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Abstract-We consider a general wealth process with a drift coefficient which is a 
function of the wealth process and the portfolio process with convex constraint. 
Existence and uniqueness of a minimal solution are established. We convert the problem 
of hedging American contingent claims into the problem of minimal solution of 
backward stochastic differential equation, and obtain the upper hedging price of 
American contingent claims.   
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1. INTRODUCTION 
 
Backward stochastic differential equations were apparently first studied in the 

context of the stochastic version of Pontryagin's "maximum principle" for the optimal 
control diffusions. These equations introduced by Pardoux and Peng [1] were useful for 
the theory of contingent claims valuation, especially cases with constraints. Karoui, 
Peng and Quenez [2] were concerned with different properties of backward stochastic 
differential equations and their applications to finance. Wang and Song [3] considered a 
more general wealth process with a drift coefficient which was Lipschitz continuous and 
the portfolio process with convex constraint, they converted the problem of hedging 
American contingent claims into the problem of minimal solution of Backward 
stochastic differential equation with stopping time. 

In this paper, we consider a general wealth process with a drift coefficient which 
is a function of the wealth process and the portfolio process with convex constraint. It is 
shown that the problem of hedging American contingent claims can be characterized as 
the problem of the minimal solution of backward stochastic differential equation. Since 
the drift coefficient is a function of the wealth process, the backward stochastic 
differential equation become more complex. We adopt the penalization method for 
constructing the minimal solution of stochastic differential equations and obtain the 
upper hedging price of American contingent claims. 

 
2. THE MODEL 

 
Definition 1.  (i) An F-progressively measurable process with :[0, ] dT Rπ ×Ω→
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2

0
|| ( ) || . .

T
t dt a sπ < ∞∫  

is called portfolio process. 

(ii) An F-adapted process :[0, ] [0, )C T ×Ω→ +∞ with increasing, right continuous 

paths and  is called cumulative consumption process. (0) 0, ( ) . .C C T= < ∞ a s

      We consider a financial market, the wealth process corresponding to a given 

portfolio consumption ( , )Cπ and initial capital (0)X x=  satisfies 

( ) ( , ( )) *( ) ( ) ( ) ( )dX t f t X t dt t t dW t dC tπ σ= − + + ,                (1) 

where :[0, ] df T R×Ω× → R  is a ( )dP B R× progressively measurable process with 

and 2

0
( , ,0)

T
E f t dtω < ∞∫

' '| ( , , ) ( , , ) | | |f t y f t y k y yω ω− ≤ − , 

1 2{( ( ), ( ),..., ( ))*,0 }nW W t W t W t t T= ≤ ≤ is a standard d-dimensional Brownian motion 

and 1 ,( ) ( ( ))ij i j dσ σ ≤ ≤⋅ = ⋅ are bounded uniformly and  progressively  measurable with respect to F . 

Furthermore, ( )tσ  is assumed to be invertible with bounded uniformly. 1( )tσ −

 
3. AMERICAN CONTINGENT CLAIMS 

 
Definition 2. An American contingent claim (ACC) is an F-adapted process 

 with continuous sample paths and :[0, ]B T ×Ω (0, )→ +∞

 2

0
[sup ( ( )) ]

t T
E B t

≤ ≤
< ∞ . 

Let us introduce now constraints on the portfolios available to agents. Suppose 

K  is a Borel subset of dR  which contains the origin, we restrict attention to portfolios 

consumption rules ( , )Cπ  that satisfy ( )t Kπ ∈ . 

So our class of admissible portfolio/consumption process pairs becomes now 
 . , , 2

0
( ) :{( , ) | ( ) , sup | | }x C

t T
A x C t K X ππ π

≤ ≤
= ∈ < ∞
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Define 
 

We introduce the upper hedging price 

( ) : inf{ 0 | }uph K x x U= ≥ ∈ . 

Let us consider the important case of convex constraints. Denote the support function of 
the convex set K by 
  *( ) : sup( ) : d

p K
x p x R Rδ

∈
= → ∪+∞

and its effective domain 

 :{ | ( ) }dK x R xδ= ∈ < ∞ . 

We shall denote by H the class of F-progressively measurable processes 

:[0, ]T Kν ×Ω→ . For every Hν ∈ , the exponential process 

 1 * 0 1 2

0 0

1( ) : exp{ ( ( ) ( )) ( ) || ( ) ( ) || }
2

T T

vZ t s v s dW s s v s dsσ σ− −= −∫ ∫  

is a local martingale and a supermartingale;  it is a martingale if and only if ( ) 1vEZ T = , 

in which case 

 ,     ( ) : [ ( )1 ]v
v AP A E Z T= A F∈      

is a probability measure and 

  1

0
( ) : ( ) ( ) ( )

tvW t W t s v s dsσ −= − ∫

is a Brownian motion. We also denote by vE the expectation with respect to the 

probability measure of . In particular, this is the case for every process in the space vP

1

: n
n

D D
∞

=

= ∪  

:{ | || ( , ) || . . ( , ) [0, ] }nD v H v t n for a e t Tω ω= ∈ ≤ ∈ ×Ω  

of bounded processes in H .  

Problem: Find a triple of F-adapted processes ( ( ), ( ), ( ))X Cπ⋅ ⋅ ⋅ with 

( , ) ( )C A xπ ∈ , such that the backward stochastic differential equation(BSDE) 

    *( ) ( ) ( , ( )) ( ) ( ) ( ) ( ) ( )
t t

X t B f s X s ds s s dW s C C t
τ τ

τ π σ= + − + −∫ ∫ τ

τ

        (2) 

, ,:{ 0 | ( , ) ( ), ( ) ( ), }.x CU x C A x X Bππ τ τ= ≥ ∈ ≥ ∀ ∈Γ
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and the constraint 

                        ( ) [0, ]t K t Tπ ∈ ∈                              (3) 

hold almost surely, and such that for any other solution i i i( ( ), ( ), ( ))X Cπ⋅ ⋅ ⋅ satisfying 

(2)and (3), we have 

 i( ) ( ), 0X t X t t T≤ ≤ ≤  

almost surely. 
 

4. THE UPPER HEDGING 
 

In order to solve the above problem, we introduce the penalized BSDE 

 *( ) ( ) ( ( , ( )) ( ( )) ( ) ( ) ( )n n n nt t
X t B f s X s n s ds s s dW s

τ τ
τ ρ π π σ= + + −∫ ∫ , 

where ( ) : inf || ||
K

y y
γ

ρ γ
∈

= −  denotes the distance of the vector dy R∈ to the set K . 

Let *( ) : lim ( )nn
X t X

→∞
= t , then we have the following result. 

Theorem 1. The process is the unique solution of the stochastic equation  *( )X t

 * *

( ) ,
( ) sup [ ( ) [ ( , ( )) ( ( ))] | ( )]v

tv D
X t ess E B f s X s v s ds F t

τ

τ
τ δ

⋅ ∈ ∈Γ
= + −∫ . 

Proof:  We can prove that the solution  of the penalized BSDE (2) satisfies the 

following stochastic equation 

( )nX t

( ) ,
( ) sup [ ( ) [ ( , ( )) ( ( ))] | ( )]

n

v
n ntv D

X t ess E B f s X s v s ds F t
τ

τ
τ δ

⋅ ∈ ∈Γ
= + −∫  

The comparison theorem for BSDE implies that 

1( ) ( ), 0n nX t X t t T+≤ ≤ ≤  

holds almost surely for all n  due to N∈ ( ) ( 1) ( )n nρ ρ⋅ ≤ + ⋅ . Let i i i( ( ), ( ), ( ))X Cπ⋅ ⋅ ⋅  be any 

solution to the constrained BSDE, then we can prove 

i( ) ( ), 0nX t X t t T≤ ≤ ≤  

almost surely, for every . We conclude that the limit n N∈
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*( ) lim ( ), 0nn
X t X t t

→∞
= ≤ T≤  

exists almost surely. Fix a process ( ) Dν ⋅ ∈ and select an integer sufficiently large, so 

that 

n

( )ν ⋅  belongs to nD , thus we have 

 *( ) ( ) [ ( ) [ ( , ( )) ( ( ))] | ( )]v
n t

X t X t E B f s X s s ds F t
τ

τ δ ν≥ ≥ + −∫  

The comparison theorem implies 0 ( ) ( )nX t X t≤ , for all n N∈ , where is the state  

process in the solution 

0 ( )X t

0 0( ( ), ( ),0)X t tπ to the unconstrained version 

*
0 0 0( ) ( ) ( , ( )) ( ) ( ) ( )

t t
X t B f s X s ds s s dW s

τ τ
τ π= + −∫ ∫ σ  

of the BSDE (2). Since we also have i*( ) ( ) ( )nX t X t X t≤ ≤  and the Lipschitz property 

of f , we can use the dominated convergence theorem for conditional expectations to 

conclude that 
* *( ) [ ( ) [ ( , ( )) ( ( ))] | ( )]v

t
X t E B f s X s v s ds F t

τ
τ δ≥ + −∫  

hold almost surely for all ( ) ,Dν τ⋅ ∈ ∈Γ . Thus we can get 

* *

( ) ,
( ) sup [ ( ) [ ( , ( )) ( ( ))] | ( )]v

tv D
X t ess E B f s X s v s ds F t

τ

τ
τ δ

⋅ ∈ ∈Γ
≥ + −∫ . 

The proof of the reverse inequality and the uniqueness is similar to [4]. 

Theorem 2. There exist processes * *( ( ), ( ))Cπ ⋅ ⋅ , such that * * *( ( ), ( ), ( ))X Cπ⋅ ⋅ ⋅ is the 

minimal solution to the BSDE of the above problem. 
Proof:  Similar to the proof of Theorem 1 in Wang [5], we have that 

 *

0
( ) [ ( , ( )) ( ( ))]

t
X t f s u s v sδ− −∫ ds  

is a supermartingale and there exist processes * *( ( ), ( )),Cπ ⋅ ⋅  such that 

is the minimal solution to the BSDE of the above problem. * * *( ( ), ( ), ( ))X Cπ⋅ ⋅ ⋅
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