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Abstract- Conserved quantities play a central role in the solution of jet flow prob-

lems. A systematic way of deriving conserved quantities for the radial jets with

swirl is presented. The multiplier approach is used to derive the conservation laws

for the system of three boundary layer equations for the velocity components and

for the system of two partial differential equations for the stream function. When

the swirl is zero or at a large distance from the orifice (at infinity), the boundary

layer equations for the radial jets with swirl reduce to those of the purely radial

jets. The conserved quantities for the radial liquid, free and wall jets with swirl are

derived by integrating the conservation laws across the jets.
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1. INTRODUCTION

It is of great interest to study the three dimensional boundary layer flows, for ex-

ample the radial jets with swirl due to their extensive range of applications.

The concept of two-dimensional boundary layer flow of the purely radial liquid

jet was introduced by Watson [1]. The two-dimensional boundary layer flow of the

purely radial free jet was first considered by Schwarz [2]. Glauert in [3] studied the

two-dimensional boundary layer flow of the purely radial wall jet. Later, Riley in

[4] also discussed the two-dimensional boundary layer flow of purely radial liquid,

free and wall jets. In all these jet flow problems, the boundary conditions are

homogeneous and therefore the unknown exponent in the similarity solution cannot

be obtained from the boundary conditions. By integrating Prandtl’s momentum

boundary layer equation across the jet and using the boundary conditions and the
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continuity equation, a condition, known as the conserved quantity, was derived.

Riley [5] extended the problem of the purely radial jets to the radial jets with swirl.

Later, O’Nan and Schwarz [6] also studied the problem of the radial free jet with

swirl. The governing equations consist of a continuity equation and two momentum

equations in the radial and swirl directions respectively. This problem consists of

homogeneous boundary conditions and thus also requires conserved quantities. The

conserved quantities for the radial jets with swirl were established using the same

idea as was used in [1, 2, 3, 4] to construct the conserved quantities for the purely

radial jets. By integrating the momentum equation in the swirl direction and using

the boundary conditions and the continuity equation, one conserved quantity for the

radial free jet with swirl and one for the radial wall jet with swirl were derived. The

second conserved quantity for the radial free and wall jets with swirl were established

by integrating the momentum equation in the radial direction and requiring that

swirl is zero at x = ∞. The only conserved quantity for the radial liquid jet with

swirl [5] was obtained from a physical argument based on conservation of mass flux

in an incompressible fluid and is the same as for the purely radial liquid jet.

The conserved quantity for each problem has in general physical significance.

Riley [5] established the conserved quantities for the radial liquid, free and wall jets

with swirl. The only conserved quantity for the radial liquid jet with swirl is total

mass flux per radian which is constant. One of the conserved quantities for the radial

free jet with swirl is the radial flux of angular momentum about x = 0. The second

conserved quantity for the radial free jet with swirl is the radial flux of momentum

and is invariant only when the swirl is zero or at large distances from the orifice. For

a radial wall jet with swirl one conserved quantity is the flux of exterior momentum

flux and is constant only when the swirl is zero or at large distances from the orifice.

There is no obvious physical interpretation of the other conserved quantity for the

radial wall jet with swirl.

In this paper, we construct the conserved quantities for the radial liquid, free

and wall jets with swirl by the method recently introduced by Naz et al [7]. We

use the multiplier approach introduced by Steudel [8] (see also [9, 10]) to derive

the conservation laws for the system of three partial differential equations for the

velocity components as well as for the system of two partial differential equations

for the stream function. The radial jets with swirl behave as purely radial jets when

the swirl is zero or at large distances from the orifice as x becomes large the swirl

component will tend to zero more rapidly than the radial velocity component. Then

the boundary layer equations for radial jets with swirl reduce to that of purely radial

jets. The conservation laws for the purely radial jets were derived in [7] with the
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help of the multiplier approach. The conserved quantities for the radial, liquid, free

and wall jets with swirl are derived with the help of conservation laws. The radial

jets (liquid, free and wall) with swirl satisfy the same partial differential equations

but the boundary conditions for each jet are different. The derivation of conser-

vation laws depends only on the partial differential equations but the derivation of

the physical conserved quantities depends also on the boundary conditions. The

boundary conditions therefore determine which conserved vector is associated with

which jet.

2. CONSERVATION LAWS FOR RADIAL LAMINAR JET

We consider the radial liquid jet, free jet and wall jet with swirl.

The radial liquid jet with swirl is formed when a circular jet of liquid, with an

axially symmetrical swirling component of velocity, strikes a plane boundary nor-

mally and spreads over it. The radial free jet with swirl is formed when two circular

jets, each with an axially-symmetrical swirling component of velocity, impinge on

one another. When a circular jet, having axially symmetric swirling component of

velocity, strikes a plane surface normally which is surrounded by the same fluid as

the jet and spreads out radially over it then a radial wall jet with swirl is formed.

All these jets were described by Riley [5].

The fluid in the jets is viscous and incompressible. In the free jet and wall jet

the surrounding fluid consists of the same fluid as in the jet but for the liquid jet

the surrounding fluid is a gas. The cylindrical polar coordinates (x, θ, y) are used

with x as radial coordinate and x = 0 is the axis of symmetry. All fluid variables

are independent of θ. For the liquid jet the solid boundary is at y = 0 and the free

surface is at y = ϕ(x). The wall jet has a solid boundary at y = 0 and the free

jet is symmetrical about y = 0. For all three jets an axially symmetrical swirling

component of velocity is considered.

The boundary layer equations governing the flow in a radial laminar jet with

swirl, in the absence of pressure gradient, are

uux + vuy −
w2

x
= νuyy, (1)

uwx + vwy +
uw

x
= νwyy, (2)

(xu)x + (xv)y = 0, (3)

where u(x, y) and v(x, y) are the velocity components in x and y directions respec-

tively, w(x, y) is an axially-symmetrical swirling component of velocity and ν is the
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kinematic viscosity of the fluid. Equations (1) and (2) are the momentum equations

in the radial and θ directions respectively and (3) is the continuity equation. The

boundary-layer equations (1)-(3) have been derived with the assumption that the

swirl velocity w and radial velocity u are of same order of magnitude whereas the

transverse velocity v is of lower order (see [5]).

The stream function ψ(x, y) satisfies [11]

xu = ψy, xv = −ψx. (4)

The radial free jet with swirl is symmetrical about the plane y = 0, therefore

v(x, 0) = 0. For the liquid jet and the wall jet there is no suction or blowing of

fluid at the solid boundary y = 0 and thus v(x, 0) = 0. Therefore ψx(x, 0) = 0 for

all three jets and thus ψ(x, 0) is a constant. We choose the constant as zero and

hence

ψ(x, 0) = 0. (5)

Let O be any reference point on the line y = 0 in the axial plane θ = θo, then the

stream function at P (x, θo, y) is (see [11])

ψ(x, y) =

∫ P

O

x [u(x, y)dy − v(x, y)dx] . (6)

Integrating (6) with respect to y from y = 0 to y = ∞ along a straight line with x

kept fixed yields

ψ(x,∞) =

∫ ∞

0

xu(x, y)dy. (7)

Now, ψ(x,∞) is finite only if we assume u(x, y) → 0 sufficiently rapidly as y → ∞.

Equation (3) is identically satisfied and equations (1) and (2) yield

1

x
ψyψxy −

1

x2
ψ2
y −

1

x
ψxψyy − νψyyy − w2 = 0, (8)

and

1

x
ψywx −

1

x
ψxwy +

1

x2
ψyw − νwyy = 0. (9)

We will derive the conservation laws for the system (1)-(3) and also for the system

(8)-(9) for the stream function, using the multiplier approach [8, 9].
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2.1. Conservation laws for system of equations for velocity components

Consider the multipliers of the form

Λ1 = Λ1(x, y, u, v, w),Λ2 = Λ2(x, y, u, v, w)andΛ3 = Λ3(x, y, u, v, w)

for the system of equations (1)-(3), such that

Λ1

(
uux + vuy − νuyy −

w2

x

)
+ Λ2

(
uwx + vwy +

uw

x
− νwyy

)
+Λ3(u+ xux + xvy) = DxT

1 +DyT
2, (10)

for all functions u(x, y), v(x, y) and w(x, y) and not only for the solutions of system.

In (10), Dx and Dy are total derivative operators defined by

Dx =
∂

∂x
+ ux

∂

∂u
+ vx

∂

∂v
+ wx

∂

∂w
+ uxx

∂

∂ux
+ vxx

∂

∂vx
+ wxx

∂

∂wx

+uxy
∂

∂uy
+ vxy

∂

∂vy
+ wxy

∂

∂wy
+ · · · , (11)

Dy =
∂

∂y
+ uy

∂

∂u
+ vy

∂

∂v
+ wy

∂

∂w
+ uyy

∂

∂uy
+ vyy

∂

∂vy
+ wyy

∂

∂wy

+uyx
∂

∂ux
+ vyx

∂

∂vx
+ wyx

∂

∂wx
+ · · · . (12)

The determining equations for the multipliers Λ1, Λ2 and Λ3 are

Eu

[
Λ1(uux + vuy − νuyy −

w2

x
) + Λ2(uwx + vwy +

uw

x
− νwyy)

+Λ3(u+ xux + xvy)

]
= 0, (13)

Ev

[
Λ1(uux + vuy − νuyy −

w2

x
) + Λ2(uwx + vwy +

uw

x
− νwyy)

+Λ3(u+ xux + xvy)

]
= 0, (14)

Ew

[
Λ1(uux + vuy − νuyy −

w2

x
) + Λ2(uwx + vwy +

uw

x
− νwyy)

+Λ3(u+ xux + xvy)

]
= 0, (15)

where Eu, Ev and Ew are the standard Euler operators which annihilate divergence

expressions:

Eu =
∂

∂u
−Dx

∂

∂ux
−Dy

∂

∂uy
+D2

x

∂

∂uxx
+DxDy

∂

∂uxy
+D2

y

∂

∂uyy
− · · · , (16)
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Ev =
∂

∂v
−Dx

∂

∂vx
−Dy

∂

∂vy
+D2

x

∂

∂vxx
+DxDy

∂

∂vxy
+D2

y

∂

∂vyy
− · · · , (17)

Ew =
∂

∂w
−Dx

∂

∂wx
−Dy

∂

∂wy
+D2

x

∂

∂wxx
+DxDy

∂

∂wxy
+D2

y

∂

∂wyy
− · · · . (18)

The expansion of equations (13)-(15) yields

Λ1u(uux+ vuy− νuyy−
w2

x
)+Λ2u(uwx+ vwy+

uw

x
−νwyy)+Λ3u(u+xux+xvy)

+Λ1ux + Λ2[wx +
w

x
] + Λ3 −Dx[uΛ1 + xΛ3]−Dy[vΛ1]− νD2

y(Λ1) = 0, (19)

Λ1v(uux+ vuy− νuyy−
w2

x
)+Λ2v(uwx+ vwy+

uw

x
− νwyy)+Λ3v(u+xux+xvy)

+Λ1uy + Λ2wy −Dy(xΛ3) = 0, (20)

and

Λ1w(uux+vuy−νuyy−
w2

x
)+Λ2w(uwx+vwy+

uw

x
−νwyy)+Λ3w(u+xux+xvy)

−2w

x
Λ1 +

u

x
Λ2 −Dx[uΛ2]−Dy[vΛ2]− νD2

y(Λ2) = 0. (21)

Equations (19)-(21) must be satisfied for all functions u(x, y), v(x, y) and w(x, y).

After expansion the highest order derivative terms in system (19)-(21) are second-

order derivative terms. Therefore, equating the coefficients of uyy, vyy and wyy to

zero, we obtain

Λ1u = 0, Λ1v = 0, Λ1w = 0, Λ2u = 0, Λ2v = 0, Λ2w = 0, (22)

which in turn results in

Λ1 = A(x, y), Λ2 = B(x, y), Λ3 = C(x, y, u, v, w). (23)

Equations (19)-(21), with the help of (23), reduce to

xvxCv+vy(A−xCu)+wx(xCw−B)−uCu−
Bw

x
+uAx+xCx+vAy+νAyy = 0, (24)

xuxCv + uy(A− xCu)− wy(xCw −B) + uCv − xCy = 0, (25)

(ux + vy)(xCw −B) + uCw − 2w

x
A+

u

x
B − uBx − vBy − νByy = 0. (26)

Equating the first-order derivative terms ux, uy and wy in (25) to zero, we obtain

Cv = 0, A− xCu = 0, xCw −B = 0, (27)
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which yields

C =
u

x
A(x, y) +

w

x
B(x, y) +D(x, y). (28)

Equations (24)-(26) become

2u

(
Ax −

A

x

)
+ vAy + w

(
Bx −

2B

x

)
+ xDx + νAyy = 0, (29)

uAy + wBy + xDy = 0, (30)

u

(
Bx −

2B

x

)
+ vBy +

2w

x
A+ νByy = 0. (31)

The separation of equations (29)-(31) with respect to u, v and w finally gives

Λ1 = 0, Λ2 = c2x
2, Λ3 = c1 + c2wx, (32)

where c1 and c2 are constants. It is not difficult to construct the conserved vectors

by elementary manipulations with the help of the multipliers (32). Equations (10)

and (32) give

0[uux+vuy−νuyy−
w2

x
]+c2x

2[uwx+vwy+
uw

x
−νwyy]+(c1+c2wx)[u+xux+xvy]

= Dx[c1xu+ c2x
2uw] +Dy[c1xv + c2x

2(vw − νwy)], (33)

for arbitrary functions u(x, y), v(x, y) and w(x, y) and therefore when u(x, y), v(x, y)

and w(x, y) are the solutions of the system of differential equations (1)-(3), then

Dx[c1xu+ c2x
2uw] +Dy[c1xv + c2x

2(vw − νwy)] = 0. (34)

Thus

T 1 = xu, T 2 = xv, (35)

T 1 = x2uw, T 2 = x2(vw − νwy), (36)

are the conserved vectors for the system of differential equations (1)-(3) correspond-

ing to multipliers of the form Λ1 = Λ1(x, y, u, v, w) and Λ2 = Λ2(x, y, u, v, w).

2.2. Conservation Laws for the stream function formulation

Consider multipliers of the form Λ1 = Λ1(x, y, ψ, w) and Λ2 = Λ2(x, y, ψ, w)

in order to derive the conservation laws for the system (8)-(9). The determining

equations for the multipliers Λ1 and Λ2 are

Eψ

[
Λ1(

1

x
ψyψxy −

1

x2
ψ2
y −

1

x
ψxψyy − νψyyy − w2)
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+Λ2(
1

x
ψywx −

1

x
ψxwy +

1

x2
ψyw − νwyy)

]
= 0, (37)

and

Ew

[
Λ1(

1

x
ψyψxy −

1

x2
ψ2
y −

1

x
ψxψyy − νψyyy − w2)

+Λ2(
1

x
ψywx −

1

x
ψxwy +

1

x2
ψyw − νwyy)

]
= 0, (38)

where

Eψ =
∂

∂ψ
−Dx

∂

∂ψx
−Dy

∂

∂ψy
+D2

x

∂

∂ψxx
+DxDy

∂

∂ψxy
+D2

y

∂

∂ψyy
− · · · , (39)

Ew =
∂

∂w
−Dx

∂

∂wx
−Dy

∂

∂wy
+D2

x

∂

∂wxx
+DxDy

∂

∂wxy
+D2

y

∂

∂wyy
− · · · , (40)

are the standard Euler operators. In (39) and (40), Dx and Dy are the total deriva-

tive operators and are defined by

Dx =
∂

∂x
+ψx

∂

∂ψ
+wx

∂

∂w
+ψxx

∂

∂ψx
+wxx

∂

∂wx
+ψxy

∂

∂ψy
+wxy

∂

∂wy
+ · · · , (41)

Dy =
∂

∂y
+ψy

∂

∂ψ
+wy

∂

∂w
+ψyy

∂

∂ψy
+wyy

∂

∂wy
+ψyx

∂

∂ψx
+wyx

∂

∂wx
+ · · · . (42)

Expansion of equations (37) and (38) yields

Λ1ψ[
1

x
ψyψxy −

1

x2
ψ2
y −

1

x
ψxψyy − νψyyy − w2] + Λ2ψ[

1

x
ψywx −

1

x
ψxwy

+
1

x2
ψyw − νwyy] +Dx[

1

x
Λ1ψyy +

1

x
Λ2wy]−Dy[Λ1(

1

x
ψxy −

2

x2
ψy)

+Λ2(
wx
x

+
w

x2
)] +DxDy[

1

x
Λ1ψy]−D2

y[
1

x
Λ1ψx] + νD3

y[Λ1] = 0, (43)

Λ1w[
1

x
ψyψxy −

1

x2
ψ2
y −

1

x
ψxψyy − νψyyy −w2] + Λ2w[

1

x
ψywx −

1

x
ψxwy +

1

x2
ψyw

−νwyy]− 2wΛ1 +
Λ2

x2
ψy −Dx[

Λ2

x
ψy] +Dy[

Λ2

x
ψx]− νD2

y[Λ2] = 0. (44)

Equating the coefficients of ψyyy and wyy in (44) to zero, we obtain

Λ1w = 0, Λ2w = 0. (45)

Now, since Λ1 and Λ2 are not functions of w, therefore separating the rest of the

terms in (44) (in expanded form) with respect to w yields

Λ1 = 0. (46)
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Equations (43) and (44) reduce to

Λ2ψ[
1

x
ψywx −

1

x
ψxwy +

1

x2
ψyw − νwyy]− 2wy

Λ2

x2
+
wy
x
[Λ2x + ψxΛ2ψ]

−(
wx
x

+
w

x2
)[Λ2y + ψyΛ2ψ] = 0, (47)

and

2ψy
Λ2

x2
− ψy

x
[Λ2x + ψxΛ2ψ] +

ψx
x
[Λ2y + ψyΛ2ψ]

−ν[Λ2yy + ψyΛ2ψy + ψyyΛ2ψ + ψyΛ2ψy + ψ2
yΛ2ψψ] = 0. (48)

From equation (47), the coefficient of wyy (or in (48) the coefficient of ψyy) yields

Λ2ψ = 0 and thus

Λ2 = A(x, y). (49)

Equations (47) and (48) become

wx
Ay
x

+ wy[
2A

x2
− Ax

x
] + w

Ay
x2

= 0, (50)

ψx
Ay
x

+ ψy[
2A

x2
− Ax

x
]− νAyy = 0, (51)

which finally yield A = c3x
2 and

Λ1 = 0, Λ2 = c3x
2, (52)

where c3 is an arbitrary constant.

The multipliers Λ1 and Λ2 for the system (8)-(9) satisfy

Λ1

[
1

x
ψyψxy −

1

x2
ψ2
y −

1

x
ψxψyy − νψyyy − w2

]

+Λ2

[
1

x
ψywx −

1

x
ψxwy +

1

x2
ψyw − νwyy

]
(53)

= DxT
1 +DyT

2,

for all functions ψ(x, y) and w(x, y). From equations (52) and (53), we have

0[
1

x
ψyψxy−

1

x2
ψ2
y−

1

x
ψxψyy−νψyyy−w2]+c3x

2[
1

x
ψywx−

1

x
ψxwy+

1

x2
ψyw−νwyy]

= Dx[c3xwψy] +Dy[c3(−xwψx − νx2wy)], (54)



R. Naz, I. Naeem and F. M. Mahomed 751

for arbitrary ψ(x, y) and w(x, y). When ψ(x, y) and w(x, y) are solutions of the

system (8)-(9), we have

Dx[c3xwψy] +Dy[c3(−xwψx − νx2wy)] = 0. (55)

Thus

T 1 = xwψy, T
2 = −xwψx − νx2wy, (56)

are the components of a conserved vector for the system (8)-(9). Notice that the

conserved vector (56) is equivalent to the conserved vector (36).

The multiplier approach gives multipliers only for the local conserved vectors.

The multipliers for the non-local conserved vectors cannot be obtained with the help

of the multiplier approach as presented. Notice that if we multiply equation (8) with

zero and equations (9) with x2ψ, we have

0[
1

x
ψyψxy−

1

x2
ψ2
y−

1

x
ψxψyy−νψyyy−w2]+x2ψ[

1

x
ψywx−

1

x
ψxwy+

1

x2
ψyw−νwyy]

= Dx[xψwψy] +Dy

[
−xwψψx − νx2ψwy + νx2

∫ y

wyψydy

]
, (57)

for arbitrary ψ(x, y) and w(x, y). When ψ(x, y) and w(x, y) are solutions of the

system (8)-(9), we have

Dx[xψwψy] +Dy

[
−xwψψx − νx2ψwy + νx2

∫ y

wyψydy

]
= 0. (58)

Thus

T 1 = xψwψy, T
2 = −xwψψx − νx2ψwy + νx2

∫ y

wyψydy, (59)

are the components of a non-local conserved vector for the system (8)-(9). It may

be possible that the non-local conservation law (59) which does not arise from local

multipliers can be derived through a potential system associated with the system

(1), (2) and (3) or the system (8) and (9).

2.3. Conservation laws for radial jets at large distance from the orifice

The radial jets with swirl at large distance from the orifice, correspond to a radial

jet with zero swirl. When x→ ∞, w → 0, then the system (1)-(3) reduces to

uux + vuy = νuyy, (60)

(xu)x + (xv)y = 0, (61)
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which is same as the boundary layer equations for purely radial jet flows. The system

(8)-(9) for the stream function, when x→ ∞, reduces to a single third-order partial

differential equation

1

x
ψyψxy −

1

x2
ψ2
y −

1

x
ψxψyy − νψyyy = 0. (62)

The local conserved vectors for system (60)-(61) derived in [7] are

T 1 = xu, T 2 = xv, (63)

T 1 = xu2, T 2 = xuv − νxuy. (64)

The conserved vectors for the third-order partial differential equation (62) (see [7])

are

T 1 =
1

x
ψ2
y , T

2 = −1

x
ψxψy − νψyy, (65)

and

T 1 =
1

x
ψψ2

y , T
2 = −1

x
ψψxψy +

ν

2
ψ2
y − νψψyy. (66)

The conserved vectors given in equations (64) and (65) are equivalent.

3. CONSERVED QUANTITIES FOR RADIAL LIQUID JETS

In this section, we derive the conserved quantities for the radial liquid, free and

wall jets with swirl by the technique used in [7]. We first consider the conserved

vectors (35), (36) and (64) for the system of equations for the velocity components

and derive the conserved quantities for the radial liquid and the free jets with swirl.

Then we consider the stream function formulation to give an alternative derivation

of the conserved quantities for the radial free jet with swirl and also derive the

conserved quantities for the radial wall jet with swirl.

All the conserved vectors (T 1, T 2) derived here depend on u(x, y), v(x, y),

w(x, y) or ψ(x, y) and satisfy

DxT
1 +DyT

2 =
∂T 1

∂x
+
∂T 2

∂y
. (67)

But for a conserved vector DxT
1 +DyT

2 = 0 and therefore equation (67) yields

∂T 1

∂x
+
∂T 2

∂y
= 0. (68)
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The conserved quantities for the radial liquid, free and wall jets with swirl are ob-

tained by integrating equation (68) for the corresponding conservation law across

the jet and imposing the boundary conditions.

3.1. Conserved quantity for the radial liquid jet with swirl

The conserved quantity for the radial liquid jet with swirl is derived with the help

of conserved vector (35). The derivation for conserved quantity for radial liquid jet

with swirl is same as in [7] for the purely radial jet flow. The boundary conditions

for the radial liquid jet with swirl are

y = 0 : u = 0, v = 0, w = 0, (69)

y = ϕ(x) : uy = 0, wy = 0. (70)

The velocity component v(x, ϕ(x)) is

v(x, ϕ(x)) =
D

Dt
[ϕ(x)] = u(x, ϕ(x))

dϕ(x)

dx
, (71)

where

D

Dt
=

∂

∂t
+ u(x, y)

∂

∂x
+ v(x, y)

∂

∂y
(72)

is the material time derivative. The conserved quantity for the radial liquid jet with

swirl is obtained by integrating (68) with respect to y from y = 0 to y = ϕ(x)

keeping x as fixed. For the conserved vector (35), we obtain∫ ϕ(x)

0

[
∂

∂x
(xu) +

∂

∂y
(xv)]dy = 0. (73)

Differentiating (73) under integration sign [12], we have

d

dx

∫ ϕ(x)

0

[xu]dy − xu(x, ϕ(x))
dϕ(x)

dx
+ [xv(x, y)]ϕ(x)0 = 0. (74)

The boundary condition (69) for v(x, 0) and expression (71) for v(x, ϕ(x)), reduces

(74) to

x

∫ ϕ(x)

0

udy = constant, independent of x, (75)

which gives that the total mass flux is constant along the jet. Therefore

F = x

∫ ϕ(x)

0

udy (76)
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is the conserved quantity for the radial liquid jet with swirl [5].

3.2. Conserved quantities for the radial free jet with swirl

The boundary conditions for the radial free jet with swirl are

y = 0 : v = 0, uy = 0, wy = 0, (77)

y = ±∞ : u = 0, uy = 0, w = 0, wy = 0. (78)

For the conserved vector (36), equation (68) on integration with respect to y from

y = −∞ to y = ∞ with x kept as fixed during the integration, yields

d

dx
[x2

∫ ∞

−∞
(uw)dy] +

[
x2vw − νx2wy

]∞
−∞ = 0. (79)

We assume that v(x,±∞) is finite. The boundary conditions (77) and (78) on (79)

gives

2x2
∫ ∞

0

uwdy = constant, independent of x. (80)

The conserved quantity for the radial free jet with swirl is

F = 2x2
∫ ∞

0

uwdy, (81)

where F is a constant independent of x. If ρ is the density of fluid, then the constant

ρF is the total radial flux of angular momentum about x = 0 (Riley [5]). The second

conserved quantity which is valid only when there is no swirl or at large distance

from the orifice can be obtained from the conserved vector (64). Integrate (68) with

respect to y for the conserved vector (64), we obtain

d

dx
[x

∫ ∞

−∞
u2dy] + [xuv − νxuy]

∞
−∞ = 0. (82)

The boundary condition (78) and v(x,±∞) is finite, yields

2x

∫ ∞

0

u2dy = constant, independent of x. (83)

Thus

G = 2x

∫ ∞

0

u2dy (84)

and ρG is the second conserved quantity for the radial free jet with swirl and is valid

only at large distance from orifice.
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The conserved quantities for the radial free jet with swirl can also be derived for

the stream function formulation. We now outline an alternative derivation of the

conserved quantities for the radial free jet with swirl. Also we derive the conserved

quantities for the radial wall jet with swirl.

In terms of the stream function the boundary conditions (77) and (78) take the

following form:

y = 0 : ψx = 0, ψyy = 0, wy = 0, (85)

y = ±∞ : ψy = 0, ψyy = 0, w = 0, wy = 0. (86)

Integrate equation (68) with respect to y form y = −∞ to y = ∞ keeping x as fixed.

For the conserved vector (56), we have

d

dx
[x

∫ ∞

−∞
wψydy] +

[
−xwψx − νx2wy

]∞
−∞ = 0. (87)

Equation (87) with the help of boundary condition (86) and requirement ψx(x,±∞) =

−xv(x,±∞) is finite, gives

2x

∫ ∞

0

wψydy = constant, independent of x. (88)

Equation (88) is equivalent to (80) and thus we finally obtain the conserved quantity

F given in (81). The second conserved quantity which is valid only when there is

no swirl or at large distance from the orifice can be obtained from conserved vector

(65). Integration of (68) with respect to y with x kept as fixed for the conserved

vector (65) gives

d

dx
[
1

x

∫ ∞

−∞
ψ2
ydy] +

[
−1

x
ψxψy − νψyy

]∞
−∞

= 0. (89)

Equation (89) with the help of boundary condition (86) and the requirement ψx(x,±∞) =

−xv(x,±∞) is finite, yields

2

x

∫ ∞

0

ψ2
ydy = constant, independent of x. (90)

Equation (90) is equivalent to (83) and hence we obtain the conserved quantity (84).

3.3. Conserved quantities for the radial wall jet with swirl

For the radial wall jet with swirl the boundary conditions are

y = 0 : u = 0, v = 0, w = 0, (91)
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y = ∞ : u = 0, uy = 0, w = 0, wy = 0. (92)

In terms of the stream function, we obtain

y = 0 : ψx = 0, ψy = 0, w = 0, (93)

y = ∞ : ψy = 0, ψyy = 0, w = 0, wy = 0. (94)

By integrating equation (68) with respect to y from y = 0 to y = ∞ keeping x as

fixed and considering the conserved vector (59), we have

d

dx
[x

∫ ∞

0

ψwψydy] +

[
−xwψψx − νx2ψwy + νx2

∫ y

wyψydy

]∞
0

= 0. (95)

But ψ(x, 0) = 0 whereas ψ(x,∞), ψx(x,∞) and wy(x, 0) are assumed to be finite.

Thus boundary conditions (93) and (94) reduce equation (95) to

d

dx

[
x

∫ ∞

0

ψwψydy

]
+ νx2

∫ ∞

0

wyψydy = 0. (96)

Integrating equation (96) by parts and using boundary conditions, we deduce

d

dx

(
x

∫ ∞

0

ψy

(∫ ∞

y

wψy∗dy
∗
)
dy

)
= νx2

∫ ∞

0

wψyydy, (97)

and in terms of the velocity components, we have

d

dx

(
x3

∫ ∞

0

u

(∫ ∞

y

wudy∗
)
dy

)
= νx3

∫ ∞

0

wuydy. (98)

To make the right side of equation (98) zero, Riley [5] assumed that u/w is a function

of x only and this condition is satisfied by the similarity solution. Thus in the

similarity solution regime, we have

x3
∫ ∞

0

u

(∫ ∞

y

wudy∗
)
dy = constant, independent of x. (99)

Therefore

M = x3
∫ ∞

0

u

(∫ ∞

y

wudy∗
)
dy, (100)

is a conserved quantity. Riley [5] used ρ2M as a conserved quantity for the radial wall

jet with swirl. There is no obvious physical significance of this conserved quantity.

The second conserved quantity is derived with no swirl or at large distance from

the orifice and the conserved vector (66) is used in its derivation. Integrating (68)
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with respect to y from y = 0 to y = ∞ keeping x as fixed during the integration,

we have

d

dx
[
1

x

∫ ∞

0

ψψ2
ydy] +

[
−1

x
ψψxψy +

ν

2
ψ2
y − νψψyy

]∞
0

= 0. (101)

The boundary conditions (93) and (94) yield

1

x

∫ ∞

0

ψψ2
ydy = constant, independent of x, (102)

we have used the requirements ψ(x, 0) = 0, ψ(x,∞) and ψx(x,∞) are finite. Inte-

grating (102) by parts, we obtain

N =
1

x

∫ ∞

0

ψy

(∫ ∞

y

ψ2
y∗dy

∗
)
dy, (103)

or equivalently

N = x2
∫ ∞

0

u

(∫ ∞

y

u2dy∗
)
dy, (104)

which is valid only for no swirl or at large distance from orifice. The constant ρ2N

is interpreted as the flux of exterior momentum flux.

3.4. Comparison between conservation laws for radial jets with swirl and

purely radial jet flows

The results for radial jets with swirl and for purely radial jets derived in [7] are

displayed in Table 1. The boundary layer equations for the velocity components as

well as for the stream function formulation are given in Table 1 for both the radial

jets with swirl and for the purely radial jets. The conservation laws for the purely

radial jet flows hold for the radial jets with swirl but only at large distances from

the orifice (as x → ∞). The multiplier approach on the system of equations for

the velocity components for purely radial jets yields two local conserved vectors and

for the stream function formulation also two local conserved vectors are obtained.

The multiplier approach on the system of equations for the velocity components for

radial jets with swirl yields three conserved vectors, one of these conserved vectors

is valid only when x → ∞. For the stream function formulation for the radial jets

with swirl four conserved vectors are obtained and two of them are valid only when

x → ∞. The conserved vectors for the radial jets with swirl as x → ∞ and for the

purely radial jets are the same.

The conserved quantity for the radial liquid jet with swirl and the purely radial

liquid jet are the same. The only conserved quantity for the purely radial free jet
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is that the total radial flux of momentum is constant in the jet. The radial free jet

with swirl has two conserved quantities. One conserved quantity for the radial free

jet with swirl is the total radial flux of angular momentum about x = 0 which is

constant. The second conserved quantity is the same as for the purely radial free

jet but it holds only as x→ ∞. The conserved quantity for a purely radial wall jet

is the flux of exterior momentum flux in the wall jet which is constant and holds for

the radial wall jet with swirl at x → ∞. Another conserved quantity for the radial

wall jet with swirl is established with the help of a non-local conserved vector for

the system of two partial differential equations for the stream function formulation.

There is no obvious physical interpretation of that conserved quantity.
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Radial jets with swirl Purely radial jets

Boundary layer uux + vuy − w2

x
= νuyy uux + vuy = νuyy

equations

uwx + vwy +
uw
x

= νwyy

(xu)x + (xv)y = 0 (xu)x + (xv)y = 0

Conserved vectors T 1 = x2uw

for T 2 = x2(vw − νwy)

velocity components

T 1 = xu T 1 = xu

T 2 = xv T 2 = xv

As x→ ∞
T 1 = xu2 T 1 = xu2

T 2 = x(uv − νuy) T 2 = x(uv − νuy)

Stream function 1
x
ψyψxy − 1

x2
ψ2
y − 1

x
ψxψyy

1
x
ψyψxy − 1

x2
ψ2
y

formulation −νψyyy − w2 = 0 − 1
x
ψxψyy − νψyyy = 0

1
x
ψywx − 1

x
ψxwy +

1
x2
ψyw

−νwyy = 0

Conserved vectors T 1 = xwψy

for stream function T 2 = −xwψx − νx2wy

T 1 = xψwψy

T 2 = −xwψψx − νx2ψwy

+
∫ y
0
νx2wyψy

As x→ ∞
T 1 = 1

x
ψ2
y T 1 = 1

x
ψ2
y

T 2 = − 1
x
ψxψy − νψyy T 2 = − 1

x
ψxψy − νψyy

T 1 = 1
x
ψψ2

y T 1 = 1
x
ψψ2

y

T 2 = − 1
x
ψψxψy +

ν
2
ψ2
y T 2 = − 1

x
ψψxψy +

ν
2
ψ2
y

−νψψyy −νψψyy
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Conserved quantities

For liquid jet x
∫ ϕ(x)
0

udy x
∫ ϕ(x)
0

udy

For free jet 2x2
∫∞
0
uwdy

2x
∫∞
0
u2dy as x→ ∞ 2x

∫∞
0
u2dy

For wall jet x3
∫∞
0
u
(∫∞

y
wudy∗

)
dy

x2
∫∞
0
u
(∫∞

y
u2dy∗

)
dy x2

∫∞
0
u
(∫∞

y
u2dy∗

)
dy

as x→ ∞

Table 1: Comparison between radial jets with swirl and purely radial jets

4. CONCLUDING REMARKS

The conserved quantities for the radial liquid, free and wall jets with swirl derived

by Riley [5] can be constructed with the help of conservation laws. The radial jets

with swirl behave as purely radial jets at large distances from the orifice. At large

distances from the orifice as x → ∞, the swirling component w → 0 and the

boundary layer equations for radial jets with swirl reduce to that of purely radial

jets. Therefore, as x → ∞ the conservation laws for radial jets with swirl coincide

with those of the purely radial jets.

The multiplier approach gave two local conservation laws for the system of equa-

tions for the velocity components. One of the conserved vectors gave the conserved

quantity for the radial liquid jet with swirl and the second conserved vector yielded

one conserved quantity for the radial free jet with swirl. Also, another conserved

vector for this system was obtained as x → ∞. The second conserved quantity for

the radial free jet with swirl was obtained from that conserved vector. The con-

served quantities for the wall jet with swirl cannot be obtained from the conserved

vectors for the system of equations for the velocity components.

For the system of two partial differential equations for the stream function for-

mulation one local and one non-local conserved vector were obtained. The local

conserved vector gave one conserved quantity for the radial free jet with swirl and

the non-local conserved vector was used to establish one conserved quantity for the

radial wall jet with swirl. Also, two conserved vectors for the stream function for-
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mulation were obtained as x → ∞ which were used to derive the second conserved

quantities for the radial free and wall jets with swirl.

It is of interest to notice that the non-local conserved vector for the system of two

partial differential equations for the stream function formulation cannot be obtained

by the multiplier approach. The reason is that the multiplier approach only gives

multipliers for the local conserved vectors. It may be possible that the non-local

conservation law which does not arise from local multipliers can be derived through

a potential system associated with the system (1)-(3) or the system (8)-(9).
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