~t,|. Draw a circle of radius

|| || < m*A3A1 J’(O(l") < m A (l)

o :n|t1 —t2| centered at the point ¢ . This circle intersects I'at two points ¢, and ¢, .
The part of I" lying with this circle is denoted by &,¢&, .
From, [20], we obtain

1
|Mu(t,)— Mu(t,)| < —(2q,q.+q.+ q)o(|t, —t,)),

n+1
q, =(
n

g, =2m* (4> + A)(n+1)1 Ym* (A" +A4,)J

q,=2m* A4’ A,,

w9 [CRd

q, = (A" A,(In(l/5))" + A’ + 4)M,,

d. . ..
and M, = * oz , Where, A, is positive constant, therefore, we have
ey S — 1
||Mu(t)||” SA+A,,
m* A,A 1
A=—>""0 (), N, =—(2q,+q,+9q,+q,
s a(l) ”(q 9, +4.+4,)

Thene

|ku@)], <7.in+n, +o K@ tu@), f (3.13)
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Hence, the nonlinear singular integral operator K defined by the right-hand side of
(1.1) is a bounded operator in generalized Holder space H (). Therefore, we can

rewrite equation (1.1) in the following form
F(u)=u—-K(u)=0, (ue B(u,,R)), (3.14)
for fixed u € H (w), we define an operator L by

Lu)h(t) = j %“‘(b’)(s)) h(s)ds; h(s)e H (), (3.15)
satisfied the following cond1t1on
||L(u|)—L(u2) ||Hr < y("ul —u2||Hr ), u,u, € B(u,,R),0<r<R, (3.16a)
where
limu(r)=0, (0<r<R), (3.16b)
and put
Gu)=1-L(u), (ueB(u,R)). (3.17)

It is natural to expect that the derivative of the operator (3.4) is related to the operator
(3.15), and hence the derivative of (3.14) is related to (3.17).
Lemma 3.6 [1]. Let the function g(¢,s)=m(t,s)h(s); h(s) belong to the generalized

Holder space H () . Then the following inequality is valid
0,(5,,6,) <|h| @, (5,,0)+ 4] @,(0,8,)+ BH! (W (5), (3.18)

where

o, (5,,0,)= sup |g(tl, s, ,and = max|m(t s)|

‘t: )‘Z“ >;
The proof of boundedness of the operator L in the generalized Holder space H, ()
depends on the inequality (3.6), [19].
In the following Theorem, the function m =m(z,s) should carry the following quite

restrictive conditions:

1. Sup%?)(l@))zll<oo (3.19)
0<6<l (0]
I (0,09 -
2. sup a)(a)j ; dé=1,< (3.20)
J 10,0) w
3. 3550)(5)] - dé=1, < (3.21)

Theorem 3.1. The nonlinear singular operator L is a bounded operator on the
generalized Holder space H (o).

Proof
Let m(t,s)h(s) = g(t,s),and f(7) :i, | Mds, (3.22)
iy S—1
where [(¢,s,u(s)) = m(t,s), from, [1], we have
7| =2l + 20120y and B (Y <T ), + Lt (), (3.23)
14=m*?[w (g §)d§+ﬂ Z:cz[%+ll+lz+l3]
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*ﬂj“’(s) T=cpl +J).

4

From, the inequalities (3.22) and (3.23), we obtain
[eanl],, <ol ; (3.24)

0= ;/O.max{l4 +1,.1, +1~5}
Thus, the theorem is proved.
Theorem 3.2. Suppose that the function

k(a(®),s,u,(s)) ,

K (u,)(1) = j e (3.25)
belongs to the space H, (w). Moreover suppose the operator L given by (3.15) is
defined on the ball B(u,,R), takes its values in the space of bounded linear operator on
H_(w) and satisfies a condition (3.16a). Then the operator (3.14) is differentiable as an
operator in H, (w) at every point u € B(u,,R) and

F'(u)=Gu), (ueBu,R)). (3.26)
Proof
we remark that the condition (3.16a) implies that the operator G is uniformly
continuous on each ball B(u,,r) c B(u,,R) . From the condition (3.25) and from

K(a(0),50(5) ~ (@ (1), 5,10, () = [Herle) 5,0, )+ 2 ()2
Where A(s) =u(s)—u,(s), hence U

K (u)(t) = K (u, )(t) + L(u, )1 (2), (3.27)
It follows that also K(u)e H (o) for |u— ”0”Hr < R; moreover,
K@), <K@, +|z@), [«-u], - (3.28)

Frome definition of the function £ and its derivative and definition of the operator L,
then the operator F given by (3.14) is bounded as an operator from B(u,,R) into
H_(w). We show now that F is differentiable with derivative G. Appling the definition
of the operator G and changing the order of integration.
For fixed u,(t)e H.(®), and arbitrary element i(¢)e H.(w) we have the well-know
formula:

F(u, +h)—F(u )=G(u,)h+n(u,,h);

Glu, h(t) = (1) = — j l(ag)_;z)(s))h(s)ds , (3.29)

U ).5,14,(s) + Ah(s)) - l(a(t),s,uo(s))}h(s)dl}ds

0

n(u,,h) =

Tits— a(t)
= j[G(uO + Ah) — G(u,)|h(s)dA.
By hypothesis, the op;rator L satisfies the condition (3.16a), we have
botal,, < [alalil, i, a2 =0, ) (3.30)

0

as ||, — 0, and hence the equality (3.26) holds.
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Moreover, from the equalities (3.26), (3.29) and condition (3.16a), we get
||F-(u1) - F'(w,)|, < y("ul - u2||Hr ), (u,,u, € B(u,,R)), o<r<R. (3.31)

4- NOETHER PROPERTY AND INDEX FORMULA FOR SIOS:
To study the Noether condition for the operator G, we reduce this operator to the
following form

G(u,)h(t) = h(t) +de> | IOR +i. [R(t,0)h(s)ds = f(2) 4.1)
i vs—alt) iy

Where d(1) = —(a(t) t,u, (), and R(t,s) = F Lt (0) _Z((to)‘(t ) 5:14,(5).
S—a

and /' € H.(®). From definition of the shift operator W and singular integral operator

S, we obtain
G(u,)h(t) = h(t) + d(O)WSh)(t) + (Nh)(0) = f (1), (4.2)

where (Nh)(¢) = L j R(t,5)h(s)ds . Using the relation (3.2), we get
TlYT

G(u,)h(t) = (AP + BP )h(1) = J (2); (4.3)
A=T+d@OW,B=1-d@W ,and J(t)= f(t)—(Nh)7)
From the theory of singular integral operators with shift [16], the Noether condition for
the operator G is given by

1 d() —d(t)

A ()= , A(t)= 4.4
o d(a(m) 1 0 0 —d(a@) 1 @9
Moreover, the index formula of the operator G has the form
ndG =L ) O 45
indG an {arg A () }‘ (4.5)

5- SOLUTION OF LINEAR SINGULAR INTEGRAL EQUATION WITH
SHIFT:

Now, we show that the linear singular integral equation with shift (4.2) has a unique
solution for every f € H (w). Apply the operator WS to both sides of the equation (4.2),
hence, we obtain the following system:

h(t)+d(@OWSh)(t) + (Wh)(t) = f (1), (5.1)

d(a (1)) hle)+ (WSh)(®) + (N, h)(t) = WS/)(1)

Where N, = WSd(¢)WS —Wd (t)W + WSN
No solutions are lost when the operator WS applied to equation (4.2), [1], hence all
solutions of (4.2) are solutions of the system (5.1) and conversely. Let £ be the closed
subspace defined by E = {(h,WSh), he H, (w)}, )

and let Q be the linear operator from E to H, (w) defined by
QH(t) =Q)H(1), (5.2)

{ h } { 1 d(l)}
where H = , Q1) =
WSh da@) 1
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is a matrix of functions from the space H, () corresponding to the operator Q.

Moreover, if we put
N 0
T= , F= ! ,
o ] )

then system (5.1) can be rewritten as the form:
QH+TH=F, HeE
Theorem 5.1 [1]. Assume that

detQ()#0 VieT, Hﬁ"T

<1.

Then the operator G(u,) is invertible, moreover

jowrl, < ke Lonecn)
T Av)
Where n = min|detQ(t) , At) = ! , and Q’be the adjoint matrix of Q. Assume
el det Q(¢)
ll, (1.
—+H!(A) |, a=b(|u, o +||Ku, W)

R CEIAT

In fact, we have
L(u)=L(u,)+ L(u)—L(u,)
= L(u,)(I + L(u,)) " (L(u) - L(u,)),
implies
L)' =[1+L0,)" (L@~ L)) L@w,)",
and consequently
[ZCON %

=), Jeeo-Lal, -
Put () =sup{L@)~L(w,)|, = |u-u], <}
where 6:[0,00) = [0,00) such that 0 < 8(r) < u(r), (0 < r < R). Similarly, we have

< b
T 1-b6(r)
Therefore, the following theorems are valid.
Theorem 5.2. Suppose that the function (2.8) has a unique zero r, €[0,R] and that

£ao7], <

|Gy

, (ueB(u,,r)).

#(R)<0. Then equation (3.14) has a solution u, € B(u,,.); this solution is unique in the
ball B(u,,R).

Theorem 5.3. Under the hypotheses of Lemma 2.1 the approximation (2.2) are defined
for all n belong to the ball B(u,,q.), are converging to a solution u, of (3.14) and satisfy
the estimate (2.11) .
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