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Abstract- The analysis of moment-curvature relationship of reinforced concrete 
sections is complex due to large number of variables as well as non-linear material 
behavior involved. Artificial Neural Networks (ANNs) are found to be a tool capable of 
solving such problems. This has led to increasing use of ANN for analyzing the 
behavior of reinforced concrete sections. This paper reports the details of a study 
conducted using ANN for predicting moment-curvature relationship of a reinforced 
concrete section.  Using data generated based on the analytical solutions, the ANN 
model was trained. The trained model was tested for a different set of input parameters 
and the output values were compared with the values based on analytical results. The 
agreement was found to be good. 
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1. INTRODUCTION 

 

The moment curvature for a cross-section envelope describes the changes in force 
capacity with deformation during a nonlinear analysis. The relationship between 
moment and curvature demonstrates the strength, ductility, energy dissipation capacity 
and rigidity of the section under question. To obtain the moment-curvature relationship 
of reinforced concrete section, various researchers have investigated using different 
models. Parviz [1] used firstly the filament method.  Ersoy and Özcebe [2] presented a 
computer program to determine moment-curvature relationships of confined concrete 
sections.  Artificial neural networks (ANN) are one of the artificial intelligence (AI) 
applications which have recently been used widely to model some of human interesting 
activities in many areas of science and engineering. The generalized delta rule algorithm 
of artificial neural networks is employed to predict the flexural behavior of Steel Fibre 
Reinforced Concrete (SFRC) T-beams using a computer program developed using C++ 
by Patodi and Purani [3]. For some other examples of ANN applications in structural 
analysis, the reader is referred to Jadid et al. [4] ; Berke et al. [5] ; Lee et al. [6]; 
Avdelas et al [7]; Abdalla and Stavroulakis [8]; Karlık et al. [9]. As far as structural 
analysis and design are concerned, Hajela et al. [10] used BPNN to represent the force-
displacement relationship in static structural analysis. Jenkins considered the application 
of neural nets to approximate structural analysis and especially to a comparatively 
simple structure [11]. Mukherjee et al. [12] mapped the relationship between the 
slenderness ration, the modulus of elasticity and the buckling load for columns. As the 
input taken directly from the experimental results, factors affecting the buckling load of 
columns are automatically incorporated in the model to a great extent. Adeli defined the 
learning parameters as a function of iteration number of the training [13]. 
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In this study, the behavior values of reinforced concrete sections subjected to 
flexure and axial load were obtained by using an analytical solution named the filament 
model, and then the required data for the network training were prepared. To obtain the 
behavior of confined concrete, several data points were used in training a multi-layer, 
feed-forward and back propagation artificial neural network (ANN) algorithm.  The 
behavior values were calculated using the neural network and were compared with those 
obtained from the analytical results. Finally, the reliability of the ANN solution was 
validated by comparing experimental values with modeled values. 

 

2. MATERIAL MODELS 

 

 Moment-curvature analysis for a reinforced concrete section, indicating the 
available flexural strength and ductility can be carried out provided that the stress-strain 
relationships for the concrete and steel reinforcements are known. Typical stress–strain 
curves for concrete are shown in Fig. 1.  

  
 

 

 

 

 

 

 

 

 

 

Fig. 1. Typical concrete stress-strain curve 

 
The material model for concrete used in this analysis is based on a model 

suggested by Modified Kent–Park [14]. This model takes into account the different 
stress-strain curves for unconfined and confined concrete as shown in Fig. 2. The 
general shape of curve is modeled by a second degree parabola for the ascending branch 
up to the maximum stress which corresponds to strain level of 0.002 and linear 
horizontal part leading to the ultimate strain.    

 
 
 

 

 

 

 

 

 

 

 

Fig. 2. Modified Kent-Park concrete stress-strain curve. 

cfStress,  

cStrain ε,  

Confined Concrete 

Unconfined Concrete 

oε  
okε  

'
ctf  

'
cf  

'
ccf  

', cfStress  

cStrain ε,  

Unconfined 

Concrete 

oε  

'2.0 ckf  

'
cf  

'
ckf  

Confined concrete 

okε  hu 5050 εε +  

'5.0 ckf  



 
 

Neural Network Model for Reinforced Concrete Sections   
 

 

68 

In the ascending branch, the concrete compressive stress, cf , at a given strain, cε  is 

given by: 
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where '
cf  is the concrete compressive strength and oε  is concrete strain at the 

maximum stress assumed to be 0.002. It can be seen from Eq. (1) that concrete reaches 

a maximum stress of '
ckf  at a strain of k oε .  k is a factor which accounts for the strength 

increase due to the confinement. The value of the parameter k is obtained from; 
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where yhf  is the yield strength of stirrups, and sρ  is the ratio of the volume of hoop 

reinforcement to the volume of concrete core measured to the outside of stirrups. The 
descending branch of the stress–strain curve is described as follows; 
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The term u50ε  defines the slope of the falling branch of the unconfined concrete, 

which identifies the strain at which the stress has fallen to '
ckf5.0 .  The h50ε  is the 

additional ductility in concrete which is provided by transverse reinforcement. The “b” 
is the width of the confined core measured to the outside of stirrups, and s  is the center 
to center spacing of stirrups or hoop sets. At large strains, the value of compressive 

stress is kept constant at '
ckf2.0  to account for the ability of concrete to support load at 

large strains.  
When a reinforced concrete member is subjected to tensile strains less than the 

cracking strain of concrete, the stress-strain relationship is approximately linear. A bi-
linear model is used for concrete in tension. Rüsch [15] recommends the following 
relationship: 

tctctcttentionc 0Ef εεε ≤≤−= ;     (7) 

( )
tctctctcttensionc 1000f5000ff εεε ≥−−= ;    (8) 

where ctE is the modulus of elasticity in tension, ctε  is the tensile strain. c1 is taken as 

0.5, ctoε  as 0.0001 and ctuε  as 0.0002. The relationships given in Eq. (7) and Eq.(8) are 

shown in Fig. 3. 
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A sample reinforcement stress–strain relationship is shown in Fig.4. The 
constitutive model used for steel reinforcement is a simple elastic-plastic three linear 
model.  These are the linear segment, the yield plateau, and the strain hardening 
segment. There are some other parameters of the reinforcement stress–strain 
relationship, such as the reinforcement yield strength , ykf , the ultimate reinforcement 

strength, suf , the reinforcement yield strain, syε , hardening strain , stε , the ultimate 

strain, suε , and modulus of elasticity  , sE  . 

     

 

 

 

 

 

 

 

  Fig.  3. Tension model for RC           Fig. 4. Idealized reinforcement stress-strain curve 

  

3. METHOD OF ANALYSIS 
 

The reinforced concrete section is modeled using filament method. As can be seen 
from Fig. 5, the cross-section is divided into 40 filaments to determine a moment-
curvature relationship. For each filament, confined core and unconfined cover areas are 
defined. For a given strain at the extreme fiber in compression, the depth of neutral axis 
satisfying the force equilibrium is found by trial. For each filament, the average stresses 
are calculated at the centroids of unconfined and confined portions of the filament.  To 
achieve this, first the strain at the centroids of the filament is calculated using the 
compatibility requirements. This centroidal strain is later used along with the 
appropriate concrete models to calculate stresses acting on the unconfined and confined 
portions of the filament. Finite concrete forces for the confined and unconfined portions 
of the filament (∆Fcc and ∆Fcu respectively) are given multiplying the stress with the 
corresponding areas as follows: 

cuicuicu A.fF =∆        (9) 

and  

cciccicc A.fF =∆      (10) 

where fcci and  fcui  are the concrete stresses for the confined and unconfined portions of 
the layer i. 
 Stress in the reinforcement at a given level is found by entering the f-ε diagram of 
steel with the strain value found from the compatibility requirements. Steel force at that 
level is given by multiplying the stress found with the area of the reinforcement at that 
level as: 

  sisisi AF σ=       (11) 

This algorithm is demonstrated in Fig. 5 where only some typical finite forces are 
shown. 
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The moment-curvature relationship for a given axial load is determined by step by 
step incrementing concrete strain in the extreme compression fibre cmε . For each value 

of cmε , the strain gradient, i.e. the curvature φ, is obtained by satisfying the force 

equilibrium equation. The bending moment M  corresponding to chosen value of cmε  

and axial load N  are determined by taking moments of the internal forces about the 
geometric centroids of the section. 
 
 
 
 
 
 
 

Fig. 5. Strains and finite forces in the cross-section. 

 
4. PARAMETRIC STUDY 

 
In this section the effect of different variables on flexural behavior are 

investigated using analytical solutions developed to predict the moment-curvature 
relationship of reinforced concrete cross-sections shown in Fig. 6.   
 
 
 

 

 

 

 

Fig. 6.  The cross-section considered in analyses. 

Table 1.  Results according to different variables 

Variable properties Curvature (rad/m) 
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TY TH CvC CoC   

1 30 0 420 15 8 0.02 420 0.0085 0.0365 0.0321 0.0492 0.0125 241.0 

2 20 0 420 15 8 0.02 420 0.0105 - 0.0245 0.0350 0.0125 228.2 

3 16 0 420 15 8 0.02 420 0.0093 0.0363 0.0212 0.0323 0.0125 222.4 

4 30 0.25 420 15 8 0.02 420 0.0112 - 0.0120 0.0141 0.0028 350.1 

5 20 0.25 420 15 8 0.02 420 0.0171 - 0.0115 0.0125 0.0032 296.2 

6 16 0.25 420 15 8 0.02 420 0.0167 - 0.0112 0.0118 0.0032 236.9 

7 30 0.5 420 15 8 0.02 420 0.0251 - 0.0079 0.0089 0.0032 342.4 
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fck     Characteristic strength of concrete ( Mpa) 
fyk     Yield strength of reinforcing steel ( Mpa) 
fsh     Yield strength of transverse steel ( Mpa) 

εcu       Extreme fiber strain of unconfined  concrete in   
compression . 

εcto     Strain of  concrete in tension  (0.0001) 
εctu       Extreme strain of concrete in tension (0.0002) 
εsy      Yield strain of reinforcing steel  (0.0021) 
εsh      Hardening Strain of reinforcing steel (0.01) 
εsu      Extreme strain of  reinforcing steel (0.1) 
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8 20 0.5 420 15 8 0.02 420 0.0264 - 0.0077 0.0081 0.0040 279.2 

9 16 0.5 420 15 8 0.02 420 0.0263 - 0.0076 0.0079 0.0040 253.1 

10 30 0.75 420 15 8 0.02 420 - - 0.0078 0.0071 0.0028 246.1 

11 20 0.75 420 15 8 0.02 420 - - 0.0054 0.0065 0.0036 217.2 

12 16 0.75 420 15 8 0.02 420 - - 0.0048 0.0059 0.0036 173.8 

13 30 0 420 15 8 0.011 420 0.0082 0.0338 0.0391 0.0648 0.0100 135.6 

14 30 0 360 15 8 0.011 420 0.0082 0.0338 0.0391 0.0647 0.0100 135.5 

15 30 0 300 15 8 0.011 420 0.0082 0.0337 0.0390 0.0646 0.0100 135.3 

15 30 0 220 15 8 0.011 420 0.0082 0.0337 0.0390 0.0645 0.0100 135.0 

17 30 0.25 420 15 8 0.011 420 0.0115 0.0520 0.0133 0.0151 0.0034 214.3 

18 30 0.25 360 15 8 0.011 420 0.0115 0.0518 0.0133 0.0151 0.0032 213.7 

19 30 0.25 300 15 8 0.011 420 0.0115 0.0515 0.0133 0.0150 0.0032 213.2 

20 30 0.25 220 15 8 0.011 420 0.0114 0.0534 0.0132 0.0150 0.0032 212.6 

21 30 0.50 420 15 8 0.011 420 0.0194 - 0.0082 - 0.0038 229.1 

22 30 0.50 360 15 8 0.011 420 0.0193 - 0.0082 - 0.0038 227.2 

23 30 0.50 300 15 8 0.011 420 0.0210 - 0.0081 - 0.0038 225.3 

24 30 0.50 220 15 8 0.011 420 0.0208 - 0.0081 - 0.0038 222.7 

25 30 0.75 420 15 8 0.011 420 - - 0.0057 - 0.0030 172.7 

… ….. ….. ….. …. ….. ….. …. ….. ….. …... …... ……. ….. 

50 30 0.5 420 15 8 0.011 220 0.0104 - 0.0084 0.0094 0.0028 196.7 

51 30 0.75 420 15 8 0.011 320 0.0151 - 0.0058 0.0065 0.0030 163.7 

52 30 0.75 420 15 8 0.011 220 0.0124 - 0.0059 0.0067 0.0030 157.8 

 
The results of the parametric study on reinforced concrete members presented 

here allow the following conclusions to be drawn. 
1- As the compressive concrete strength increases, the tendency toward a brittle, sudden 
failure also increases. One of the disadvantages of a high-strength concrete is that it is 
more brittle than a concrete of a lower strength. The increasing compressive strength 
causes a decrease in ductility. The compressive strength, fck, does not have any effects 
on the behavior in the case of pure bending. The compressive strength becomes 
effective with increasing axial load. The maximum moment capacity changes ±25% due 
to ±25% compressive strength variation.  
2- The ductility decreases as level of the axial load increases. The variation of ductility 
with the level of axial load is quite significant. It is interesting to note that, although the 
sections considered are well confined, the behavior becomes very brittle under high 
levels of axial load.  The upper limits imposed on axial loads in seismic codes roots 
from such considerations. 
3- It is found that yield strength of transverse reinforcement, fsh, has no effect on the 
behavior at all levels of the axial load.   
4- The most important parameters for obtaining a ductile behavior are spacing of the 
confinement and the reinforcement configuration. Generally, closer confinement 
spacing and a denser reinforcement configuration does not contribute to a higher load 
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capacity. The results presented in this study show that for a well-confined cross-section 
it is an advantage to use a higher grade of steel, while for a lightly confined section it is 
not. Table 1 shows that closer confinement spacing has little effect on maximum load. 
However, by decreasing the reinforcement confinement spacing a less brittle behavior 
can be achieved. From these tables it can be seen that the greatest effect of confinement 
is gained in pure compression.  
5- To achieve ductility, the transverse reinforcement volume ratio needs to be increased 
and the reinforcement configuration should be designed to provide high confinement. 
As can be seen from Table 1, the increase in ductility with transverse reinforcement 
diameter has no significant effect on moment capacity. The crushing of core concrete 
delays with an increase in the diameter of transverse reinforcement. The diameter of 
transverse reinforcement becomes effective with the increasing axial load.  
6- The reinforcement volumetric ratio, ρ has an important effect on the behavior of the 
confined section. The reinforcement volumetric ratio has significant effect on the 
behavior at low level axial load. The ultimate moment capacity increases from 10 % up 
to 30 % with the reinforcement volumetric ratio. The moment capacity decreases with 
the higher axial load. The reinforcement volumetric ratio is not effective on ductility.  
7- The ductility increases remarkably when the reinforcement yield strength is increased 
with reinforcement configuration. The reinforcement yield strength, fyk, , is an effective 
parameter in case of pure bending. The ultimate moment capacity changes from ±10 % 
up to ±30 % with the reinforcement yield strength.  

 
5. ANN MODELING 

  
Artificial Neural Networks (ANNs) approach is used to determine the behavior of 

confined concrete sections in this study. ANNs do not require an explicit understanding 
of the mechanism underlying the process, which is the main advantage. It has the 
capacity to learn the relationship between input and output provided that sufficient data 
are available for its training. The analytical results available for the confined sections 
were used to prepare the training and testing data sets for the network.  

The present study is concerned with the prediction of a confined section using 
ANN. In this study a neural network program model developed by Karlık [9] in 
PASCAL was used. The data for training and testing were formed using parametric 
results. For generating the data analytically, filament method is used. The database 
consists of 52 sets of results, of which 45 sets were used for training the network, and 
the remaining 7 were used for testing in Table 1.  

The training patterns should be normalized before they are applied to the neural 
network so as to limit the input and output values within a specified range. This is due 
to the large difference in the values of the data provided to the neural network. Besides, 
the activation function used in the back propagation neural network is a sigmoid 
function. The lower and upper limits of this function are 0 and 1, respectively. The 
following formula is used to pre-process the input data sets whose values are between 0 
and 1. 

     
minmax

min

xx

xx
v

−

−
=              [12] 
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Since the output value of the sigmoid function is between 0 and 1, the following 
function might be used. The combinations momentum rates {0, 0.3, 0.5, 0.7, and 0.9} 
are used to investigate their effects on the behaviour of the neural network convergence. 
The results are shown in Fig.7. The effects of all the given learning parameters and 
momentum rates on the convergence epoch and generalization of the neural network are 
shown in Table.2.  

minmax

min

tt

tt
o

−

−
=             [13] 

 

 
Fig.7 . Effect of Momentum Rate on the Training of Neural Network 

 
 Table.2. Effect of Learning and Momentum Rate on the Behaviour of Neural 

Network 
Momentum 

factor 
Behaviour of Neural Network 

Learning rate % 

Training of the neural network 7.82 
0.9 

Generalizations for test patterns 3.7 
 

 The parametric study was conducted to find out the optimum number of hidden 
layers as well as the number of nodes for the present problem. The results of the 
parametric study conducted were shown in Fig.8. Training for all these network 
configurations was carried out initially for one thousand cycles with error tolerance 
value of 0.025. When the number of hidden layers was made two, only the architecture 
12-13 reached the smallest error tolerance in 1000 cycles. With one hidden layer, the 
architecture was not able to attain the required error tolerance of 0.0065 within 1000 
cycles. Hence, for the problem under consideration, the network with 2 hidden layers 
having the 12-13 architecture was chosen since it reaches the required error tolerance 
with the least number of cycles, which in turn would reduce the CPU time requirement.  
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Fig. 8.  The error changes due to the number of nodes in the hidden layer at 1000 iterations. 

 
Using the 7-12-13-6 architecture in Fig.9, the network was trained and then tested. 

For training the network, totally 45 data set were used which were listed under Table 3. 
These input data sets were analytically generated using the filament model. The 
network, after being trained, was tested with 7 data sets. These 7 input data sets were 
formerly generated using the filament model. The remaining data sets used for testing 
the network are shown in Table 4.  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9.  ANN architecture 
 

Finally, the least required error convergence for 7-12-13-6 architecture was 
reached within 5000 cycles. A numerical study of training and testing of the network 
was conducted keeping the error tolerance values as 0.1, and 0.001. For an error 
tolerance of 0.1, the number of cycles required is less; but the results are less accurate. 
In the case of 0.001, even though the accuracy is high, the numbers of cycles required 
are very high. Hence, keeping in mind the number of cycles required for convergence 
together with the accuracy needed for training and testing, the minimum error tolerance 
was chosen as 0.7% in Fig. 10 

The training results predicted using ANN is compared with the parametric values 
in Table 2. In these cases, results represent a one to one correspondence, that is, the 
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predicted and the parametric values are identical. The average error between the 

analytical and the ANN values (
solutionofnumber

ANN/ANNanalytical −
) produced is less than 0.2 

%. The maximum differences between the analytical and ANN for TY, TH, CvC, CoC,ε 
and M are the outputs 0.965, 0.978, 1.039, 0.961, 0.962, and 0.976, respectively. 
Technically speaking, these errors are regarded to be sufficiently low.  

 
 
 
 
 
 
 
 
 
 

Fig. 10. The error change at optimum ANN architecture (7:12:13:6) 

 
Table 3. Training process and results 

 

No Meth. TY 

Anal 
/ 
ANN  

TH 

Anal 
/ 
ANN  

CvC 

Anal 
/ 
ANN  

CoC 

Anal 
/ 
ANN  

ε 
Anal 
/ 
ANN  

M 

Anal 
/ 
ANN  

1 
Analy. 
ANN 

0.0085 
0.0083 

1,016 
0.0365 
0.0369 

0,987 
0.0321 
0.0313 

1,023 
0.0492 
0.0490 

1,004 
0.0125 
0.0124 

1,006 
241.0 
241.99 

0,996 

2 
Analy. 
ANN  

0.0105 
0.0104 

1,001 
- 
- 

- 
0.0245 
0.0243 

1,006 
0.0350 
0.0351 

0,995 
0.0125 
0.0126 

0,988 
228.2 
228.86 

0,997 

5 
Analy. 
ANN 

0.0171 
0.0170 

1,004 
- 
- 

- 
0.0115 
0.0111 

1,027 
0.0125 
0.0128 

0,977 
0.0032 
0.0031 

1,005 
296.2 
295.29 

1,003 

6 
Analy. 
ANN 

0.0167 
0.0167 

0,999 
- 
- 

- 
0.0112 
0.0115 

0,966 
0.0118 
0.0118 

0,993 
0.0032 
0.0032 

0,993 
236.9 
238.05 

0,995 

8 
Analy. 
ANN  

0.0264 
0.0264 

0,999 
- 
- 

- 
0.0077 
0.0074 

1,029 
0.0081 
0.0082 

0,983 
0.0040 
0.0039 

1,002 
279.2 
280.52 

0,995 

9 
Analy. 
ANN 

0.0263 
0.0263 

1,000 
- 
- 

- 
0.0076 
0.0076 

0,996 
0.0079 
0.0077 

1,023 
0.0040 
0.0040 

1,000 
253.1 
252.7 

1,002 

10 
Analy. 
ANN 

- 
- 

- 
- 
- 

- 
0.0078 
0.0078 

0,992 
0.0071 
0.0073 

0,969 
0.0028 
0.0028 

0,994 
246.1 
246.14 

1,000 

11 
Analy. 
ANN  

- 
- 

- 
- 
- 

- 
0.0054 
0.0054 

0,996 
0.0065 
0.0064 

1,009 
0.0036 
0.0035 

1,004 
217.2 
217.03 

1,001 

13 
Analy. 
ANN 

0.0082 
0.0082 

0,998 
0.0338 
0.0334 

1,011 
0.0391 
0.0388 

1,005 
0.0648 
0.0659 

0,983 
0.0100 
0.0099 

1,005 
135.6 
135.74 

0,999 

14 
Analy. 
ANN 

0.0082 
0.0082 

0,991 
0.0338 
0.0335 

1,008 
0.0391 
0.0387 

1,010 
0.0647 
0.0655 

0,987 
0.0100 
0.0100 

1,000 
135.5 
135.04 

1,003 

16 
Analy. 
ANN  

0.0082 
0.0083 

0,985 
0.0337 
0.0334 

1,006 
0.0390 
0.0386 

1,010 
0.0645 
0.0653 

0,987 
0.0100 
0.0100 

0,999 
135.0 
133.11 

1,014 

18 
Analy. 
ANN 

0.0115 
0.0114 

1,008 
0.0518 
0.0513 

1,008 
0.0133 
0.0135 

0,984 
0.0151 
0.0153 

0,981 
0.0032 
0.0032 

0,988 
213.7 
212.29 

1,007 

19 
Analy. 
ANN 

0.0115 
0.0113 

1,010 
0.0515 
0.0517 

0,994 
0.0133 
0.0133 

0,995 
0.0150 
0.0153 

0,977 
0.0032 
0.0031 

1,026 
213.2 
211.2 

1,009 

20 
Analy. 
ANN  

0.0114 
0.0115 

0,985 
0.0534 
0.0518 

1,011 
0.0132 
0.0130 

1,013 
0.0150 
0.0151 

0,988 
0.0032 
0.0031 

1,028 
212.6 
212.25 

1,002 

21 
Analy. 
ANN 

0.0194 
0.0196 

0,985 
- 
- 

- 
0.0082 
0.0081 

1,011 
- 

- 
- 

0.0038 
0.0038 

0,994 
229.1 
230.16 

0,995 

22 
Analy. 
ANN 

0.0193 
0.0199 

0,968 
- 
- 

- 
0.0082 
0.0081 

1,012 
- 

- 
- 

0.0038 
0.0038 

0,991 
227.2 
228.16 

0,996 

… ….. …… …… …… ….. …. ….. …… ……. …… …… …… …… 

50 
Analy. 
ANN  

0.0104 
0.0104 

0,995 
- 
- 

- 
0.0084 
0.0082 

1,022 
0.0094 
0.0092 

1,018 
0.0028 
0.0028 

0,984 
196.7 
195.85 

1,004 

51 
Analy. 
ANN  

0.0151 
0.0150 

1,005 
- 
- 

- 
0.0058 
0.0060 

0,963 
0.0065 
0.0067 

0,961 
0.0030 
0.0030 

0,997 
163.7 
164.71 

0,994 

52 
Analy. 
ANN  

0.0124 
0.0125 

0,992 
- 
- 

- 
0.0059 
0.0059 

0,995 
0.0067 
0.0068 

0,972 
0.0030 
0.0029 

1,006 
157.8 
157.09 

1,005 

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1
1,1
1,2

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of iterations

%
  

er
ro
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The trained model was tested for a different set of input parameters and the output 
values were compared with the values based on analytical results. Seven different input 
values were applied to the model for testing the training network and the results were 
obtained in milliseconds. A comparison of the test and analytical values is given in 

Table 4. The average error (
solutionofnumber

ANN/ANNanalytical −
) obtained is about 0.33 %. The 

maximum differences (analytical / ANN) for TY, TH, CvC, CoC, ε and M are about 
0.967, 0.966, 0.972, 0.968, 0.991, and 0.992, respectively.  Therefore, the results can be 
said to indicate that the trained NN models have achieved good performance.   

 

Table 4. Testing process and results 
 

No Method TY 

Anal 
/ 
ANN  

TH 

Anal 
/ 
ANN  

CvC 

Anal 
/ 
ANN 

CoC 

Anal 
/ 
ANN  

ε 
Anal 
/ 
ANN  

M 

Anal 
/ 
ANN  

3 
Analy. 
ANN  

0.0093 
0.0094 

0.987 
0.0363 
0.0375 

0.966 
0.0212 
0.0206 

1.025 
0.0323 
0.0313 

1.031 
0.0125 
0.0125 

0.999 
222.4 
224.1 

0.992 

4 
Analy. 
ANN  

0.0112 
0.0110 

1.014 
- 
- 

- 
0.0120 
0.0122 

0.976 
0.0141 
0.0145 

0.968 
0.0028 
0.0027 

1.004 
350.1 
348.1 

1.005 

7 
Analy. 
ANN  

0.0251 
0..025 

1.001 
- 
- 

- 
0.0079 
0.0081 

0.972 
0.0089 
0.0086 

1.032 
0.0032 
0.0032 

0.997 
342.4 
342.3 

1.000 

12 
Analy. 
ANN  

- 
- 

- 
- 
- 

- 
0.0048 
0.0046 

1.024 
0.0059 
0.0057 

1.021 
0.0036 
0.0035 

1.002 
173.8 
174.0 

0.994 

15 
Analy. 
ANN  

0.0082 
0.0083 

0.986 
0.0337 
0.0335 

1.004 
0.0390 
0.0386 

1.009 
0.0646 
0.0654 

0.988 
0.0100 
0.0100 

0.999 
135.3 
134.1 

1.008 

17 
Analy. 
ANN  

0.0115 
0.0115 

0.992 
0.0520 
0.0513 

1.012 
0.0133 
0.0135 

0.979 
0.0151 
0.0154 

0.975 
0.0034 
0.0034 

0.991 
214.3 
214.7 

0.998 

24 
Analy. 
ANN  

0.0208 
0.0215 

0.967 
- 
- 

- 
0.0081 
0.0082 

0.978 
- 

- 
- 

0.0038 
0.0038 

0.991 
222.7 
224.4 

0.992 

 

Compared to conventional digital computing techniques, neural networks are 
advantageous because of their special features, such as the massively parallel 
processing, distributed storing of information, low sensitivity to error, their very robust 
operation after training, generalisation and adaptability to new information. 
 

6. CONCLUDING REMARKS 

  
In this study, a back-propagation neural network model was employed to predict 

the influence of various parameters on the behavior of reinforced concrete sections. A 
neural network model was applied to the data derived from the analytical solutions.  The 
analytical model is based on a filament  modeling technique and capable of taking into 
account the crushing of cover and core concrete, the strain hardening of steel and the 
effect of confinement on core concrete.  

To reduce the computing time of microprocessor of the system, a new computer 
model, which replies in milliseconds, was developed based on ANN method. A multi-
layer, back propagation and feed-forward ANN algorithm was used to train the data. 
The ANN algorithms are not able to replace the conventional analytical techniques 
completely since they need some key values for training. However, in the determination 
of reinforced cross-section behavior, they can be implemented as an efficient 
supplementary tool to reduce the computational cost drastically. Modeling process in 
neural network is more direct since there is no necessity to specify a mathematical 
relationship between the input and the output variables. The trained ANN was able to 
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produce quick results for the reinforced cross-section behavior with the same degree of 
accuracy as the filament model analysis achieved under flexure and axial load. 
Therefore, the trained ANN may be used in practice for determining the reinforced 
cross-sections behavior as an alternative to the time consuming filament model analysis. 

The ANN applications presented in this study have demonstrated the viability and 
feasibility of using analytical results for the reinforced confined sections’ behavior. The 
obtained results have shown that the neural network model is successful in modeling the 
non-linear relationship between different input and output parameters even when it 
involves a relatively smaller number of training patterns. It is envisaged that the model 
developed may be used in practical structural engineering applications. 
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