
 
 
 Mathematical and Computational Applications, Vol. 15, No. 5, pp. 853-858,2010.  
 © Association for Scientific Research 

 

MATEMATICAL MODEL FOR YARN UNWINDING FROM PACKAGES  
 

Stanislav Praček,Sluga Franci 
 

Department of textile, NTF, University of Ljubljana, Snežniška 5, 
SI-1000 Ljubljana, Slovenija, stane.pracek@ntf.uni-lj.si 

 
 
Abstract- Yarn unwinding from a package is important in many textile processes. The 
stability of the unwinding process has a direct influence on the efficiency of the process 
and on the quality of the end product. During the unwinding, the tension is oscillating. 
This is especially noticeable in over-end unwinding from a static package, where the 
yarn is being withdrawn with a high velocity in the direction of the package axis. The 
optimal form of the package allows an optimal shape of the yarn balloon and low and 
steady tension even at very high unwinding velocities.The purpose of this work is to 
write down the equations that describe the motion of yarn during unwinding and to 
construct a mathematical model whichwould permit to simulate the process of 
unwinding.  
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1. INTRODUCTION 
 

Yarn unwinding is an essential step in many textile processes [1]. The quality of 
the fabric that is produced directly depends on the regularity of the unwinding: the 
tension in the yarn should be low and constant. The characteristics of the unwinding 
process are thus important for production of high quality garments and should therefore 
be optimized. 

The teory of unwinding and balloon formation originate from the pioneering work 
of D. Padfield[2]. She modified Mack’s equations[3] and included terms that describe 
the Corolis force. She found solution for a balloon that forms during unwinding from 
stationary cylindrical package when quasistationary conditions apply. This theory was 
also used for calculations of multiple balloons and for balloons formed during 
unwinding from packages with different geometry, such as conic packages[4]. Kothari 
and Leaf have rederived similar equations, additionally taking into account the effect of 
gravity and tangential air drag[5]. Using elaborate numerical calculates they have 
shown that these two forces have only a small contribution to overall dynamics of the 
yarn. Recently Fraser et al. have applied mathematical theory of perturbations to 
correctly eliminate the time dependance from equations of motion in stationary 
conditions[6]. They have show that the entire time dependance can be shifted to moving 
boundary conditions. In this manner the innitial-value problem of partial differential 
equations can be reduced to a boundary problem which is much easier to solve. 

Bulding on this foundation we have simplified the problem even further. We will 
show how a simple model function that describes the package can be used to estimate 
the unwinding properties of packages of different geometries and different winding 
types. 
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2. THEORETICAL PART 
The yarn is being withdrawn with velocity V through an eyelet, where we also fix 

the origin O of our coordinate system (Fig.1). The yarn is rotating aroun the z axis with 
an angular velocity ω. At the lift-off point Dv the yarn lifts from the package and forms 
a balloon. At the unwinding point Od the yarn starts to slide on the surface of the 
package. Angle φ is the winding angle of the yarn on the package. 
 

 
Fig.1 Mechanical setup in overend yarn unvinding from cilimdrical package 

  
We now consider the equation of motion of yarn [7]: 
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Here ρ is the mass per unit length of the yarn, r is the radius vector to a given point on 
the yarn, D is the comoving time derivative operator, T is the yarn tension and f is the 
density of external forces acting on the yarn. In the part of the yarn that forms the 
balloon f is the density of the air drag force[8]: 

                                                           f = −
1
2

cuρd vn vn                                                 (2) 

where cu is the air drag coefficient, d is the diameter of the yarn and vn is the normal 
component of the yarn velocity. In the part of the yarn that slides on the package 
(between the unwinding and lift-off point) f is the density of forces with which package 
resists the motion of the yarn. It consists of the normal force of the package and the 
force of friction: 

                                                       f = ner − μn v
v

                                                       (3) 

where n is the strength of normal force, er is the radial unit vector and μ  is the 
coefficient of friction.It is worthwhile to cast the equation of motion in the 
dimensionless form. This consists of finding “natural” units in which to express all the 
quantities appearing in the equation. A number of constants will remain in the reduced 
equation and these dimensionless parameters have the most pronounced effect on the 
yarn dynamics.  
We express all distances in units of package radius: 
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time is expressed in units of period of balloon rotation: 
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velocitis are expressed in units of unwinding speeed: 
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                                                          (6) 

and finally we find the following suitable combinations of quantities for forces and 
tension:  
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When we rewrite the equation of motion with these dimensionless quantities we obtain 
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Only one parameter remains in this equation (without taking into account the external 
force term). It is the dimensionless angular velocity Ω: 

                                                        Ω =
cω
V

                                                                 (9) 

This is the single most important parameter in our model. We will show later on that we 
can make many important conclusions if we determine how Ω changes with time as the 
yarn is being unwound. 
There are two additional dimensionless parameters: μ , the coefficient of friction 
between yarn and package, and the coefficient of air resistance p0: 

                                                       p0 =
16cDn

ρ
                                                           (10) 

These two parameters are approximately constant during the unwinding, so they are less 
important.The coefficient of friction depends on the quality of the yarn and on the 
surface properties of the package. The quality of the surface is comparable for forward 
and backward unwinding direction, so that the coefficient of friction remains 
approximately constant. 
 

3. SIMULATION MODEL 
 
 On cylindrical packages the angular velocity depends od the winding angle φ 
according to relation:  
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V
c
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In deriving this expression we neglected the variation of yarn length in the balloon 
during the time interval when two layers unwind. 
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The dimensionless angular velocity can obviously be expressed as: 

                                                            Ω =
cosφ

1− sinφ
                                                    (12) 

According to our simple model the dimensionless angular velocity thus only depends on 
the winding angle which will change with time because this angle is different for layers 
that are unwinding from front towards rear edge and those that are unwinding as the 
unwinding point moves from the rear towards front edge. The dependance of Ω on the 
winding  angle is shown in Fig. 2. 

 
 

Fig.2 Dependence of  Ω on the winding angle [9] 
 
In conical packages the relation is only slightly modified: 

                                                     ω =
V
c

cosφ
1− cosα sinφ

                                            (13) 

Here α is the apex angle of the conical package. For typical values of α there is little 
difference between cylindrical and conical packages. 
During unwinding the lift-off point moves up and down the package. We can presume 
that the winding angle is approximately constant in the middle of the package and it 
changes at the edges of the package where its sign is reversed. To describe the time 
dependence of the winding angle we must look for a periodic function, because motion 
of the point is periodic to a good approximation. The most known periodic functions are 
trigonometric function, such as sine function. This function should be modified so that it 
will change only slightly when the point moves up or down the packages. We can 
achieve this by raising the sine to a low fractional power, say 1/40 (we have to be 
careful about the signs, so we take absolute value of sine function and restore the sign 
using the signum function:         

                                                          f (t) = sign(sin t) sin t
1
40                                       (14) 

The diagram of  this function is shown in fig.3. 

 
Fig. 3 Model function for winding angle 
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The physical reality is somewhat different [10], especially in cross-wound 
packages, made using circumferential driving of the tube. The diagram shown in Fig. 3 
would apply to precision wound cross-wound packages, made using direct driving of 
the tube. The loops would then lie next to each other. 

If we considered a few loops of the rear end of the tube, before the next layer 
starts to unwind in the direction of the front end, and a few loops from the front end of 
the tube, before the next layer begins to unwind in the direction of the rear end, then we 
would obtain the diagram in Fig. 3. In this case we would have to neglect all the loops 
in between. 

Speaking of the unwinding process, we are mostly interested in the maximal 
tensions in the yarn and the oscillations of the tension as a function of the unwinding 
speed. We aim to achieve the highest possible speed, while keeping the tension in the 
yarn and oscillations as low as possible. 

The variations of the dimensionless angular velocity (Fig. 4) are more 
pronounced in cross wound packages with a high winding angle. In cross-wound 
packages it is therefore inadmissible to consider the winding angle as a small quantity 
and to neglect it in the first approximation 

 
Fig. 4 Variations of the dimensionless angular velocity 

  
The lower the winding angle is, the lower will the oscillations of the tension be. 

The maxima will then be lower and we’ll be able to increase the unwinding speed. The 
problem is that most of the winding machines in use throughout the world use 
circumferential driving of the tube. This method of package winding makes it 
impossible to change the winding angle, while this is possible with winding machines 
using direct driving of the tube. In recent times the fraction of such winding machines is 
increasing. 
 

4. CONCLUSION 
  

Cross-wound packages made using circumferential driving of the tube do not 
permit to achieve the unwinding speeds necessary on fast weaving loom, where the 
cross-wound package is used as a wefting package. For this reason two wefting 
packages are necessary for every color of the weft, as well as two weft feeders of weft 
which is expensive and irrational. 

In circumferential driving of the package the winding angle does not change. The 
direct consequence is the mirror winding – the winding of one layer on top of the other, 
which can be avoided by modulation. The threads do not lie parallel to each other (the 
pitch of the helix is usually large and the points of contact of two consecutive layers are 
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sparse). Because of the large contact area it occurs that entire layers slip or that the yarn 
breaks. 

In modern winding machines with a direct driving of the tube, the winding angle 
can be changed. Each layer has a determined winding angle, so that there are more 
points of contact as in the packages made with circumferential driving of the tube. Of 
special importance is the fact, that loops on one layer aren’t parallel to the loops in the 
next layer, which reduces the possibility of slips during unwinding. Furthermore there 
are no difficulties of mirror winding, so that there is no danger of yarn falling off the 
package. 

The winding machines with a direct driving of the tube allow greater flexibility of 
winding of cross-wound packages compared to the winding machines with a 
circumferential driving. They allow construction of packages that can be unwound at 
higher unwinding speeds.  

In no case can we avoid the oscillations of yarn tension near the edges of a 
package, when the direction of motion of unwinding and lift-off points changes. The 
winding of the packages has to be optimized so that the absolute value of the yarn 
oscillation is as low as possible. 
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