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Abstract- Two new perturbation-iteration algorithms for solving differential equations 
of first order are proposed. Variants of the algorithm are developed depending on the 
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number of first order equations. Much better solutions than the regular perturbation 
solutions are achieved.  
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1. I�TRODUCTIO� 

 

Perturbations methods are widely used for over a century to determine 
approximate analytical solutions for mathematical models. Algebraic equations, 
integrals, differential equations, difference equations and integro-differential equations 
can be solved approximately with these techniques. The direct expansion method 
(straightforward  expansion) does not produce physically valid solutions for most of the 
cases and depending on the nature of the equation, many different perturbation 
techniques such as Lindstedt-Poincare technique, Renormalization method, Method of 
Multiple Scales, Averaging methods, Method of Matched  Asymptotic Expansions 
etc.[1] are developed within time.  

One of the deficiencies in applying perturbation methods is that a small 
parameter is needed in the equations or the small parameter should be introduced 
artificially to the equations. Nevertheless, the solved problem is a weak nonlinear 
problem and it becomes hard to obtain a valid approximate solution for strongly 
nonlinear systems. 

While a complete review of the attempts to validate perturbation solutions for 
strongly nonlinear oscillators is beyond the scope of this work, a partial list will be 
given. Among the many developed methods, modifications of the Lindstedt-Poincare 
method with a different frequency expansion [2-5], Linearized perturbation method [6-
8], parameter expanding method [9, 10], new time transformations as modifications of 
Lindstedt-Poincare method [11-13] are some examples. Recently, Multiple Scales and 
Lindstedt Poincare method are unified [14, 15] with a frequency expansion as in [2-5] to 
obtain convergent solutions for strongly nonlinear systems.  

An alternative attempt in the literature to validate solutions for strongly 
nonlinear systems is the perturbation-iteration methods (or alternatively named as 
iteration-perturbation methods) [9, 16-27]. Usually, the equations are cast into an 
alternative form before applying the iteration procedure. Some of the algorithms 
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developed can only work for specific problems. A general approach valid for all type of 
equations which do not require non-standard pre-transformations and initial 
assumptions is lacking in the literature.   

The aim in this study is to develop new perturbation iteration algorithms which 
do not require special transformations and initial assumptions. (Please see reference 
[28]). Motivated by the results for algebraic equations [29-31] which leaded to a vast 
number of iteration algorithms, the basic logic will be extended to first order differential 
equations in this study. It is shown for algebraic equations [29-31] that  by taking n 
correction terms in the perturbation expansions and m’th derivative correction terms in 
the Taylor series expansions, many iteration algorithms can be developed (n≤m). 
Similar reasoning will lead to perturbation-iteration algorithms for differential equations 
also. Two different algorithms with (n,m) equal to (1,1) and (1,2) are developed as 
examples. The algorithms are tested using a number of first order differential equations 
and convergent results are achieved in the iterations.  

 
2. PERTURBATIO�-ITERATIO� ALGORITHM PIA(1,1) 

 

In this section, a perturbation-iteration algorithm is developed by taking one 
correction term in the perturbation expansion and correction terms of only first 
derivatives in the Taylor Series expansion, i.e. n=1, m=1. The algorithm is called 
PIA(1,1). Consider the general first order differential equation 

0),u,u(F =ε&                     (1) 

with u=u(t) and ε the perturbation parameter. Only one correction term is taken in the 
perturbation expansion 

K+ε+= c01 uuu                     (2) 

Upon substitution of (2) into (1) and expanding in a Taylor series with first derivatives 
only yields 

0)0,u,u(Fu)0,u,u(Fu)0,u,u(F)0,u,u(F 00c00uc00u00 =ε+ε+ε+ ε &&&&&
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           (3) 

where subscripts denote differentiation with respect to the variable. Reorganizing the 
equation  
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and keeping in mind that all derivatives are evaluated at ε=0, it is readily observed that 
the above equation is a variable coefficient first order differential equation whose 
solution is  
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Substitution of (5) into (2) and constructing the iteration scheme yields 
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2.1. Example Problem 1 

 Consider the differential equation with the condition  

0uu 2 =ε+&    u(0)=1                  (7) 
for which the exact solution is  

t1

1
u

ε+
=                      (8) 

Terms in iteration formula (6) are nnn u)0,u,u(F && = , 0)0,u,u(F nnu =& , 1)0,u,u(F nnu =&

&

, 
2
nnn u)0,u,u(F =ε &  and equation (6) reduces to  

...2,1,0n)dtuc(u 2
nn1n =−ε= ∫+                 (9) 

In applying the iteration formula, an initial guess suitable to the boundary condition 
should be selected and at each step cn coefficients have to be determined from the 
boundary condition. Selecting  

u0=1                    (10) 
and using the formula, the approximate solutions at each step are 

t1u1 ε−=                     (11) 
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Although, iterations up to u7 are calculated, they are not given here for brevity. In fact, 
using Mathematica, iterations can be calculated up to any arbitrary order. In Figure 1, 
exact solution and Taylor series solution with 30 terms is given for ε=2. It is also shown 
how the successive iterations converge to the exact solution. An excellent match is 
observed for 7th iteration. Note that using regular perturbation analysis, the Taylor series 
solution is retrieved. This means that with 7 terms in the perturbation-iteration, much 
better solution can be obtained than the 30 term regular perturbation expansion. 

   
Figure 1- Comparison of perturbation-iteration PIA (1,1) solutions and Taylor series 
solution (30 terms) with exact solution (ε=2, Example Problem 1) 
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3. PERTURBATIO�-ITERATIO� ALGORITHM PIA(1,2) 

 

In this section, a perturbation-iteration algorithm is obtained by taking one 
correction term in the perturbation expansion and correction terms up to second 
derivatives in the Taylor Series expansion, i.e. n=1, m=2. As in the previous case, again 
only one correction term in the perturbation expansion is taken 

K+ε+= c01 uuu                             (14) 

which upon substitution into (1) and expanding in a Taylor series up to second order 
derivatives yields after arrangement 
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After solving uc from above, the iteration scheme is constructed as below 

ncn1n )u(uu ε+=+   n=0,1,2…                          (16) 

Note that, as mentioned before all functions and derivatives are evaluated at ε=0. Since, 
the equation is nonlinear in uc, a general solution can not be given as in the previous 
case.  
3.1. Example Problem 1 

Consider the same example as in the previous section  

0uu 2 =ε+&    u(0)=1                (17) 
The terms in (15) are evaluated first: nnn u)0,u,F(u && = , 0)0,u,(uF nnu =& , 
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takes the simplified form  
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For the initial assumed function, one may take  
1u0 =                    (19) 

Substituting this function to (18) yields        
1)u(2)u( 0c0c −=ε+&                 (20) 

Solving (20), substituting into (16) and applying the boundary condition yields   
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Since the equation to be solved is a variable coefficient equation which is involved, the 
function in the parentheses of second term is approximated as 1 for simplicity. Solving 
(22), substituting into the iteration expansion and applying the boundary condition 
yields 
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A further iteration yields  
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 Using mathematica, up to 7th order iterations are calculated. Since the solutions 
are very complicated, they are not presented here. Again the seventh iteration compares 
well with the exact solution whereas the 30 term Taylor expansion which would be 
obtained by a regular perturbation expansion of 30 correction terms explode and do not 
represent the real solution after t≥0.2 (See Figure 2). 

 Figure 2- Comparison of perturbation-iteration PIA(1,2) solutions and Taylor series 
solutions (30 terms) with exact solution (ε=4, Example Problem 1) 

3.2. Example Problem 2 

Consider the problem of non-Newtonian fluid flow through parallel plates. For constant 
viscosity and neglecting temperature effects, the equation is [32] 

Λ=ε+ u)u(6u 2
&&&&& , 0)2

1(u0,u(0) == &                        (25) 

for which the first integral is  
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where u=u(y) and dot denotes differentiation with respect to variable y. ε is the non-
Newtonian coefficient and Λ is the constant pressure gradient. For (26), equation (15) 
reads 









−Λε+−ε−=ε+ −−

2

1
yu2u)u)(u61( 3

13

nn
1

nc
2

n &&&&

 
                        (27) 

For the initial assumption, a simple solution  
0u0 =                                (28) 

satisfying the remaining boundary condition is selected. Substituting into (27), solving 
for (uc)0 and inserting into (16) yields      
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Using this function, the result for second iteration is  
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and the result for third iteration is  
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Expanding the above expression in a Taylor series and keeping terms up to O(ε3) 
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the corresponding result that would be obtained in a regular perturbation problem is 
retrieved. In Figure 3, it is shown that the third iteration solution is indistinguishable 
from the numerical solution. Residual errors of each iteration are shown in Figure 4 for 
ε=10. The errors decrease substantially as the number of iterations increase in the whole 
domain. In Table 1, regular perturbation (Eq. (32)) and iteration-perturbation (Eq. (31)) 
solutions are contrasted with the numerical solutions. As ε increases, regular-
perturbation solutions diverge much from the numerical ones whereas, perturbation-
iteration solutions are consistent with the numerical values even for large ε.  
 
Table 1. Comparison of Perturbation, Perturbation-Iteration and Numerical Results for 

various ε values 

 

 ε=1 ε=5 ε=10 

y Numer. Pert. Pert.- 
Iter. 

Numer. Pert. Pert.- 
Iter. 

Numer. Pert. Pert.- 
Iter. 

0.1 0.03578 0.04960 0.035623 0.02644 0.5292 0.02664 0.02241 2.1663 0.02387 

0.2 0.06547 0.8259 0.065268 0.04934 0.6888 0.04939 0.04208 2.7872 0.04392 

0.3 0.08809 0.10567 0.087879 0.06787 0.7308 0.06778 0.05835 2.9127 0.06100 

0.4 0.10245 0.12004 0.102231 0.08064 0.7452 0.08053 0.07001 2.9328 0.07169 

0.5 0.10740 0.125 0.107183 0.08543 0.75 0.08532 0.07464 2.9375 0.07632 

0.6 0.10245 0.120048 0.102231 0.08064 0.7452 0.08053 0.07001 2.9328 0.07169 

0.7 0.08809 0.10567 0.087879 0.06787 0.7308 0.06778 0.05835 2.9127 0.06010 

0.8 0.06547 0.08259 0.065268 0.04934 0.6888 0.04939 0.04208 2.7872 0.04392 

0.9 0.03578 0.04960 0.035623 0.02644 0.5292 0.02664 0.02241 2.1663 0.02387 
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Figure 3. Comparison of perturbation-iteration PIA(1,2) solutions with numerical 

solutions (ε=5, Λ=-1, Example Problem 2) 

 
Figure 4. Residual errors for perturbation-iteration PIA(1,2) solutions 

(ε=10, Λ=-1, Example Problem 2) 
 
3.3. Example Problem 3 

The problem given in [33] is reconsidered.  
 1)0(u0uu)u(1 ==+ε+ &                                           (33)                

where u=u(y). The iteration formula is constructed from (15)
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The initial trial function is selected as   
1u0 =                               (35) 
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The first iteration solution is  
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Second and third iterations are  
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In calculating second and third iterations, the terms multiplying ε at the left hand side of 
the equation are neglected, not to allow variable coefficients in the equations. The 
Taylor series expansion of (38) corresponding to a regular perturbation solution would 
be  
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Solutions (38) and (39) are compared with the numerical solutions. Regular perturbation 
solution possesses an initial oscillatory behavior which can not be verified with the 
numerical solution (See Figure 5). On the contrast, perturbation-iteration solution 
matches well with the numerical simulations. 

 
Figure 5. Comparison of perturbation-iteration PIA(1,2) solution and perturbation 

solution with numerical solution (ε=2, Example Problem 3) 
 

4. CO�CLUDI�G REMARKS 

 

 A new approach for constructing perturbation-iteration schemes is presented. 
Two iteration algorithms are developed. In the first algorithm, one correction term in the 
perturbation expansion and derivatives up to first order in the Taylor expansion are 
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taken. In the second algorithm, second order derivatives are included in the Taylor 
series expansion also. Both algorithms are tested using example problems. It is found 
that iteration results match well with the exact/numerical solutions. Perturbation-
iteration algorithms definitely extend the range of validity of perturbation parameter.  
Acknowledgment- This work is supported by The Scientific and Technological 
Research Council of Turkey (TUBITAK) under project number 108M490.  
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