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Abstract-Artificial Neural Network (ANN) was used to predict the effects of splitter 
blades in a semi-open impeller on centrifugal pump performance. The characteristics of 
this impeller were compared with those of impellers without splitter blades. 
Experimental results for lengths of splitter blades in ratio of 1/3, 2/3, and 3/3 of the 
main blade length were evaluated by different ANN training algorithm. Training and 
test data were obtained from experimental studies. The best training algorithm and 
number of neurons were determined. The values of head, efficiency, and effective 
power were estimated in a semi-open impeller with splitter blades in ratio of 3/6 and 5/6 
of the main blade length at the best efficiency point (b.e.p.). Here, as the splitter blade 
length increases; the flow rate and power increases, the efficiency decrease. All of the 
estimated values of performance in a semi-open impeller with splitter blades indicate 
the model works in line with expectations. Experimental studies to determine head, 
efficiency and effective power consumption in different types of pumps are complex, 
time consuming, and costly. It also requires specific measurement tools to obtain the 
characteristics values of pump. To overcome these difficulties, an ANN can be used for 
prediction of pump performance in semi open impeller.  
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1. INTRODUCTION 

 
 In centrifugal pump impellers, when the blade number is reduced, the liquid flow 
in the impeller will not obey the one-dimensional flow laws, so local losses will 
increase. Beside the frictional losses, separation losses will arise. In the separation, 
deviation will be seen at the blades as the frictional losses increase. So, one may say 
that the effect of blade number on the pump performance is will be high.  
 As the number of impeller blades increases, the pump head rises; however, too 
many blades result in a decrease in efficiency due to the increasing blockage and skin 
friction in the impeller passage. It was observed that low or high blade number 
increased the unstability risk of head-flow curves [1] and the optimum efficiency was 
obtained when the blade number was to be between 5 and 8 [2]. Using splitter blades in 
the impeller is an alternative way to increase the head with acceptable efficiency. The 
difficulty in calculation of the flow area of the impeller is due to the unknown flow rate 
occurring in two separate areas when the splitter blades are added.  
 An experimental study was about the determination of design criteria related 
with the splitter blades and three-dimensional solution [3]. In the work, both 
circumferential position and splitter blade lengths had been searched. Since splitter 
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blades do not cause the blockage at the inlet passages of impellers; impeller 
performance may be expected to improve significantly. However, it is considered that 
the flows differ between the pressure sided and suction sided split passages owing to 
distorted flow in the front half passage. The aim of semi-open impeller constructions is 
to improve the performance of pump at medium and high specific speeds. At semi-open 
impellers, pressure difference between the front and behind part of the blade causes 
leakage. These leakages have a great importance in blade energy loss. Leakage flows 
through the blade tip clearance in the semi-open impeller distinguish the passages flow 
pattern from that of the closed impeller [4-7]. These differences in flow also influence 
impeller performance. Therefore, it is necessary to explain the effect of the splitter blade 
on pump performance. 
 At high response degrees (low head or high specific speeds), absolute velocity, 
C, is lower than the relative velocity, W. So, at the semi-open impellers, the flow 
friction around the body is lower than the top of the cheek friction, while the gap flows 
at closed impellers causing discharge losses far more than the semi- open impellers 
specially cause pressure loss [8]. 
 By removing the front shroud results the increase in efficiency in reducing the 
hydraulic and friction loss within the impellers. In closed impellers, the relative flow in 
upper cheek causes the friction loss which is directly proportional to W2

2/2g. Instead of 
this situation in semi-open impellers, fluid passing through the impeller channel, friction 
loss exists which is directly proportional to C2

2/2g around the fixed body. It is stated 
that pumps at high specific speeds, these two losses are nearly balanced with each other, 
decreasing in friction losses are brought the clear gain and increasing the efficiency at 
medium specific speed pumps is  2% [9]. Semi-open impellers have the ability of 
pumping fibrous materials with minimum blockage as well as many hydraulic utilities. 
In addition to this, being easy attainable through the impeller channels and having the 
property of economic process support the semi-open impellers’ usage [10]. 
 In this study, the effects of the splitter blade length on the pump performance in 
a semi-open impeller with splitter blades have been investigated by using an artificial 
neural network (ANN) and the best ANN model determined. The data in this study have 
been obtained from a previous study [11] where the performance values for lengths of 
splitter blades in ratio of 1/3, 2/3, and 3/3 of the main blade length. Since the 
experimental studies to determine head, efficiency, and effective power in applications 
with splitter blades are complex, time consuming, and costly. The effects of lengths of 
splitter blades in ratio of 3/6 and 5/6 of the main blade length on the pump performance 
have been estimated by using the best ANN model. 
 

2. EXPERIMENTAL SETUP 

 
 The pump test rig has been used to test the performance of centrifugal pumps. 
The pump was driven by a three-phase AC electric motor (Gamak, Model GM 132 S6), 
whose rated power is 7.5 kW and speed is 2880 rpm. The used centrifugal pump’s 
design capacity is 400 Lpm, head is 24 m. The number of blades is three. Besides, new 
impellers with splitter blades were manufactured to investigate the effects of splitter 
blades in a semi-open impeller on performance. The radial length of the splitter blades 
was in ratio of 1/3, 2/3, and 3/3 of the main blade length. Figure 1 shows a general view 
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of an impeller with splitter blades. Non-dimensional splitter blade length ( L ) which is 
the ratio of the splitter blade length to the main blade length.  
 

 
Fig. 1. An impeller with splitter blades 

 
2.1 Uncertainty 

 The flow rate of the pump was measured by an electromagnetic flow meter 
(FXE4000-DE41/-DE43, COPA-XE/MAG-XE). The pump discharge and suction 
pressures were measured using metal pressure transmitters (VEGABAR). The power 
consumption of the motor was measured using three-phase clamp power meter (Model: 
MS2201). In addition to this, the voltage, ampere, and cosϕ values of the motor were 
recorded during the experiments. The accuracies of the measurements and the 
uncertainities in the calculated results are shown in Table 1. 
 
Table 1 Accuracies of the measurements and the uncertainities in the calculated results 

 

Measurements Accuracy 

Pressure transmitter ±0.5 % 
Electromagnetic flowmeter ±0.5 % 
Active Power  ±3 % 
AC Voltage ± 1.2% 
AC Current ± 2% 
Power factor ± 0.02% 
Calculated results Uncertainty 

Flow rate ± 0.32 % 
Head ± 0.025 % 
Power ± 1.05 % 
Efficiency ± 0.11 % 

 
3. GENERAL DESCRIPTION OF ARTIFICIAL NEURAL NETWORKS 

 
 Artificial intelligence consists of two major branches such as the study of ANNs 
and expert systems. Recently, there has been a substantial increase in the interest on 
ANNs. Neuron is the fundamental processing element of a neural network. ANNs can 
be successfully employed in solving complex problems in various fields of 
mathematics, engineering, medicine, economics, meteorology, neurology, and many 
others. For example, modeling of head and power characteristics of pump-mixer [12], 
modeling of heterogeneous gas-solid reactors [13], prediction vapour-liquid equilibrium 
data in thermodynamics [14], optimization of operation of a separation plant [15], 



 
 

M. Gölcü, Y. Pancar, H. S. Ergür and E. Ö. Göral 
 

 

140 

thermodynamic analysis of ejector-absorption cycle [16], performance maps of a diesel 
engine [17], modeling of variable valve timing in a spark-ignition engine [18], neural 
network analysis of head-flow curves in deep well pumps [19], artificial neural network 
based modeling of performance characteristics of deep well pumps with splitter blade 
[20], modeling and multi-objective optimization of variable valve-timing spark-ignition 
engine using polynomial neural networks and evolutionary algorithms [21]. 
 Today, ANNs can be trained to solve problems that are difficult for conventional 
computers or human beings. ANNs, on the other hand, overcome the limitations of the 
conventional approach by extracting the desired information directly from the data. The 
more detailed information and calculations, formulas, etc. about the method can be 
found in [22, 23]. 
 

3.1 Prediction of head, efficiency, and effective power characteristics 

 
 ANNs learn by using some examples, namely patterns. In other word, to train 
and test a neural network, input data and corresponding target values are necessary. The 
aim of any training algorithm is to minimize the errors such as the RMSE, R2, the 
maximum error, and the average error. Here, ANNs were used for modelling of 
performance in a semi-open impeller with and without splitter blades. Besides, it was 
used to predict the effect of lengths of splitter blades in ratio of 3/6 and 5/6 of the main 
blade length. Main parameters for the experiments are the blade number (z), non-
dimensional splitter blade length ( L ), flow rate (Q, Lpm), head (Hm, m), efficiency (η, 
%), and effective power (Pe, kW). In the selected ANN model, inputs were the flow 
rate, non-dimensional splitter blade length while the outputs were head, efficiency, and 
effective power. The examples in this study are numerical values performed by using 
the experimental results [11].  
 In order to train an ANN, 64 patterns obtained from the experiments have been 
used. Six patterns have been selected and used as the test data. It has been shown 
selected some sample data sets used for training and testing the network in Table 2 and 
Table 3, respectively. For testing the network, it has been used the values which is not 
used for the training.  

Table 2 Sample experimental data for training 
 

Input parameters Output parameters 

L  Q (Lpm) Hm (m) η (%) Pe (kW) 
0 300 39.13 38.22 5.02 
1/3 200 43.13 31.18 4.52 
1/3 300 39.25 38.00 5.06 
2/3 100 46.09 17.84 4.22 
2/3 300 39.43 37.5 5.15 
3/3 200 43.72 30.02 4.76 

 
 A network consisting of one input layers, one hidden layer, and one output layer 
by definition is called two-layer network. The architecture of the ANN becomes 2-9-3, 2 
corresponding to the input values, 9 for the number of hidden layer neurons and 3 for 
the outputs. 
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Table 3 Experimental data for testing 
 

Pattern for test data Input parameters Output parameters 
 L  Q (Lpm) Hm (m) η (%) Pe (kW) 

1 0 200 42.46 31.60 4.39 
2 1/3 100 45.73 17.99 4.15 
3 1/3 400 34.40 39.67 5.67 
4 2/3 200 43.15 30.89 4.56 
5 2/3 400 34.54 38.60 5.85 
6 3/3 100 46.85 17.52 4.37 

 
 The back-propagation learning algorithm has been used in feed-forward, single 
hidden layer. Training of the network was performed using Levenberg-Marquardt (LM) 
and Scaled conjugate gradient (SCG) feed-forward back propagation algorithms [24]. 
These algorithms iteratively adjust the weights to reduce the error between the 
experimental and predicted outputs of the network. Back propagation networks use the 
logarithmic sigmoid (logsig), the hyperbolic tangent sigmoid (tansig), or the linear 
(purelin) transfer functions. Logsig, tansig, and purelin are a transfer functions.  
 A computer program was performed under Matlab software. In the training 
stage, to obtain the best prediction values, it is used an increased number of neurons 
step-by-step (from 5 to 10) in a single hidden-layer. When the network training was 
successfully finished, the network was tested with test data. Then, some statistical 
values such as R2, the RMSE, the maximum error, and the average error were calculated 
for training and testing. These errors can be found in [22, 23]. 
 The selected ANN model with the single hidden layer used in our study is shown 
in Fig. 2.  

 
Fig. 2. Artificial neural network (ANN) model of the semi-open impeller with splitter 

blade. 
 

 This ANN model consists of one hidden layer of log-sigmoid neurons followed 
by an output layer of one linear neuron. Linear neurons are those which have a linear 
transfer function. After the successful training of the network, new inputs were 
prepared: these are flow rate and lengths of splitter blades in ratio of 3/6 and 5/6 of the 
main blade length. By using these new inputs, the head and efficiency prediction results 
have been obtained by using the best ANN model for semi-open impeller with splitter 
blades. Experimental studies to calculate head, efficiency, and effective power in 
different pump types are complex, time consuming, and costly. It also requires specific 
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tools. To overcome these difficulties, an ANN can be used for prediction of 
performance in pumps. 
 

4. RESULTS AND DISCUSSION 

 
 The statistical values such as R2, the RMSE, the average error (%), and the 
maximum error (%) of ANN approach and the best algorithmic results have been shown 
in Table 4 for training and testing. The results for other neurons haven’t been presented 
in this paper. Different algorithms with an altering number of neurons produce altering 
outputs. Two different training algorithms are studied and it is increased the number of 
neurons (from 5 to 10) in a single hidden-layer. As shown in the Table 4, the best results 
have been obtained from the LM algorithm and the best number of neurons is nine for 
both of head and efficiency.  

 
Table 4 Error values of ANN approach and the best hidden number of neurons  

with different algorithms 
 

 Training Test Training Test 
Outputs Hm η Hm η Hm η Hm η 
Algorithms LM LM LM LM SCG SCG SCG SCG 
Number of neurons 9 9 9 9 8 8 5 5 
RMSE 0.0497 0.0008 0.1941 0.0039 0.3967 0.0099 0.2595 0.0070 
R2 0.9999 0.9999 0.9999 0.9998 0.9999 0.9989 0.9999 0.9995 
Average error (%) 0.0920 0.1130 0.4160 1.4182 0.7474 1.6569 0.4790 2.0151 
Maximum error (%)   0.6162 0.8497 0.9767 3.6798 3.0744 7.5879 0.8353 5.1751 

 
 It shows that, for head; R2 is very close to 1 for the LM algorithm with 9 
neurons. For training data, the average error and the RMSE value are 0.0920% and 
0.0497. For also test data, the average error and the RMSE value are 0.4160% and 
0.1941, respectively. For efficiency; R2 is 0.9999, the average error is 0.1130%, and the 
RMSE value is 0.0008 in the training. For also test data, R2 is 0.9998; the average error 
and the RMSE value are 1.4182% and 0.0039, respectively. In addition to this, the 
average errors and the RMSE values in the SCG algorithm are bigger than those of the 
LMs. For example, for efficiency; the average error is about 2%, R2 is 0.9995, and the 
RMSE value is 0.007 in the testing sessions. 
 For test data; the maximum errors are 0.9767% and 0.8353% at LM algorithm 
with 9 neurons in the hidden layer and SCG algorithm with 5 neurons in the hidden 
layer, respectively, for head. The maximum errors are also 3.6798% and 5.1751% at 
LM algorithm with 9 neurons in the hidden layer and SCG algorithm with 5 neurons in 
the hidden layer, respectively for efficiency.  
 Effect of the number of neurons in the hidden layer on the root mean square 
error has been shown in Figs. 3 and 4 for head and efficiency, respectively.  
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Fig. 3. The effect of the neuron numbers in the hidden layer on the root mean square 

error for head. 
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Fig. 4. The effect of the neuron numbers in the hidden layer on the root mean square 

error for efficiency. 
 

 The training epoch for each neural network is 20000. For both of them, it is 
shown that the training error is minimized when 9 and 5 neurons are used for LM and 
SCG algorithms, respectively. Thus, these ANN models with minimum errors are 
adopted for further studies. The graphical outputs are generated according to the LM 
algorithm with 9 neurons and predicted results (head, efficiency, and effective power) 
for test data were given in Table 5.  

 
Table 5 Predicted results for test data 

Pattern for test data Input parameters Output parameters (Predicted results) 
 L  Q (Lpm) Hm (m) η (%) Pe (kW) 
1 0 200 42.42 31.54 4.39 
2 1/3 100 45.78 18.65 4.01 
3 1/3 400 34.06 39.57 5.62 
4 2/3 200 43.39 30.65 4.62 
5 2/3 400 34.42 39.11 5.75 
6 3/3 100 46.66 17.11 4.45 
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 The actual and the predicted results of the test data have been shown in Figs. 5, 
6, and 7, respectively. As shown in the figures, the values predicted by ANN are very 
close to actual values. 
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Fig. 5. Actual and ANN predicted results of head characteristics. 
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Fig. 6. Actual and ANN predicted results of efficiency characteristics. 
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Fig. 7. Actual and ANN predicted results of power characteristics. 
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 The effects of lengths of splitter blades in ratio of 3/6 and 5/6 of the main blade 
length on the pump performance have been estimated by using the best ANN model. 
Table 6 shows the estimated values of head, efficiency, and effective power in a semi-
open impeller with splitter blades at the best efficiency point (b.e.p.). As shown in the 
Table 6, at the (b.e.p.), flow rate is 400Lpm.  

 

Table 6 Estimated head, efficiency, and power values in a semi-open impeller 
with splitter blades at b.e.p. 

 
b.e.p.  Hm (m) η (%) Pe (kW) 
Without splitter blade 33.86 39.80 5.56 

L = 3/6 34.48 38.90 5.80 

L = 5/6 34.69 38.47 5.90 

                       Where Q = 400Lpm, rated point. 

 
 Variations of the head, efficiency, and effective power characteristics as a 
function of non-splitter blade length have been shown in Fig. 8. The estimated results 
have been marked with numbers on the Figure. Here, as the splitter blade length 
increases; the head and power increases, the efficiency decrease.  
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Fig. 8. Variation of the head, efficiency, and power characteristics versus non-splitter 

blade length at b.e.p. 

 
5. CONCLUSION 

 

 In this paper, the statistical values have been calculated for ANN approach and 
the best algorithmic results have been determined for training and testing. LM and SCG 
algorithms have been used to predict of the head, efficiency, and power of a semi-open 
impeller with splitter blades using different flow rate and splitter blade lengths. Flow 
rate and non-dimensional splitter blade length have been used as the input layer; head, 
efficiency, and effective power have also been used as the output layer. It is increased 
the number of neurons step-by step (from 5 to 10) in a single hidden-layer. Results 
show that, the values predicted by ANN are very close to actual values. 
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 The LM algorithm with 9 neurons has produced the best results and the 
maximum errors are 0.9767% and 3.6798% for head and efficiency, respectively. 
Experimental studies to calculate head, efficiency, and effective power in different 
pump types are complex, time consuming, and costly. The values of head, efficiency, 
and power were estimated by using the best model in a semi-open impeller with splitter 
blades in ratio of 3/6 and 5/6 of the main blade length at the best efficiency point 
(b.e.p.). All of the values of performance estimated in a semi-open impeller with splitter 
blades indicate the model works in line with expectations.  
 
Nomenclature 

 
ANN  artificial neural-network 
b.e.p.  best efficiency point 
C   absolute velocity (m/s) 
SCG  scaled conjugate gradient 
Hm  head (m) 
L   length of main blade (mm) 
Ls   length of splitter blade (mm) 

L

L
L s= : non-dimensional splitter blade length 

Lpm  litres per minute 
LM  Levenberg-Marquardt 
Pe   brake horse power (kW) 
R2   absolute fraction of variance 
RMSE root-mean-squared error 
z   blade number 
Q   flow rate (Lpm) 
W   relative velocity (m/s) 
η   efficiency (%) 
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