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Abstract: In this paper, the elastic-piezoelectric continuum has been investigated
theoretically and its non-linear constitutive equations have been defined. The theory is
formulated in the context of continuum electrodynamics. The solid medium is assumed
to be non-linear, homogeneous, compressible and isothermal, has elastic and
piezoelectric anisotropy. Basic principles of modern continuum mechanics and balance
equations of electrostatic have provided guidance and have been determining in the
process of this study. From the formulation belonging to the constitutive equations, it
has been observed that the symmetric stress and polarization have been derived from a
scalar-valued thermodynamic potential defined in calculations. As a result of
thermodynamic constraints, it has been determined that the free energy function is
dependent on a symmetric tensor and a vector. The free energy function has been
represented by a power series expansion and the type and number of terms taken into
consideration in this series expansion has determined the non-linearity of the medium.
Finally, the quasi-linear constitutive equations are substituted in the balance equations
to obtain the field equations.
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1. INTRODUCTION

Piezoelectric materials have widespread applications in modern technical areas
such as mechatronics, electromechanical devices, microelectromechanical systems or
smart structures, serving as sensors, actuators or transducers [1, 2, 3]. In order to assess
the strength and durability of those materials, exhaustive theoretical investigations have
been performed recently [3, 4, 5]. Piezoelectric materials produce electric charges when
mechanically deformed and an electric potential causes a mechanical deformation. This
property makes them suitable for sensor and transducer applications [6].The aim of the
paper is to determine the electro-stressed state of an elastic-piezoelectric material under
mechanical and electric loads.

The constitutive equations are one of the main aspects continuum mechanics.
Many attempts have been made in order to write the constitutive equations in terms of
invariants [7, 8, 9, 10]. Material in this study has been assumed to be a general
anisotropic medium. In the framework of this approximation, stress potential X
function has been expanded into power series in terms of components of the arguments
it depends on, yielding the elastic behavior and polarization reaction of the medium.
Kind and number of terms considered in the series expansion have determined the non-
linearity grade of the medium. First, it has been assumed that both mechanic and
electrical interactions are non-linear. Afterwards, assuming that deformation gradients,
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(or displacement gradients) are very small and electrical interactions are non-linear; the
constitutive equations of polarization field and symmetric stress have been linearized to
a degree. As a result, the quasi-linear constitutive equations are substituted in the
balance equations to obtain the field equations.

Our early studies have provided a basis for the conduction of this study. In all of
our previous studies [11,12,13,14], since the material is viscoelastic, the symmetric
stress was obtained as the sum of elastic and dissipative stresses. In our study [15], the
constitutive equations determining the linear electro-thermomechanical behavior of a
thermoelastic-piezoelectric medium have been obtained. In this study, however, the
constitutive equations have been obtained that determine the non-linear electro-
thermomechanical behavior of elastic-piezoelectric medium. In this study, the material
is elastic-piezoelectric but the material isn’t composite. Besides the medium is
homogeneous, compressible and isothermal. Since the temperature has been assumed to
be constant, no temperature change has been considered leading to the omission of the
heat flux vector formulation.

2. ELECTROSTATIC AND THERMO-MECHANIC BALANCE EQUATIONS

Local Electrostatic Thermomechanical balance equations can be summarized as
follows [16, 17].
Coulomb-Gauss Law:

VD=0 in V() , [D]n = wy, on o() (1)
Faraday Law:
VxE=0=E=-V$ in V(t), nx[E]=0 on o), D=¢,E+P (2)

Where D is electric displacement vector; n outward unit normal vector of discontinuity
surface o, E electric field vector, ¢ electric scalar potential, ¢, electric permitivity of

vacuum, P polarization field vector, w, free surface charge distribution, [D]]=>*-D~
jump of D across the discontinuity surface [16].

Consevation of Mass:

X . .
p(x,t)zm, p+pvii=0 inV(t), [[Upll=0 on o0 (3)
J(X,t)
Balance of Linear Momentum:
P, =pt,+trpr —PE, in V() [t +pvit] =0on o(z) (4)

Balance of Moment of Momentum:
ity + PE)=0= &40ty =027, =1, i V(1), ey ||n,1,, +pUv,[=0 on ofr) (5)

Conservation of Energy:
PEé =tV k—qrx+ph+pETM in V(1), PU[[€+1/2|V|2]]+"k[[fk1Vl—CIk]]=0 on o(t)(6)
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Clausius-Duhem Inequality:

P~ p% +% Vq—;—zq- Vo=py=0 in KOy, pU[[n]l-[ln-a)/ol<0 onc@) (7)

In these and following equations physical meanings of various symbols are: U relative
displacement velocity of the discontinuous surface according to the medium, v velocity
vector of continuous media, u velocity vector of discontinuity surface, p, mass

density before deformation, p mass density after deformation, J jacobian, v

acceleration vector, 7, asymmetric stress tensor, 7, symmetric stress tensor, tf;-

polarization stress tensor, d;, rates of deformation tensor, wy, spin tensor, v,

velocity gradient tensor, f, mechanical body force per unit mass, FZ electrostatic

body force per unit volume, CF intrinsic body couple per unit volume, & internal

energy per unit mass, g, heat flux vector, Il polarization vector per unit of mass, 4
. E . .
energy source per unit mass, Ak~ electrostatic energy source, w, angular velocity,

5 entropy per unit mass, 6(X,z) the absolute temperature distribution, py entropy
production per unit mass ande¢;;, permutation tensor. These symbols have been

expressed as follows [18]:

_ E E S LE E 1
U:un—vn, E :PjEi,j’ ph :EkPk+tkldkl’ Ci :gijkPjEk’ W:EVXV
*_‘ E _1
P=P-F v +P Vi, ti;=RE;, v p=dy+wy, At =5 Vi 1% Vi k) =dig

_l E , E : _P
Wi :E(Vk,l - Vz,k)=—Wzk, ph” +C”-w=pE-I, HZ;- 8)

3. THERMODYNAMIC CONSTRAINTS AND MODELING CONSTITUTIVE
EQUATIONS
The local energy equation (6) is then suitably combined with the entropy
inequality (7) and, using a Legendre transformation such as y =¢-6n-E-1 for the free

energy, the entropy inequality is obtained as follows in the material form [19]:
. N 1 )
~(2+pon @)+ 2 Tk Cxi =5 0.k Ok Tk Ex 20 )

Relationships between material and spatial forms of values appearing in this inequality
have been presented as follows [18,19]:

) 1.
2=pyy, Cgp=2dyx; xx;1 = dy =5CKLXK,kXL,1 s Ox=xp k0= 0 =Xk 10k,
= _ - - -1 = —Po _ -1

Ty =JXk kX1t = By =J 7 X kX, Tkr » Mg *7XK,k B = P =J x glg,

— -1 —
Ok =/ Xk var = ar=J" xi, kx> Ex =xy, k Ex = Ex =Xk 1 Ex (10)
Where T is thermodynamical stress potential, y generalized free energy density, X ;

deformation gradient of inverse motion.
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Formulation of the constitutive equations for the elastic-piezoelectric continuum under
consideration can be summarized as follows [20].

S =%(Cxr.Ex.0), Tl 22 Tx =2-2% n L ox Ox =0
= 5 V), == ’ KL = ’ =TT > =Y,
KL EK K OE oCx, 0, 00 K
_ - - 1 ) ox
Ty =Txr — g Ey CMIL’ ty =tk —F E, g:p_o(z_a_é?a_FKEK) (11)

From the equations provided in the expressions (11); and (11)s, it is understood that the
polarization and the stress are derived from the stress potential . Thus, the explicit form of
Y, which appear as constitutive function with definite arguments, should be determined. The
material in this study has been assumed to be a general anisotropic medium. In the
framework of this approximation the stress potential X function has been expanded into
power series in terms of components of the arguments it depends on, yielding the elastic
behavior and polarization reaction of the medium. Kind and number of terms considered
in the series expansion has determined the non-linearity grade of the medium. First, it
has been assumed in this study that both mechanic interactions and electrical
interactions are non-linear. This situation will be taken into consideration in operations
pertaining to the sections below.

4. DETERMINATION OF SYMMETRIC STRESS AND POLARIZATION
CONSTITUTIVE EQUATIONS

Due to the existence of the relationship Cx; = dx; + 2E; between the Green

deformation tensor and the strain tensor, arguments of the stress potential given in the
expression (11); can be recorded in the following form:

X=2(E E;,0) (12)

Assuming that this function (12) is analytic in terms of values Eg;, Ex , and expanding
the Taylor series around Eg; =0 and Ex =0 (all to be represented with the symbol |0 ),
the following expression can be found for the stress potential.

1 1
L(Egr . Eg)=Z0+Zk Exs +BoEg + EZKLMNEKL Eyn +EﬂQNEQEN +AkroEkL Eg +

1 1 1
SZKLMNSQEKLEMNESQ +§ﬂQNSEQENES + EﬂKLMNQEKLEMNEQ +Akron Ex EgEn  (13)

It is clear that the coefficients in these equations depend only on the temperature.

0% 0% 0’2 0’x
ZOEZ(Q’(—))’ X =m> Po=oo 0 Zaw = ap oo ,BQNE— 5
OEy, |, OE, | OE, OE,y |, OE, OE, |
MO 20E, 0F,| T MY 2 0E,,0F,\0E,| " T 6 OE,0E,OF; |
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3 3
AKLMNQ = la—z ) ﬂKLQN = la—z (14)
3 OE, OF,yOE, . 6 OE, OE ,OF .

Due to the symmetry of the tensor E,, and independence of derivatives in the

definitions in expressions (14) from the order, these coefficients bear the symmetry
characteristics given below:

Lo =2k Loy = 2ok = Zkim = 2k o IBQN =ﬂNQ’ ﬂ’KLQ :ALKQ >

ZKLMNSQ = ZLKMNSQ = ZKLNMSQ = zMNKLSQ = ZKLSQMN = ZSQMNKL >
ﬂQNS = ﬂNQS = ﬂQSN = ﬂSNQ >
/’LKLMNQ = /’i’LKMNQ = /11<LNMQ = ﬁ’MNKLQ > ﬁ“KLQN = ﬂ’LKQN = ﬁ“KLNQ (15)
. ox ox oL . . . .
Since 2 = , the constitutive equation of symmetric stress can be written in
oCy, OFE,,

the following form.

= ox
T,, = 16
"o (16)

If derivatives in (16) and (11), are taken from (13) and used in substitution, the
following is obtained.

T PR =2 ppun Emn +Apro Eo +Z prunso EMv Eso + Apruno EMnEg + Apron EQE N (17)

1
g =- [ﬁRQEQ +Akir ExL + BronEQEN + EﬂKLMNREKLEMN + MKLQREKLEQ] (18)

Thus, in a elastic-piezoelectric anisotropic medium, in a situation where both
mechanical interactions and electrical interactions are assumed non-linear, the
constitutive equations for symmetric stress and polarization on material coordinates in
terms of their components can be expressed through expressions (17) and (18). First
term on the right part of the the constitutive equation for the symmetric stress (17) is
the classical term of the Hooke law and contributes to the stress through the strain
tensor. The second term shows the stress arising out of piezoelectric effect. The third
term shows the non-linear effect of the strain tensor. The fourth term shows mutual
interaction between the strain tensor and the electric field. The last term shows the stress
formed by the non-linear effect of the electric field. Considering expression (18), which
yields the constitutive equation of the polarization field, linear effects of the electric
field and the strain tensor, non-linear effects of the electric field and the strain tensor,
mutual interaction between the strain tensor and the electric field contribute to the
formation of polarization field in the said medium.

Substituting symmetric stress given by the expression (17) and polarization field given
by the expression (18) into the equation (11)s, the asymmetric stress (total stress) is
found as follows:
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Tpp =X pray By + /’LPRQ EQ + /’LPRMNQEMNEQ + ;{’PRQNEQEN + Z prunso Emn Esg +

1
-1 -1 -1 -1
ﬂRQEQEMCMR +/qLKLR EKLEM CMR + IBRQNEQENEMCMR +EﬂKLMNREKLEMNEMCMR +

2/1KLQREKLEQEMC/\_/[IR (19)
This equation is a non-linear expression of the stress obtained for the material in
consideration under the said assumptions. Because fifth and sixth grade material tensors
appear in this expression, it will be difficult to solve problems using the constitutive
equation. Therefore, quasi-linear constitutive equations are to be obtained as follows.

5. QUASI — LINEAR THEORY

Assuming that deformation gradients are very small and electrical interactions
are non-linear; the constitutive equations of polarization field and the stress have been
linearized to a degree. To obtain the linear theory it is known that the strain tensor

conform to constraint: ||£|| <<1 [21]. Furthermore, E,E, term in the constitutive
equation of polarization field given by the expression (18) can be omitted because of that
this term shows up third grade electrical field vector in the asymmetric stress equation.
E,E, term in the constitutive equation of the symmetric stress given by the expression

(17) can be omitted because of that the coefficient of this term is fifth grade material
tensor. In this case, the constitutive equations of the symmetric stress and the
polarization field will be reduced to the following forms:

T = Zpray Eny + ﬂ’PRQ E,+ ﬂ’PRQNEQEN (20)
I, =- [:BRQEQ + Agir Exg +2ﬂ’KLQREKLEQ:| (21)

Substituting equations (20) and (21) into the expression (11)s, the quasi-linear material
stress tensor occurring asymmetrically in the considered anisotropic material has been
obtained as follows, based on the assumptions previously mentioned.

TPR = 2PRMN EMN + ﬂ“PRQ EQ + ﬂ“PRQNEQEN + ﬂRQEQEMCA}lR +
ﬂ’KLR EKLEMC]\_/IIR +21KLQREKLEQEMCA_/IIR (22)
The following relations can be written down for the linear theory in continuum mechanics [21]:

Ak Mk = Okl » Ak Akp = OkL Xpk =Mk +Ae ULk Xk gk =Mk — Ak vk
Uk =%k lipvig > XkxXip =k s XX =Nk Airs
~ - 1
XppXrr Ex =App g i Exs  Exp = Egp =4k Aipen ) A A Qug g +ugg ),
o B
e = ek = (upg +upg), J =l-upy, p=po(l—uyy) (23)
In this case, substituting equations (20) and (21) into equations (10)4 and (10)s, using

expressions (23), the quasi-linear constitutive equations of the symmetric stress and the
polarization field on spatial coordinates as follows:
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- (]' uk k)lzplmn mn + /lplqEq + //i’pran E J (24)
I)r = _(1 - uk,k )(ﬂrq Eq + /’i’klr Ekl + 2ﬂqurEqu) (25)
The spatial material tensors £ ,,,.,, 2,05 > Apan> Brg» A a0d A4, in these equations

bear the same symmetry characteristics as the material tensors of materials X,y ,
Apro s Apron s Bros Axir @nd Agor, and are defined as follows:

z:prmn = ﬂ“pP ﬂ’rR ﬂ’mM ﬂ“nN ZPRMN B ﬂ’prq = ﬂ’pP ﬂ’rR ﬂ’qQ APRQ)
ﬂ’prqn = /lpP AR /1qQ AnN /1PRQN 5 ﬂrq =g ﬂ’qQ ﬂRQ 5 Akir = Ak AL Aer ARk L
ikzqr = Ak AiL /1qQ AR ARKLQ (26)

Due to symmetries X =3 Apir = A, and Ay, =44, of the coefficients

prmn prnm>

2 rmns Awe and 4., the equations (24) and (25) have been obtained as follows in

terms of linear constituents of displacement gradient.

=3 2By + 2B Ey = 2 it E, = A tty oEE, 27)

tp}" prmn m,n + prq-—4q prqn

P = _ﬂrqEq = Aty — 22qu1 ”klE + B, u (23)

q~ m,m q
Substituting the equations (27) and (28) into the expression (11)7, the quasi-linear spatial
constitutive equation of the asymmetric stress is obtained as follows.

t, =% +A, E +4 E, =2, w.E, =2, . EE, +

plmn m,n prq—q prqn n prq ‘prqn

B, EE. + Au, E, +2lk,qpuk’,EqE, — Bt E, (29)
In operations conducted up to now, the symmetric stress, the asymmetric stress and the
polarization field on spatial coordinates have been expressed in terms of displacement
gradient and electric field vector in the equations (27), (28) and (29). These spatial
constitutive equations obtained will be substituted into the balance equations, yielding
the field equations. If the equation (28) is substituted into the equation (2); and the
expression (2); is used, the total electrical displacement vector can be found as follows:

Dy ==y @4 = Martiic s + Hidgr Wi 1%q = Brgimm®Pq (30)

The coefficients in these equations have been defined as:e, =¢(6,,-5,,,
Hirgr=2A414r- Considering that the medium is homogeneous and isothermal, if

divergence of the expression (30) is taken and substituted into the equation (1), the
following expression is obtained.

O = Dr,r == Erq ¢,q - //i'klruk,lr + /uqur (uk,lr¢,q + uk,l¢,qr) - ﬂrq (um,mr¢,q + um,m¢,qr) (3 1)
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If the expression (2); is substituted into the constitutive equations of the symmetric stress
and the polarization field given in equations (27) and (28), and, considering the fact that
the medium is homogeneous and isothermal, its divergence is taken and it is afterwards
substituted into the equation (4);, the following field equation is obtained under the said
assumptions.

0%u

p
£o a[z =P0 fp _uk,kfp + Z:p}’mn U, nr _ﬂ’prq ¢,qr _ﬂ’prqn (¢,qr ¢,n + ¢,q ¢,nr) +

ﬂ’prq (uk,kr ¢,q + uk,k ¢,qr) - /lprqn |_uk,kr ¢,q ¢,n + uk,k (¢,qr ¢,n + ¢,q ¢,nr )J+
ﬂrq¢,qr ¢,p - ﬂklr U 1y ¢,p + Hidgr (uk,lr ¢,q ¢,p + Uk 1 ¢,qr ¢,p) - ﬂrq (um,mr ¢,q ¢,p + Um.m ¢,qr ¢,p) (32)

The expressions (31) and (32) yield the field equations containing the unknowns u; and
¢ . Solution of these field equations under initial and boundary conditions forms the

mathematical structure of a boundary value problem to consider. Thus, the system
comprised of field equations (31) and (32) along with the boundary equations contained
in jump conditions (1)2, (4), and (2), constitutes governing equations for boundary value
problems related with anisotropic, quasi-linear, elastic and piezoelectric media. The said
boundary conditions can be openly expressed as follows:

n n

6. CONCLUDING REMARKS

In this paper a nonlinear constitutive model for elastic-piezoelectric materials
has been presented. We have proposed and analyzed a nonlinear elasticity model of
deformation induced by electrostatic forces. The coupling of elastic deformation to the
electrostatic field is great importance in modeling the electro-mechanical behavior of
elastic-piezoelectric materials subject to external loading. In this study, a mathematical
model has been formulated in the context of continuum electrodynamics. The model is
embedded in a thermodymamic consistent framework, which is based on the definition
of a free energy function. Fundamental principles and axioms of modern Continuum
Mechanics, Clausius-Duhem inequality, general thermodynamic balance equations and
balance equations of electrostatic have provided guidance and have been determining in
modeling the nonlinear electro-mechanical behavior of material. The nonlinearity
according to the electric field of the torque applied on the electric dipoles by the electric
field applied on polarizable media causes the asymmetry of the mechanical stress
tensor. To calculate the asymmetric stress, the symmetric stress and the polarization
field should be known. From the constitutive equations, we have seen that the
symmetric stress and the polarization field are derived from the stress potential Z. In
this case, open form of X, which is known as constitutive function with clear
arguments, should be found.

As an approach it has been assumed that the stress potential function is analytic,
leading to their expansion in Taylor series in terms of the arguments it depends on. Kind
and number of terms in series expansion determined the order of non-linearity of the
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medium. Besides, both mechanical interactions and electrical interactions were assumed
first to be non-linear. In this case non-linear constitutive equations of the symmetric
stress and the polarization field have been expressed by (17) and (18), respectively. By
using these equations, non-linear constitutive equation of the asymmetric stress has
been obtained in the material form with expression (19). Because fifth and sixth grade
material tensors appear in this expression, it will be difficult to solve problems using the
constitutive equations. Therefore, the quasi-linear constitutive equations were to be
obtained. Assuming that deformation gradients are very small and electrical interactions
are non-linear; the constitutive equations of the polarization field and the stress have
been linearized to a degree. The quasi-linear constitutive equations which on material
coordinates have been obtained by expressions (20)-(22). The quasi-linear constitutive
equations have been given in expressions (27)-(29) on spatial coordinates. To obtain the
field equations, constitutive equation of the polarization given by the equation (28) has
been substituted into (2); and, in the balance equation provided, the constitutive
equation of the symmetric stress given by the equation (27) has been substituted into the
Cauchy motion equation (4);, yielding field equations (31) and (32). Solution of the
field equations along with initial and boundary conditions in conformity with the
structure of the problem to be used in practice will constitute the structure of a boundary
value problem to consider.

Besides, considering the motion equation (32), we can see the internal
electromechanical forces affecting the medium. Type of the terms on the right is in the
dimension of force per unit of volume. The first term on the right represents mechanical
body force. The second term represents force caused by interaction of the deformation
field with mechanical body force. The third term represents force created by the elastic
deformation. The fourth term represents force reated by the electric field gradient. The
fifth and eighth terms represent second-grade electrostatic forces. The sixth and ninth
terms are force terms caused by interaction of the deformation field with linear electric
field. The seventh, tenth and eleventh terms represent force caused by interaction of the
deformation field with non-linear electric field. In a future work we will study the
development of numerical methods for this model where electrostatic forces a dominant
role.
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