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Abstract- The effect of magnetic field on peristaltic flow through the gap between

uniform tubes is studied under the assumption of long wavelength at low Reynolds

number. The inner tube is rigid and the outer tube has a sinusoidal wave travelling

down its wall. The flow is investigated in a wave frame of reference moving with the

velocity of the wave. The analytical solution for velocities and pressure gradient is

derived. The effects of magnetic field and an endoscope on the velocities, pressure

gradient, pressure rise and frictional forces on the inner and outer tubes are exam-

ined.

Keywords- Peristalsis modelling, velocity profiles, long wavelength, low Reynolds

number, endoscope.

1. INTRODUCTION

Peristaltic transport is a form of fluid transport generated by a progressive wave

of area contraction or expansion along the length of a distensible tube contain-

ing fluid. Fluid transport through muscular tubes by means of peristaltic waves

is an important biological mechanism and is found in swallowing food through the

esophagus, transport of urine from kidney to bladder, movement of chyme in the

gastro-intestinal tract, intra-uterine fluid motion, transport of spermatozoa in the

ductus efferentes of the male reproductive tract, in movement of ovum in the fe-

male fallopian tube, vasomotion of small blood vessels and in many other glandular

ducts. The mechanism of peristaltic transport has been also exploited for industrial

applications such as sanitary fluid transport, blood pumps in heart lung mechanics
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and transport of corrosive fluids where the contact of the fluid with the machinery

parts is prohibited. To understand peristaltic action in various situations, several

theoretical and experimental investigations have been made. Important contribu-

tions to the topic on Newtonian or non-Newtonian fluids include the studies of

Latham [1], Shapiro et al. [2], Fung and Yih [3], Yin and Fung [4], Shukla and

Gupta [5], Srivastava and Srivastava [6], Takabatake and Ayukawa [7] , Weinberg et

al. [8], Yin and Fung [9], Eytan et al. [10], Srivastava and Saxena [11], Böhme and

Friedrich [12], Siddiqui and Schwarz [13, 14], Hayat et al. [15, 16, 17], etc.

In all the studies mentioned above, the effect of an endoscope on the peristalsis

has not been considered. More recently, Hakeem et al. [18] studied the effects of an

endoscope and a generalized Newtonian fluid on the peristaltic motion. The fluid

considered in reference [18] is hydrodynamic. Moreover a catheter placed within

a two-dimensional model having oscillating walls has been analyzed by Rau and

Usha [19], Roos and Lykoudis [20] and Yaniv et al. [21]. The influence of magnetic

field on the blood flow has been discussed by Sud et al. [22]. They found that the

blood speed is accelerated under the effect of a suitable moving magnetic field. Also,

Agrawal and Anwaruddin [23] discussed the influence of magnetic field on blood flow

by taking a simple mathematical model for blood flow through an equally branched

channel with flexible walls executing peristaltic waves employing the long wavelength

approximation. Mekheimer [24] studied the effect of magnetic field on peristaltic

transport of blood in a non-uniform two dimensional channel, when blood is rep-

resented by a couple stress fluid. Helmy [25] obtained similarity solutions for the

unsteady flow of a power-law fluid on a porous plate moving uniformly in the pres-

ence of a transverse magnetic field. An analytical solution for the velocity field and

coefficient of friction of boundary layer equations for a power-law fluid in a trans-

verse variable magnetic field is obtained by Helmy [26].

In recent years some attempts have been made to study the effects of magnetic

field and an endoscope simultaneously on peristaltic motion (see [27-40] and the

references mentioned there). The magnetohydrodynamic (MHD) peristaltic flow of

a fluid is of interest in connection with certain problems of the movement of conduc-

tive physiological fluids e.g. the blood and blood pump machines. The purpose of

this paper is to study the peristaltic flow of a magnetohydrodynamic fluid through

the gap between co-axial uniform tubes. The inner tube (an endoscope) is rigid and

the outer tube has a sinusoidal wave travelling down its wall. The present analysis

has been carried out under the assumption of long wavelength at low Reynolds num-
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ber. This assumption is applicable since the radius (1.25cm) of the small intestine

is small as compared with the wavelength (λ = 8.01cm). The governing problem

is solved analytically and effects of Hartmann number on the velocity components,

pressure gradient, pressure rise and frictional forces on the inner and outer tubes

are analyzed and discussed in detail.

The paper is organised as follows. In Section 2 the problem is formulated math-

ematically. In Section 3 an analytical solution to the problem is obtained. The

integrals are evaluated numerically using NIntegrate in MATHEMATICA R⃝. In

Section 4 the effects of magnetic field and an endoscope on the velocities, pressure

gradient, pressure rise and frictional forces on the inner and outer tubes are dis-

cussed and in Section 5 conclusions are presented.

2. FORMULATION OF THE PROBLEM

Consider the magnetohydrodynamic flow of a viscous, incompressible and elec-

trically conducting fluid through the gap between inner and outer tubes. The inner

tube is an endoscope and the outer tube has a sinusoidal wave travelling down its

wall. The surface of the tubes is electrically insulated. The geometry of the problem

is shown in Fig. 1. We choose a cylindrical polar coordinate system (R,Z) with R in

the radial direction and Z along the centerline of the inner and outer tubes. A uni-

form magnetic field B0 is applied transversely to the flow. The magnetic Reynolds

number is small and so the induced magnetic field is negligible. The geometry of

the two wall surfaces is defined through the following equations

r1 = a1, (1)

r2 = a2 + b sin 2π(Z − ct), (2)

in which a1 is the radius of the inner tube, a2 is the radius of the outer tube at the

inlet, b is the amplitude of the wave (wavelength λ), c is the propagation velocity

and t is the time.

The Navier-Stokes equations and the continuity equation which govern the flow are:
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Figure 1: Effects of an endoscope on peristaltic motion of a MHD fluid.

∂U

∂R
+

U

R
+

∂W

∂Z
= 0, (5)

where µ is the dynamic viscosity, σ is the electrical conductivity of the fluid, ρ is the

fluid density, p is the pressure and U and W are the velocities in laboratory frame.

We shall carry out the analysis in a wave frame in which the flow is steady. The

coordinates and velocities in the laboratory frame (R,Z) and the wave frame (r, z)

are related through

z = Z − ct, r = R, (6)

w = W − c, u = U, (7)

where u and w are the velocities in the wave frame. The boundary conditions in the

wave frame are [18]

w = −c at r = r1, r = r2 (8)

u = 0 at r = r1. (9)

Employing the transformations (6) and (7) and then defining the dimensionless

variables

r = r/a2, r1 = r1/a2 = a1/a2 = ϵ < 1, z = z/a2,

(10)
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w = w/c, u = λu/a2c, p = a22p/cλµ, t = ct/λ,

Eqs. (3)-(5) and boundary conditions (8)-(9) become

Re δ3
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= 0, (13)

w = −1 at r = r1 = ϵ, r = r2, (14)

u = 0 at r = r1 = ϵ, (15)

r2 = 1 + ϕ sin 2πz, (16)

where the dimensionless wave number (δ), Reynolds number (Re), the amplitude

ratio (ϕ) and Hartmann number (M) are respectively given by

δ =
a2
λ

≪ 1, Re =
ρca2
µ

, ϕ = b/a2 < 1, (17)

M =

√
σ

µ
B0 a2 >

√
2,

and ϵ is the radius ratio. The Eqs. (11)-(12) for long wavelength with low Reynolds

number approximation become
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, (18)
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where Eq. (18) shows that p is not a function of r. Hence p is only a function of z.

In dimensionless variables the expressions for volume flow rate (F), pressure

rise (∆Pλ) and frictional forces on the inner
(
F

(i)
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)
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(
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λ

)
are
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respectively given by [18]

F =

∫ r2

r1

rw dr, (20)

∆Pλ =

∫ 1
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(
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dz, (21)
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3. ANALYTICAL SOLUTION

Since the right-hand side of Eq. (19) is a function of z only, we have that

dp

dz
= λ1(z), (24)

1

r

d

dr

[
r
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]
−M2(w + 1) = λ1(z). (25)

Eq. (25) can easily be solved to give

w(r) = A1I0(Mr) + A2K0(Mr)−
(
λ1(z) +M2

)
/M2, (26)

where I0 is the modified Bessel function of the first kind of order 0, K0 is the modified

Bessel function of the second kind of order 0 and A1 and A2 are constants to be

determined after imposing the boundary conditions (14). Imposing the boundary

conditions on Eq. (26) we find that

A1 =
λ1(z) (K0(ϵM)−K0(Mr2))

M2 (I0(Mr2)K0(ϵM)− I0(ϵM)K0(Mr2))
, (27)

A2 =
λ1(z) (I0(Mr2)− I0(ϵM))

M2 (I0(Mr2)K0(ϵM)− I0(ϵM)K0(Mr2))
. (28)

We can calculate λ1(z) in terms of the flow rate F through Eq. (20). Taking

r1 = ϵ we find that

dp
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ϵ2 − 2F − r2(z)
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−I0(M r2(z))K2(ϵM)) +M r2(z) (−2 (I1(M r2(z))K0(ϵM)

+I0(ϵM)K1(M r2(z))) +M (I0(M r2(z))K0(ϵM)

−I0(ϵM)K0(M r2(z))) r2(z))]
−1 .

(29)
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We plot Eq.(29) in Figs. 2-3.

We can calculate u from Eq. (13) after using Eq. (26) and obtain

u =
[
2M4 r (I0(M r2(z))K0(ϵM)− I0(ϵM)K0(M r2(z)))

2 r2(z)
]−1
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2 +M
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)
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(
M r2 K0(ϵM) + 2 r K1(M r)
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)))

r2(z)λ1
′(z) + 2 (−1 +M r I1(M r)K0(ϵM)

+M r I0(ϵM)K1(M r)) λ1(z) (−1 +M (I1(M r2(z))K0(ϵM)

+ I0(ϵM)K1(M r2(z))) r2(z)) r2
′(z)] , (30)

where ′ = d/dz. We plot the values of Eqs. (21)-(23) in Figs. 13-15, respectively.

The values are calculated by evaluating the integrals numerically using NIntegrate

in MATHEMATICA R⃝.

4. DISCUSSION

The effects of the Hartmann number on the pressure gradient dp/dz are plotted

in Figs. 2-4. The effect on dp/dz under varying amplitude ratios ϕ is plotted in

Fig. 2. From Fig. 2 we observe that the Hartmann number changes the maximum

amplitude of dp/dz when compared to the case with zero Hartmann number. This

change in amplitude is increased by increasing the amplitude ratio ϕ. The effect of

changing flow rate on dp/dz is indicated in Fig. 3. Again, we observe that there is a

definite increase in the maximum amplitude of dp/dz when increasing the magnitude

of the flow rate when compared to the case of zero Hartmann number. In Fig. 4

we plot the change in dp/dz when changing ϵ. Again, there is an increase in the

maximum amplitude of dp/dz with increasing ϵ.

In general, we can conclude that the presence of a magnetic filed increases the

maximum amplitude of the pressure gradient. This increase is further compounded

by increasing the amplitude ratio, ϕ, the magnitude of the flow rate, F and ϵ.
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Figure 2: Plot showing variation of the pressure gradient dp/dz within a wavelength

z ∈ [0, 1] for different values of the Hartmann number M for the amplitude ratios

(A) ϕ = 0.2 and (B) ϕ = 0.4 subject to a fixed flow rate F = −2. We have chosen

ϵ = 0.32.
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Figure 3: Plot showing variation of the pressure gradient dp/dz within a wavelength

z ∈ [0, 1] for a fixed Hartmann number M = 4 for the flow rates (A) F = −1 and

(B) F = −2 subject to a fixed amplitude ratio ϕ = 0.2. We have chosen ϵ = 0.32.

The dotted lines (• • •) correspond to the case M = 0.

The effects of the Hartmann number on the velocities u and w are investigated

in Figs. 5-13. In Fig. 5 we plot the velocities u(r, z) and w(r, z) for zero Hartmann

number. We have used a contour map to plot the effect of the Hartmann number

on the velocities. The lighter shaded regions have a higher velocity than the regions

shaded darker. Fig. 5A indicates a sink for w while Fig. 5B indicates that u is very

sinusoidal flattening in the region for small z. In Figs. 6-9 the effects of changing

Hartmann number, M , amplitude ratio ϕ, flow rate F and ϵ on w(r, z) are plotted.

From these figures we note that the main effect of increasing the magnitudes of M ,

F , ϕ and ϵ is to steepen the gradient of the sink. Also, the magnitude and width of
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Figure 4: Plot showing variation of the pressure gradient dp/dz within a wavelength

z ∈ [0, 1] for a fixed Hartmann number M = 4, flow rate F = −2 and amplitude

ratio ϕ = 0.2 with varying ϵ. The dotted lines (• • •) correspond to the case M = 0.

the sink increases. We note that the width of the sink in Figs. 6B-9B is wider when

compared with Figs. 6A-9A.
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Figure 5: Plot showing w(r, z) (A) and u(r, z) (B) for zero Hartmann number (M =

0) where ϵ = 0.32, F = −2,ϕ = 0.2, r ∈ [ϵ, r2(z)] and z ∈ [0, 1].
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Figure 6: Plot showing w(r, z) for fixed amplitude ratio ϕ = 0.2 and changing

Hartmann number (A)M = 4 (B)M = 16, where ϵ = 0.32 and F = −2,r ∈ [ϵ, r2(z)]

and z ∈ [0, 1].
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Figure 7: Plot showing w(r, z) for fixed Hartmann number M = 4 and changing

flow rate and changing amplitude ratio (A) ϕ = 0.2, F = −1 (B) ϕ = 0.4, F = −2

where ϵ = 0.32, r ∈ [ϵ, r2(z)] and z ∈ [0, 1].
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Figure 8: Plot showing w(r, z) for fixed amplitude ratio ϕ = 0.2 and changing

Hartmann number (A)M = 4 (B)M = 16, where ϵ = 0.42 and F = −2,r ∈ [ϵ, r2(z)]

and z ∈ [0, 1].
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Figure 9: Plot showing w(r, z) for fixed Hartmann number M = 4 and changing

flow rate and changing amplitude ratio (A) ϕ = 0.2, F = −1 (B) ϕ = 0.4, F = −2

where ϵ = 0.42, r ∈ [ϵ, r2(z)] and z ∈ [0, 1].

In Figs. 10-13 the effects of changing Hartmann number, M , amplitude ratio ϕ,

flow rate F and ϵ on u(r, z) are plotted. Here, once again, we note a steepening of

the edges in the sinusoidal behaviour of u. There is an increase in the magnitude

(depth and height of sinusoidal wave) as the parameter values increase. The change

in behaviour mimics the change in behaviour indicated for u.
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Figure 10: Plot showing u(r, z) for fixed amplitude ratio ϕ = 0.2 and changing

Hartmann number (A) M = 4 (B) M = 16, where ϵ = 0.32, F = −2, r ∈ [ϵ, r2(z)]

and z ∈ [0, 1].
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Figure 11: Plot showing u(r, z) for fixed Hartmann number M = 4 and changing

flow rate and changing amplitude ratio (A) ϕ = 0.2, F = −1 (B) ϕ = 0.4, F = −2

where ϵ = 0.32, r ∈ [ϵ, r2(z)] and z ∈ [0, 1].
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Figure 12: Plot showing u(r, z) for fixed amplitude ratio ϕ = 0.2 and changing

Hartmann number (A) M = 4 (B) M = 16, where ϵ = 0.42, F = −2, r ∈ [ϵ, r2(z)]

and z ∈ [0, 1].

z

r

A

z

r

B

Figure 13: Plot showing u(r, z) for fixed Hartmann number M = 4 and changing

flow rate and changing amplitude ratio (A) ϕ = 0.2, F = −1 (B) ϕ = 0.4, F = −2

where ϵ = 0.42, r ∈ [ϵ, r2(z)] and z ∈ [0, 1].

In Fig. 14 the effects of changing Hartmann number, M , amplitude ratio ϕ, flow

rate F and ϵ on the pressure rise ∆Pλ are plotted. We observe that as the Hartmann

number increases there is a nonlinear increase in the pressure rise. Increasing the

values of the parameters ϕ, F and ϵ contributes to the increase in pressure rise.
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Figure 14: Plot showing ∆Pλ for M ∈ [0.01, 14] for changing amplitude ratio (A)

ϕ = 0.2 and ϕ = 0.4, changing flow rate (B) F = −1 and F = −2 and changing ϵ

(C) ϵ = 0.32 and ϵ = 0.42.

In Fig. 15 the effects of changing Hartmann number, M , amplitude ratio ϕ, flow

rate F and ϵ on frictional forces on the inner tube F
(i)
λ are plotted. In Fig. 16 the

effects of changing Hartmann number, M , amplitude ratio ϕ, flow rate F and ϵ on

frictional forces on the outer tube F
(o)
λ are plotted. In both cases as the magnetic

field increases we note an increase in the magnitude but in the opposite direction to

the pressure rise. Increasing the values of the parameters ϕ, F and ϵ contributes to

an increase in the frictional forces on the inner and outer tubes.
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Figure 15: Plot showing F
(i)
λ for M ∈ [0.01, 15] for changing amplitude ratio (A)

ϕ = 0.2and ϕ = 0.4, changing flow rate (B) F = −1 and F = −2 and changing ϵ

(C) ϵ = 0.32 and ϵ = 0.42.
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Figure 16: Plot showing F
(0)
λ for M ∈ [0.01, 15] for changing amplitude ratio (A)

ϕ = 0.2 and ϕ = 0.4, changing flow rate (B) F = −1 and F = −2 and changing ϵ

(C) ϵ = 0.32 and ϵ = 0.42.

5. CONCLUSIONS

A mathematical model to study the peristaltic transport of magnetohydronamic

(MHD) fluid along with an endoscope effect is presented. The most important

characteristics of peristaltic mechanism such as the velocity components, pressure

gradient (axial), pressure rise and frictional forces are discussed with the variation

in Hartmann number, the amplitude ratio, radius ratio and flow rate. The graphs

of analytical solutions for velocities and pressure gradient; and numerical evalua-

tions of pressure rise and frictional forces reveal several facts. The amplitude of

pressure gradient is found to be always larger in the case of an MHD fluid than in a

hydrodynamic fluid. As expected, increase in Hartmann number increases pressure

rise. The behaviour of frictional forces is opposite when compared to the pressure

rise. Further, the pressure rise increases with increasing values of the amplitude and

radius ratios. An increase in flow rate increases the pressure rise; thus maximum

flow rate is achieved for large pressure rise and maximum pressure rise is achieved
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at large flow rate. The Hartmann number is also found to decrease flow velocities.
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