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Abstract- In this paper, the variational iteration method (VIM) is employed to solve a
system of fuzzy differential equations of first order. Since every ordinary fuzzy
differential equations of higher order can be converted into a fuzzy system of the first
order, this method can be used for solving 7 -th order fuzzy differential equations. Also
the convergency of VIM for this system is proved. Finally to more illustrate several
examples are solved.
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1. INTRODUCTION

Many authors have been worked about variational iteration method (VIM) that
for more information sees [6]-[9]. In this paper, the VIM is extent to solve n-th order
fuzzy differential equations and obtain approximate fuzzy solution.

The VIM is proposed by He [9,10] as a modification of a general Lagrange multiplier
method [11]. To illustrate its basic idea of the technique, we consider following general
nonlinear system:

L(u(®)) + N(u(?)) = g(),
where L is a linear operator, N is a nonlinear operator, and g(t) is a given construct a
correction functional for the system, which reads

W0 () = ¥ (1) + J-ax/1 [Lu'(s)— Nii™ (s) - g(s)]ds

where A is a general Lagrange multiplier which can be identified optimally via
variational theory [9,10,11], the subscript k denotes the n-th order approximation
and 77! denotes a restricted variation, i.e Su™ =0

The structure of this paper is organized as follows. In section 2, some basic
definitions and notations which will be used are brought. In section 3, the numerical
method to solve n-th order fuzzy differential equations is proposed. In section 4,
convergency of VIM for this system is proved. In section 5, the application of
mentioned method VIM is brought by solving some numerical examples and finally the
results are compared with exact solutions. Conclusion is drawn in section 6.

2. PRELIMINAR

An arbitrary fuzzy number is represented by an ordered pair of functions
(u(r),u(r)) forall r €[0,1], which satisfy the following requirements [2]
u(r) is a bounded left continuous non-decreasing function over [0,1],
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;(r) is a bounded left continuous non-increasing function over [0,1],
u(r) <u(r), 0<r<l,
2.1. Remark [1]
Let i (r) = (u(r),u(r)), 0<r <1 be a fuzzy number, we take
ey~ B0y ) ()
2 2

It is clear that u“(#)>0 and u(r)=u‘(r)+u’(r) and ;(r) =u‘(r)+u’(r) also a
fuzzy number u € E is said symmetric if #(r) is independent of » forall 0 <r <1.
2.2. Remark [1]

Let (r) = u(r),u(r), ¥(r)=(r),v(r) and also k,s are arbitrary real
numbers.
If W=ku +sV then

wo(r)=ku (r)+sv(r),
w ()= k [u (r)+] s v (r).

2.3. Definition [2]

Let u = (g(r),;(r)), V= (y(r),;(r)), be fuzzy numbers then the Hausdorff
distance between u,V is

D (u,v) =sup,,,y max{|u(r) —v(r) || u(r)—v(r)[}.
2.4. Remark [1]
Clearly from remark (2.2) we have

u(r) = v(r) [<]u () = v () |+ (r) = v ()],

|u(r)=v(r) [<|u (1) =" () [ +]u” (1) = v (7).
Hence for all » €[0,1]

max{|u(r)—v(r)|,|u(r) = v(r) [} < u (1) =v () |+ [u’ () = ()],
and then
D (i, %) < sup{|u (r) = v (r) | +|u’ (r) = v' (") |}.

0<r<1
Therefore if |u(r)—v°(r)| and |u’ (r)—v* (r) | tend to zero then D (if,V) tend to zero.

Let E be the set of all upper semi-continuous normal convex fuzzy numbers with
bounded r -level intervals. This means that if v € £ then the r -level set

V], ={s[v(s) =7},
is a closed bounded interval which is denoted by

[¥], =[x(r).v()] for re(0.1],

and [V], = Ure(o,l][v], .

Two fuzzy numbersu and v are called equal, u =V , if u(s) =V (s) forall s e R or
[u], =[v], forall r €[0,1].
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2.5. Lemma [13]
If u,v € E, then for r € (0,1],
[@ +71, =[u(r) +v(r), u(r) +v(r)],
[u.v], =[mink, max k],
where
k= {u(r)v(r),u(r)v(r),u(r)v(r),u(r)v(r)}.
2.6. Lemma [13]
Let (), v(r)), r € (0.1] be a given family of non-empty intervals. If

@) [v(r),v()] 2 [¥(s),v(s)] for 0<r <,

and

i) [limy(r,),limv(r, )] = [v(r),v ()],

k—0 k—o0

whenever (7, ) is a non-decreasing sequence converging to 7 € (0,1], then the family
[v(r), ;(r)], 0 < r <1, represent the r -level sets of a fuzzy number v in E . Conversely if

[v(7), ;(r)], 0 < r <1, are the r-level sets of a fuzzy number vV € E, then the conditions (i)

and (ii) hold true.
2.7. Definition [14]
Let I be a real interval. A mapping v : [ — E'is called a fuzzy process and we denote the

r-level set by [V(¢)]. = [v(t,7),v(t,7)]. The Seikkala derivative ¥'(f) of ¥ is defined by
V'O, =[V(.r),v'(t,r)],

provided that is a equation defines a fuzzy number V'(¢) € E.
2.8. Definition [14]

The fuzzy integral of fuzzy process v, J: v(t)dt for a,b eI, is defined by
[ 5@y, <[ vit,r)d®), [ ¥(t,r)d ()]

provided that the Lebesgue integrals on the right exist.
3. N-TH ORDER FUZZY DIFFERENTIAL EQUATIONS

In this section, we are going to investigate solution of n-th order fuzzy
differential equations. Let

YU (x)=a,(0)F +a,(0)F +.ta, ()7,
;(Q)Z&I,JN/ (a)=&25"'7)7(n71)(a):&n5 aSXSb (3 1)
where,,i =0,1,...,n —1 are fuzzy constant numbers and a,(x), are continuous on
[a,b]. ¥(x) is the solution to be determined.

Using the following assumptions

~

JN/:yleN/ :yzay :)737"'5)} =V
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Then equation (3.1) is transformed to the following system of fuzzy differential equations of
first order.

!

1
'

2
'

3

[\

=<l =
Il
= ! <!

a<x<b (3.2)

N

Y a(¥)=a,(x)y, +a,(x)y, +...+4a,(x)¥,,

with fuzzy initial conditions

y@=a,y,(@)=a,..y,(@=a,,.

Let

(7). y (xsr), (v, (657), ¥, (x57)), s (y (x57), 9, (x37)), 0<r<land a<x<bare

parametric form of ¥, (x), 7, (x),..., ¥, (x) respectively.

Then, parametric form of (3.2) is

Vo ery=y er),  (<j<n=1)

Y @n=Y, ay @)Y a7,

Y ()=, (60,

Y =2 @@y a0y ().

To solve this system by VIM the following formulas are obtained
v Mesr =y M@+ [ 4,0ty -5 e,

Zn[kﬂ] (x;r)= Xn[k](x; r)+ Lin (x,t)[Z,[k] (57) = 2009 (t)ZEk] (1) = Zoiy04; Oy ()t
e 3 r— W ~ k]
7 e =57 @+ [ 4,00 ()3l

— [k+ — >y —— = ~
T =3, )+ [ 01T (69 =Z 00 @ OF I (67) = Zy 00, (OF (61

where A(x,7) is a general Lagrangian multiplier which can be identified optimally via

(3.3)

variational theory, z[k],i[k]denote a restricted variation, i.e.67" =0, 55 =0, k is
the number of iteration step and note that 5)7[k] =0,6y" =0.

C . =k . .
The variation is calculated with respect to X.[/k] v, (=1, 2, ..., n), respectively, then we

have
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5y sy =0y ) + [ 2, 0y (1) = 3 (6 de

=5y () +2, 0008y @), I“w

=(1+24,(xx)5y" (xr) + L"(— fd( )

oy ey =8y sr+ o[ 2,0y =Y, @ OF G =Y, a3 @
ré/l( ,t)

Sy e r)ldr

)Sy k](tr)]dt—O j=12,..,n—-1.

=5y () + 4, (x0)5y (1) |, Syt r)dt

oA, (x )

= (1+ 4, ()8 (x; r)+j( =Sy e =0, j=1,2,..,n-1.

For arbitrary & Xj ,J =12,....n, the followmg stationary conditions are obtained

_OAD __0Aa(en _ 94,0
a A a7
and the natural boundary condition
1+4,(x,x)=0, j=12,.,n
The Lagrange multipliers, can be identified as
A,(x,0)=-1, j=12,.,n

Similar to above we have
j’.f(x’t):_la j:1’23'-ana
and the following iteration formula can be obtained as

M sy =y ean = [y e -y el j=12,0n-1,
y e =y [y Men-3, a0y en-3, a3 @
N (x5r) = 70 () - j (¥, “ ;) - 71 (15 )]de,

FE () = 38 () — J‘ H[k](t r)_z . ,(t)y,[k](t ") - Z e (t)y[k (t;7))dt.

(3.4)

Beginning with Z[/O] (a;r)=a; (r),)_/ﬁo] (a;r)=a;(r),by the iteration formula (3.3), we

can obtain the numerical solution of Eq.(3.1).
4. CONVERGENCE

In this section we analyze the convergency of VIM for (3.1). Similar to Remark
(2.1), let

yr)+y(r)y - y(r)=y(r)

yi(r)= 5 ,Yi(r)= 5

Then the fuzzy version of (3.1) can be written as
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V(s =y, (ar),  (1<j<n-1)
v )= @y e+ a0y,

y ., 4.5)
Y (x;r):yjﬂ(x;r)a
vt =3 @@y s+ Y a0y (),
and
y (ar)+y(@r) o (r)+a.(r)
“(a;r) =~ =— —, (1<j<n
yi(a;r) 5 5 ( )
() = Y (@r)+y;(ar) _a;(N+a;(r)
J 2 2
Similarly from (3.4) we can obtain the following formula
Yy =y o) = [ D G -y o, =12,n -1
R L P Co B WA (T0 B S S CE0 B SR H R (191 4 o)
P (i) =y () = [T (1) = T (e, |
N R e O B N R IO R WA O LA (T B SR OV R (9] 22
Let
e (v r) = Y () = 5 (),
obviously
yi(er)=yi(xsr)— L[y;c (r)—y5, (& r)lde, j=L2,..,n-1
i) =y an) = [V 6= a Oy Gr=Y, a0y, o
Then
e ey = el () - jx[e;[”” (t;r)— i (1;r)]dt, j=12,.,n-1
‘ (4.7)

c c X cle /4. [4] . [k] .
() = v ) = [T G =), @ 0™ =Y | a(0e " ().

a; (<0 i

Relation of (4.7) can be written as follow

() = [T ryde,  j=1,2,.,n-1

J+l
. ~o [kle (..
e () = szzlaj(t)ej “(t;r)dt.
Suppose
| l=max,,., [ (6 r) || e [=max, €|, j=1,2,.,n, k=0,1,....

and
A, =max ., |a, ()], 4=max {4}
Then
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e (xr) < [ 1€ (t7)dt < x| € |, '=1,2,...n-1
J P Jj+l ‘]

¢, X n [0]c /. c
e s <[ a0l e ()| di < ndx ||,

also
2

T , X : .
[ flefi@ndr< =™, =12, n-1

X 2
c " [1le X ¢
e ) [20 a0 e () [de < (nd) - e,

and similarly we can obtain
k
: X : .
| eg.k]‘ (x;7) |< _k' | el |, j=12,...,n-1

k
X
| el ;) [€ (nA)* - e .

Thus

[k]e
n

e (x;r)>0  ask—> o,

{egk]”(x;r)—)() as k — o, Jj=L2,.,n-1
In similar way, it can be proven that
{egk]d(x;r)—)o as k — oo, j=L2,..,n-1

[k1d
n

e (x;r)>0 as k— .

and (4.8), (4.9) imply the convergency of method.

5. APPLICATION

825

(4.8)

(4.9)

In this section, three numerical examples are solved by MATLAB for illustration and

the obtained solutions are compared with the exact solutions.
Example 1. Consider the two-order Fuzzy differential equation

{)7 "(x)=(1/2)y'(x)+(1/2)y(x),

y0)=Q2+r4d4-r),y(0)=2+rd-r),

the exact solution for this problem is y(x) = (2+r,4—r)e”.
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x=1 x=1/2
1 : 1 f
0.9F -—exact solution 1 0.9F -exact solution
* k=2 * k=2
0.8 +k=3 1 0.8F +k=3
. k=4 . k=4
0.71 ] 07t
0.6 1 0.6
0.5 1 0.5
0.4 . 0.4
0.3} 1 0.3f
0.21 J 02}
0.1} 1 0.1}
0 ‘ 1 0 : i
0 5 10 0 5
Tablel.
dH (y H yexact )
X k=2 k=5 k=10
0.2 0.0056 3.6597e-007 2.6645e-015
04 0.0473 2.4124e-005 4.3476e-012
0.6 0.1685 2.8320e-004 3.8261e-010
0.8 0.4222 0.0016 9.2191e-009
1 0.8731 0.0065 1.0925e-007

10

Example2. consider the four-order Fuzzy differential equation numerical result for

example

FP(x)=5(x), 0<x<1

yO) =(r=1L1-r),5(0)=(-1,1-r), y"(0) = (r-1,1-r),

Y0 = -1,1-7r).

The exact solution for this problem is y(x)=(r—1,1-r)e".
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X=1 X=1/2
1 T ¥ 1— T T +
0.9 —exact solution R 0.9r -exact solution R
k=2 * k=2
0.8 +k=3 R 0.8F +k=3 8
. k=4 . k=4
0.7t 1 0.7} i
0.6 1 0.6 1
0.5} . 0.5¢ i
04 1 0.4 1
0.3} . 0.31 i
0.2t 1 0.2t 1
0.1 . 0.1 .
T v 0 ! i L
-10 -5 0 5 -6 -4 -2 0 2 4
Table2.
~[k]l ~
dH (y[ ]5yexact)
X k=2 k=5 k=10
0.2 1.4028e-003 9.1494¢-008 6.6613e-016
04 1.825e-002 6.0310e-006 1.0869¢-012
0.6 4.2119e-002 7.0800e-005 9.5652¢e-011
0.8 1.0554e-001 4.1026e-004 2.3048e-009
1 2.1828e-001 1.6152e-003 2.7313e-008

Example3. Consider the six-order Fuzzy differential equation numerical result for
example

7OX)=(x+ DIV x)+(1/24)x 7P () +(1/12)x* 5P —(2/xH)F(x), 1<x<2
F)=(r,2-r), 7'(1)=(4r,8-4r), 7"()=(12r,24-12r), 7°(1) = (24r , 48 —24r),
YO 1) = (24r ,48-24r), 79 (1) =(0,0).
The exact solution for this problem is ¥(x) = (7,2 —r)x*.
Starting with initial
VG =30 Gr) =21, Y r) = 4, (1) =
8—dr, y () =12r, Y (1;r) = 24 =127, Y (1) = 247, 51 (1) = 48 = 24r, Y (1;7) =
127, 7 (1) = 24 =127,y (1;7) = 0,17 (1;7) = 0.

We can obtain following results:

approximations



828 S. Abbasbandy, T. Allahviranloo, P. Darabi and O. Sedaghatfar

y () = r(dx-3),

7 (1) = (2 - r)(dx-3),
11[2] (x;7) = r(6x° —8x +3),

.2 (xr) = (2= r)(6x% —8x +3),
le (x;7) = r(4x’ —6x° +4x 1),

7706 = (2= r)dx’ =637 +4x 1),

[4]
v, (ur)=rt,

51[4] (x;r)=(2- r)x4.

x=3/2

1 L
0.9 r —exact solution 1 0.9 —exact solution

* k=2 * k=2
0.8} + k=3 1 0.8 + k=3
071 . 0.7
0.6} . 0.6
0.5} . 0.5}
0.4r1 1 0.4r1

+
0.3} M. 0.3
+
0.2 +HA 0.2
+
+
0.1 7 0.1
+
0 T I O L I
-20 0 20 -5 5 10
Table3.
~ k ~

dH(y[ ]’yexact)

X k=2 k=5 k=10

1.2 0.0672 0.0032 0

1.4 0.0.5632 0.0512 0

1.6 1.9872 0.2591 0

1.8 4.9152 0.8192 0

2 10 2 0
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6. CONCLUSION

In this paper, we used He's variational iteration method (VIM) to obtain fuzzy
solution of the n-th order fuzzy differential equations. Convergency of VIM for this
system is proved. The effectiveness of the method was shown by different examples.
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