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Abstract: In this paper, the elastic-piezoelectric continuum has been investigated 
theoretically and its non-linear constitutive equations have been defined. The theory is 
formulated in the context of continuum electrodynamics. The solid medium is assumed 
to be non-linear, homogeneous, compressible and isothermal, has elastic and 
piezoelectric anisotropy. Basic principles of modern continuum mechanics and balance 
equations of electrostatic have provided guidance and have been determining in the 
process of this study.  From the formulation belonging to the constitutive equations, it 
has been observed that the symmetric stress and polarization have been derived from a 
scalar-valued thermodynamic potential defined in calculations. As a result of 
thermodynamic constraints, it has been determined that the free energy function is 
dependent on a symmetric tensor and a vector. The free energy function has been 
represented by a power series expansion and the type and number of terms taken into 
consideration in this series expansion has determined the non-linearity of the medium. 
Finally, the quasi-linear constitutive equations are substituted in the balance equations 
to obtain the field equations. 
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1. I�TRODUCTIO� 

 
Piezoelectric materials have widespread applications in modern technical areas 

such as mechatronics, electromechanical devices, microelectromechanical systems or 
smart structures, serving as sensors, actuators or transducers [1, 2, 3]. In order to assess 
the strength and durability of those materials, exhaustive theoretical investigations have 
been performed recently [3, 4, 5]. Piezoelectric materials produce electric charges when 
mechanically deformed and an electric potential causes a mechanical deformation. This 
property makes them suitable for sensor and transducer applications [6].The aim of the 
paper is to determine the electro-stressed state of an elastic-piezoelectric material under 
mechanical and electric loads.  
 The constitutive equations are one of the main aspects continuum mechanics. 
Many attempts have been made in order to write the constitutive equations in terms of 
invariants [7, 8, 9, 10]. Material in this study has been assumed to be a general 
anisotropic medium. In the framework of this approximation, stress potential Σ  
function has been expanded into power series in terms of components of the arguments 
it depends on, yielding the elastic behavior and polarization reaction of the medium. 
Kind and number of terms considered in the series expansion have determined the non-
linearity grade of the medium. First, it has been assumed that both mechanic and 
electrical interactions are non-linear. Afterwards, assuming that deformation gradients, 
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(or displacement gradients) are very small and electrical interactions are non-linear; the 
constitutive equations of polarization field and symmetric stress have been linearized to 
a degree. As a result, the quasi-linear constitutive equations are substituted in the 
balance equations to  obtain the field equations.  
 Our early studies have provided a basis for the conduction of this study. In all of 
our previous studies [11,12,13,14], since the material is viscoelastic, the symmetric 
stress was obtained as the sum of elastic and dissipative stresses. In our study [15], the 
constitutive equations determining the linear electro-thermomechanical behavior of a 
thermoelastic-piezoelectric medium have been obtained.  In this study, however, the 
constitutive equations have been obtained that determine the non-linear electro-
thermomechanical behavior of elastic-piezoelectric medium. In this study, the material 
is elastic-piezoelectric but the material isn’t composite. Besides the medium is 
homogeneous, compressible and isothermal. Since the temperature has been assumed to 
be constant, no temperature change has been considered leading to the omission of the 
heat flux vector formulation. 
 

2. ELECTROSTATIC A�D THERMO-MECHA�IC BALA�CE EQUATIO�S 
 

Local Electrostatic Thermomechanical balance equations can be summarized as 
follows [16, 17]. 
 Coulomb-Gauss Law: 

0D =⋅∇   in     V(t)  ,                 [ ][ ] fw=⋅nD    on     )(tσ                               (1) 

 
Faraday Law: 
 φ∇∇ −=⇒=× E0E     in    V(t)  ,      [ ][ ] 0En =×   on   )(tσ ,              PED +≡ 0ε       (2) 

 
Where D  is electric displacement vector; n  outward unit normal vector of discontinuity 
surface σ ,  E  electric field vector, φ  electric scalar potential, 0ε  electric permitivity of 

vacuum, P  polarization field vector, fw  free surface charge distribution, [ ][ ] −+ −DDD ≡  

jump of D  across the discontinuity surface [16].  
 
Consevation of Mass:  
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( )tJ
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,

, 0

x

X
x

ρ
ρ = ,       0v , =+ kkρρ&   in V(t),       [ ][ ] 0=ρU     on  )(tσ                      (3)                           

 
Balance of Linear Momentum: 

prrrprpp EPt ,,fv −+= ρρ &    in  V(t),           [ ][ ] 0vk =+ Utn kll ρ on  ( )tσ                    (4) 

 
Balance of Moment of Momentum:  

⇒=+ 0)( prrpkrp EPtε  prrprpkrp ttt =⇒=0ε   in  V(t),  [ ][ ] 0v =+ prprlklp Utnx ρε  on  σ(t)  (5) 

 
Conservation of Energy: 

ΠE && ⋅++−= ρρερ hqt kkkllk ,,v   in  V(t) , 0]]v[[]]21[[
2

=−++ kllkk qtnU vερ  on )( tσ (6)  
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Clausius-Duhem Inequality: 

0≥≡∇
1

∇
1h

2
γρθ

θθθ
ρηρ ⋅−⋅+− qq&   in  V(t)  ,   [ ][ ] ( )[ ][ ] 0≤θηρ qn ⋅−U  on σ (t)      (7) 

 
In these and following equations physical meanings of various symbols are: U relative 
displacement velocity of the discontinuous surface according to the medium, v  velocity 
vector of continuous media, u velocity vector of discontinuity surface,  0ρ mass 

density before deformation, ρ  mass density after deformation, J  jacobian, v&  

acceleration vector, klt  asymmetric stress tensor,  prt  symmetric stress tensor, E
jit  

polarization stress tensor, lkd  rates of deformation tensor, lkw  spin tensor,  kl ,v  

velocity gradient tensor, kf  mechanical body force per unit mass,  E
kF  electrostatic 

body force per unit volume, E
kC  intrinsic body couple per unit volume, ε  internal 

energy per unit mass, qk  heat flux vector, Π  polarization vector per unit of mass, h  
energy source per unit mass,  hE  electrostatic energy source, kw  angular velocity, 

η entropy per unit mass, ( )t,Xθ  the absolute temperature distribution, γρ  entropy 

production per unit mass and kjiε  permutation tensor. These  symbols have been 

expressed as follows [18]:  

nv≡ −nuU ,       jij
E

i EPF ,= ,     kl
E
klkk

E dtPEh +=
∗

ρ ,        kjkji
E
i EPC ε= ,      vw ×∇=

2

1
 

kkkkP ,, vPvPP +−≡
∗

& ,     ji
E
ji EPt = ,      klklkl wdv , += ,          klkllklk dd =+ )vv(

2

1
≡ ,, ,  

( ) klkllklk ww −=− ,, vv
2

1
≡ ,       ΠEwC &⋅=⋅+ ρρ EEh ,        

ρ

P
Π≡ .                      (8) 

 

3. THERMODY�AMIC CO�STRAI�TS A�D MODELI�G CO�STITUTIVE  

EQUATIO�S 

  The local energy equation (6) is then suitably combined with the entropy 
inequality (7) and, using a Legendre transformation such as ΠE ⋅−−θηεψ ≡  for the free 

energy, the entropy inequality is obtained as follows in the material form [19]:  
 

0
1

2

1
)( ,0 ≥Π−−++Σ− KKKKKLKL EQCT &&&& θ

θ
θηρ                                                                (9)  

 
Relationships between material and spatial forms of values appearing in this inequality 
have been presented as follows [18,19]: 

ψρ0≡Σ ,     ⇒= LlKklkKL xxC ,,d2&
lLkKKLkl XXCd ,,

2

1 &= ,     kKkK x ,,, θθ = ⇒
KkKk X ,,, θθ = , 

lklLkKKL tXJXT ,,≡ ⇒
KLLlKklk TxxJt ,,

1−= ,           kkKK PX ,
0≡
ρ

ρ
Π ⇒

KKkk xJP Π=
−

,
1 ,        

  kkKK qXJQ ,≡ ⇒
KKkk QxJq ,

1−
= ,              kKkK ExE ,≡ ⇒

KkKk EXE ,=            (10)    

Where Σ  is thermodynamical stress potential, ψ  generalized free energy density, kKX ,  

deformation gradient of inverse motion.  
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Formulation of the constitutive equations for the elastic-piezoelectric continuum under 
consideration can be summarized as follows [20].  
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From the equations provided in the expressions (11)2 and (11)3, it is understood that the 
polarization and the stress are derived from the stress potential Σ. Thus, the explicit form of  
Σ,  which appear as constitutive function with definite arguments, should be determined. The 
material in this study has been assumed to be a general anisotropic medium. In the 
framework of this approximation the stress potential Σ  function has been expanded into 
power series in terms of components of the arguments it depends on, yielding the elastic 
behavior and polarization reaction of the medium. Kind and number of terms considered 
in the series expansion has determined the non-linearity grade of the medium. First, it 
has been assumed in this study that both mechanic interactions and electrical 
interactions are non-linear. This situation will be taken into consideration in operations 
pertaining to the sections below. 
 

4. DETERMI�ATIO� OF SYMMETRIC STRESS A�D POLARIZATIO� 

CO�STITUTIVE EQUATIO�S 

 
  Due to the existence of the relationship LKLKLK EC 2+= δ  between the Green 

deformation tensor and the strain tensor, arguments of the stress potential given in the 
expression (11)1  can be recorded in the following form: 
 

),,( θKKL EEΣ=Σ                                                                                                      (12)   

 
Assuming that this function (12) is analytic in terms of values KKL EE ,  , and expanding 

the Taylor series around 0=KLE  and 0=KE  (all to be represented with the symbol 0 ), 

the following expression can be found for the stress potential. 

++Σ+Σ=Σ QQKLKLQKL EEEE β0),( +++Σ QKLKLQ*QQ*M*KLKLM* EEEEEE λβ
2

1

2

1
 

++Σ S*QQ*SSQM*KLKLM*SQ EEEEEE β
3

1

3

1
*QKLKLQ*QM*KLKLM*Q EEEEEE λλ +

2

1
       (13) 

It is clear that the coefficients in these equations depend only on the temperature. 
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0

3

3

1

QM*KL

KLM*Q
EEE ∂∂∂

Σ∂
≡λ ,  

0

3

6

1

*QKL

KLQ*
EEE ∂∂∂

Σ∂
≡λ                                   (14) 

Due to the symmetry of the tensor KLE  and independence of derivatives in the 

definitions in expressions (14) from the order, these coefficients bear the symmetry 
characteristics given below: 

LKKL Σ=Σ ,  M*KLKL*MLKM*KLM* Σ=Σ=Σ=Σ ,   *QQ* ββ = ,  LKQKLQ λλ = ,        

SQM*KLKLSQM*M*KLSQKL*MSQLKM*SQKLM*SQ Σ=Σ=Σ=Σ=Σ=Σ ,   

S*QQS**QSQ*S ββββ === , 

M*KLQKL*MQLKM*QKLM*Q λλλλ === ,  KL*QLKQ*KLQ* λλλ ==                (15) 

 

Since 
KLKL EC ∂

Σ∂
=

∂

Σ∂
2 , the constitutive equation of symmetric stress can be written in 

the following form. 
  

 
PR

PR
E

T
∂

Σ∂
=                                                                                                               (16)                

 
If derivatives in (16) and (11)2 are taken from (13) and used in substitution, the 
following is obtained. 
 

*QPRQ*QM*PRM*QSQM*PRM*SQQPRQM*PRM*PR EEEEEEEET λλλ ++Σ++Σ=        (17) 

 

[ +++−=Π *QRQ*KLKLRQRQR EEEE βλβ ]QKLKLQRM*KLKLM*R EEEE λλ 2
2

1
+               (18) 

Thus, in a elastic-piezoelectric anisotropic medium, in a situation where both 
mechanical interactions and electrical interactions are assumed non-linear, the 
constitutive equations for symmetric stress and polarization on material coordinates in 
terms of their components can be expressed through expressions (17) and (18). First 
term on the right part of the the constitutive equation for the symmetric stress (17) is  
the classical term of the Hooke law and contributes to the stress through the strain 
tensor. The second term shows the stress arising out of piezoelectric effect. The third 
term shows the non-linear effect of the strain tensor. The fourth term shows mutual 
interaction between the strain tensor and the electric field. The last term shows the stress 
formed by the non-linear effect of the electric field. Considering expression (18), which 
yields the constitutive equation of the polarization field, linear effects of the electric 
field and the strain tensor, non-linear effects of the electric field and the strain tensor, 
mutual interaction between the strain tensor and the electric field contribute to the 
formation of polarization field in the said medium.  
 
Substituting symmetric stress given by the expression (17) and polarization field given 
by the expression (18) into the equation (11)6, the asymmetric stress (total stress) is 
found as follows: 
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++++Σ= *QPRQ*QM*PRM*QQPRQM*PRM*PR EEEEEET λλλ +Σ SQM*PRM*SQ EE

++
−− 11
MRMKLKLRMRMQRQ CEECEE λβ ++ −− 11

2

1
MRMM*KLKLM*RMRM*QRQ* CEEECEEE λβ

12 −

MRMQKLKLQR CEEEλ                                                                                                    (19) 

This equation is a non-linear expression of the stress obtained for the material in 
consideration under the said assumptions. Because fifth and sixth grade material tensors 
appear in this expression, it will be difficult to solve problems using the constitutive 
equation. Therefore, quasi-linear constitutive equations are to be obtained as follows. 

 

5. QUASI – LI�EAR THEORY 

 
 Assuming that deformation gradients are very small and electrical interactions 
are non-linear; the constitutive equations of polarization field and the stress have been 
linearized to a degree. To obtain the linear theory it is known that the strain tensor 

conform to constraint: 1<<Ε  [21]. Furthermore, *Q EE  term in the constitutive 

equation of polarization field given by the expression (18) can be omitted because of that 
this term shows up third grade electrical field vector in the asymmetric stress equation. 

QM* EE  term in the constitutive equation of the symmetric stress given by the expression 

(17) can be omitted because of that the coefficient of this term is fifth grade material 
tensor. In this case, the constitutive equations of the symmetric stress and the 
polarization field will be reduced to the following forms:   

*QPRQ*QPRQM*PRM*PR EEEET λλ ++Σ=                        (20) 

 

[ ]QKLKLQRKLKLRQRQR EEEE λλβ 2++−=Π                               (21) 

Substituting equations (20) and (21) into the expression (11)6,  the quasi-linear material 
stress tensor occurring asymmetrically in the considered anisotropic material has been 
obtained as follows, based on the assumptions previously mentioned. 

++++Σ= −1
MRMQRQ*QPRQ*QPRQM*PRM*PR CEEEEEET βλλ   

11 2 −− + MRMQKLKLQRMRMKLKLR CEEECEE λλ                                     (22) 

The following relations can be written down for the linear theory in continuum mechanics [21]: 

kllKkK δλλ = ,        KLkLkK δλλ = ,         KLkLkKKk Ux ,, λλ += ,        kllKkKkK uX ,, λλ −= ,  

lklLkKLK uU ,, λλ=  ,      lLkKLlKk xx λλ≡,, ,      lLkKlLkK XX λλ≡,, ,  

kkKrRpPKRrPp EExx λλλ≡,, ,    )(
2

1~~
,, kllklLkKkllLkKKLKL uue +=≡Ε≅Ε λλλλ , 

)(
2

1~
,, kllkklkl uuee +=≅ ,      kkuJ ,

1 1−≅− ,             )1( ,0 kku−≅ ρρ                             (23) 

In this case, substituting equations (20) and (21)  into equations (10)4 and (10)5, using 
expressions (23), the quasi-linear constitutive equations of the symmetric stress and the 
polarization field on spatial coordinates as follows: 
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[ ]nqprqnqprqmnprmnkkpr EEEeut λλ ++Σ−= ~)1( ,                                        (24) 

 
( )qkklqrklklrqrqkkr EeeEuP ~2~)1( , λλβ ++−−=                       (25) 

The spatial material tensors prmnΣ , rqpλ , , prqnλ , rqβ , klrλ  and klqrλ  in these equations 

bear the same symmetry characteristics as the material tensors of materials PRM*Σ , 

PRQλ , PRQ*λ , RQβ , KLRλ  and KLQRλ , and  are defined as follows: 

*MRP*nMmRrPpnmrp Σ≡Σ λλλλ ,     QRPQqRrPpqrp λλλλλ ≡ ,  

*QRP*nQqRrPpnqrp λλλλλλ ≡  ,   QRQqRrqr βλλβ ≡ ,     LKRRrLlKkrlk λλλλλ ≡  

QLKRRrQqLlKkrqlk λλλλλλ ≡                                                                                 (26)       

Due to symmetries  mnrpnmrp Σ=Σ , rklrlk λλ =  and rqklrqlk λλ =  of the coefficients 

nmrpΣ , klrλ  and lqrkλ , the equations (24) and (25) have been obtained as follows in 

terms of linear constituents of displacement gradient. 

 
  nqkkprqnqkkprqnqprqnqprqnmprmnpr EEuEuEEEut ,,, λλλλ −−++Σ=                (27) 

 

qmmrqqlkklqrlkklrqrqr EuEuuEP ,,, 2 βλλβ +−−−=                 (28) 

 
Substituting the equations (27) and (28) into the expression (11)7, the quasi-linear spatial 
constitutive equation of the asymmetric stress is obtained as follows. 
 

+−−++Σ= nqkkprqnqkkprqnqprqnqprqnmprmnpr EEuEuEEEut ,,, λλλλ  

rqmmpqrqlkklqprlkklprqpq EEuEEuEuEE ,,, 2 βλλβ −++                          (29) 

 
In operations conducted up to now, the symmetric stress, the asymmetric stress and the 
polarization field on spatial coordinates have been expressed in terms of displacement 
gradient and electric field vector in the equations (27), (28) and (29). These spatial 
constitutive equations obtained will be substituted into the balance equations, yielding 
the field equations. If the equation (28) is substituted into the equation (2)3 and the 
expression (2)1 is used, the total electrical displacement vector can be found as follows: 
 

qmmrqqlkklqrlkklrqrqr uuuD ,,,,,, φβφµλφ −+−∈−=                                                                (30) 

 
The coefficients in these equations have been defined as: qrqrqr βδ −≡∈ 0ε , 

rqlkrqlk λµ 2≡ . Considering that the medium is homogeneous and isothermal, if 

divergence of the expression (30) is taken and substituted into the equation (1)1 the 
following expression is obtained. 
 

−++−∈−== )(0 ,,,,,,, qrlkqlrkklqrlrkklrqrqrr uuuD φφµλφ )( ,,,, qrmmqmrmrq uu φφβ +          (31)     
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If the expression (2)1 is substituted into the constitutive equations of the symmetric stress 
and the polarization field given in equations (27) and (28), and, considering the fact that 
the medium is homogeneous and isothermal, its divergence is taken and it is afterwards 
substituted into the equation (4)1, the following field equation is obtained under the said 
assumptions. 

++−−Σ+−=
∂

∂
)( ,,,,,,,02

2

0 nrqnqrprqnqrprqnrmprmnpkkp
p

ufuf
t

u
φφφφλφλρρ    

[ ]+++−+ )()( ,,,,,,,,,,,, nrqnqrkknqkrkprqnqrkkqkrkprq uuuu φφφφφφλφφλ    

)()( ,,,,,,,,,,,,,,,, pqrmmpqmrmrqpqrlkpqlrkklqrplrkklrpqrrq uuuuu φφφφβφφφφµφλφφβ +−++−   (32) 

 
The expressions (31) and (32) yield the field equations containing the unknowns ku and  

φ . Solution of these field equations under initial and boundary conditions forms the 

mathematical structure of a boundary value problem to consider. Thus, the system 
comprised of field equations (31) and (32) along with the boundary equations contained 
in jump conditions (1)2, (4)2 and (2)2 constitutes governing equations for boundary value 
problems related with anisotropic, quasi-linear, elastic and piezoelectric media. The said 
boundary conditions can be openly expressed as follows:  
 

fnn DD ω−= + ,          kkll ttn = ,           += kk EE                                                         (33) 

 
6. CO�CLUDI�G REMARKS 

 

In this paper a nonlinear constitutive model for elastic-piezoelectric materials 
has been  presented. We have proposed and analyzed a nonlinear elasticity model of 
deformation induced by electrostatic forces. The coupling of elastic deformation to the 
electrostatic field is great importance in modeling the electro-mechanical behavior of  
elastic-piezoelectric materials subject to external loading. In this study, a mathematical 
model has been formulated in the context of continuum electrodynamics. The model is 
embedded in a thermodymamic consistent framework, which is based on the definition 
of a free energy function. Fundamental principles and axioms of modern Continuum 
Mechanics, Clausius-Duhem inequality, general thermodynamic balance equations and 
balance equations of electrostatic have provided guidance and have been determining in 
modeling the nonlinear electro-mechanical behavior of material. The nonlinearity 
according to the electric field of the torque applied on the electric dipoles by the electric 
field applied on polarizable media causes the asymmetry of the mechanical stress 
tensor. To calculate the asymmetric stress, the symmetric stress and the polarization 
field should be known. From the constitutive equations, we have seen that the 
symmetric stress and the polarization field are derived from the stress potential Σ. In 
this case, open form of Σ,  which is known as constitutive function with clear 
arguments, should be found.  

As an approach it has been assumed that the stress potential function is analytic, 
leading to their expansion in Taylor series in terms of the arguments it depends on. Kind 
and number of terms in series expansion determined the order of non-linearity of the 



 
 

On Constitutive Equations  
 

847 

medium. Besides, both mechanical interactions and electrical interactions were assumed 
first to be non-linear. In this case non-linear constitutive equations of the symmetric 
stress and the polarization field have been expressed by (17) and (18), respectively. By 
using these equations, non-linear constitutive equation of the asymmetric stress has 
been obtained in the material form with expression (19). Because fifth and sixth grade 
material tensors appear in this expression, it will be difficult to solve problems using the 
constitutive equations. Therefore, the quasi-linear constitutive equations were to be 
obtained. Assuming that deformation gradients are very small and electrical interactions 
are non-linear; the constitutive equations of the polarization field and the stress have 
been linearized to a degree. The quasi-linear constitutive equations which on material 
coordinates have been obtained by expressions (20)-(22). The quasi-linear  constitutive 
equations have been given in expressions (27)-(29) on spatial coordinates. To obtain the 
field equations, constitutive equation of the polarization given by the equation (28) has 
been substituted into (2)3 and, in the balance equation provided, the constitutive 
equation of the symmetric stress given by the equation (27) has been substituted into the 
Cauchy motion equation  (4)1,  yielding field equations (31) and (32). Solution of the 
field equations along with initial and boundary conditions in conformity with the 
structure of the problem to be used in practice will constitute the structure of a boundary 
value problem to consider.  

Besides, considering the motion equation (32), we can see the internal 
electromechanical forces affecting the medium. Type of the terms on the right is in the 
dimension of force per unit of volume. The first term on the right represents mechanical 
body force. The second term represents force caused by interaction of the deformation 
field with mechanical body force. The third term represents force created by the elastic 
deformation. The fourth term represents force reated by the electric field gradient. The 
fifth and eighth terms represent second-grade electrostatic forces. The sixth and ninth 
terms are force terms caused by interaction of the deformation field with linear electric 
field. The seventh, tenth and eleventh terms represent force caused by interaction of the 
deformation field with non-linear electric field. In a future work we will study the 
development of numerical methods for this model where electrostatic forces a dominant 
role. 
 

8. REFERE�CES 

 
1. U. Gabbert and H. Tzou, Smart structures and structonic systems, In: Proceedings of 
IUTAM-Symposium Magdeburg 2000, Dordrecht: Springer, 2001. 
2. W. Yang, Mechanics and reliability of actuating materials, In: Proceedings of 
IUTAM-Symposium Beijing 2004, Dordrecht: Springer, 2006. 
3. M. Kuna, Fracture mechanics of piezoelectric materials – Where are we right now?, 
Engineering Fracture Mechanics, 77 (2), 309-326, 2010. 
4. C. M. Landis, Non-linear constitutive modeling of ferroelectrics, Current Opinion in 
Solid State and Materials Science, 8, 59-69, 2004.  
5. I. Y. Babich and V. S. Kirilyuk, Stress state of a piezoelectric elastic medium with an 
arbitrarily oriented triaxial ellipsoidal inclusion, International Applied Mechanics, 45 

(4), 406-412, 2009. 



 
 

M. Usal and L. Yünlü 
 

848 

6. S. P. Joshi, Non-linear constitutive relations for piezoceramic materials, Smart 
Materrials and Structures, 1 (1), 80-83, 1992. 
7. P. Padilla, R. Rodriguez-Ramos and B. E. Pobedria, Constitutive relations for 
piezoelectric materials in terms of invariants, Mechanics research communications, 28 

(2), 179-186, 2001. 
8. C. C. Wang, A new representation theorem for isotropic functions, Parts I and II, 
Archive of Rational Mechanics and Analysis, 36, 166-223, 1970. 
9. G. F. Smith,  On isotropic functions of symmetric tensors, skew symmetric tensors 
and vectors, International Journal of Engineering  Science, 19, 899-916, 1971. 
10. A. J. M. Spencer, Theory of invariants, in Continuum Physics, vol. 1, ed. A.C. 
Eringen, Academic Press, New York, 1971. 
11. M. Usal, M. R. Usal, and C. Kurbanoğlu., A Mathematical Model for the       
Electrothermomechanical Behavior of  Dielectric Viscoelastic Materials, Science        
and Engineering of Composite Materials, 16 (3), 153-171, 2009. 
12. A. Ü. Erdem, M. Usal and M. R. Usal, A Mathematical Model For the Electro-
thermomechanical Behavıor of An Arbitrarily  Fiber Reinforced Viscoelastic  
Piezoelectric Body , J. Fac. Eng. Arch. Gazi Univ.,  20 ( 3),  305-319, 2005. 
13. M. Usal, M. R. Usal and A.. Erdem, On Magneto-Viscoelastic Behavior of Fiber- 
Reinforced Composite Materials Part - I: Anisotropic Matrix Material, Science and  
Engineering of Composite Materials, 16 (1), 41-56, 2009.  
14. M. R. Usal,  A Constitutive Formulation of Arbitrary Fiber- Reinforced Viscoelastic 
Piezoelectric Composite Materials - I, Đnternational Journal of *onlinear Sciences and 
*umerical Simulation, 8 (2), 257-274, 2007.  
15. M. Usal, Formulation of the Linear  Constitutive Equations of  Thermoelastic 
Piezoelectric Materials, Electronic Journal of Machine Technologies,7 (1), 13-30, 2010. 
16. A. C. Eringen and G. A. Maugin, Electrodynamics of continua: Foundations and 
Solid Media, Springer-Verlag, New York, 1990. 
17. G. A. Maugin,  Continuum Mechanics of Electromagnetic Solids, North – Holland 
Series Applied Mathematics and Mechanics, Elsevier Scie. Netherlands, 1991. 
18. M. R. Usal, A mathematical model for the electro-thermomechanical behaviour of 
fiber reinforced elastic dielectric media,  Ph. D. Thesis, Erciyes University, Institute of 
Science and Technology, Kayseri, Turkey, 1994. 
19. M. Usal, A mathematical model for a biological construction element, Ph. D Thesis, 
Süleyman Demirel University, Institute of Sci. and Tech., Isparta, Turkey, 2001. 
20. L. Yünlü, A Mathemetical Model For The Electro-Thermomechanical Behavior of 
An Elastic Piezoelectric Body, Master Thesis, Süleyman  Demirel University, Institute 
of Science and Technology, Isparta, 2008.  
[21] E. S. Şuhubi, Continuum mechanics – Introduction, Đ.T.U., Faculty of Arts and  
Sciences Publication, Đstanbul, Turkey, 1994.  
22. A. C. Eringen, Mechanics of Continua, Robert E. Krieger Pub. Co., Hungtington, 
New York, 1980. 


