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Abstract- This study uses a mathematical method to develop an efficient rule for 
expediting scrap-or-rework decision making in economic production quantity (EPQ) 
model with failure-in-repair. The expected overall production-inventory costs and the 
optimal lot sizes for EPQ models with/without rework process are derived and 
compared. With straightforward numerical derivations, this paper develops an efficient 
rule including the exact critical value of unit repair cost for each reworked item and its 
approximation equations, to assist in determining whether it is beneficial to rework the 
repairable items. Numerical example with sensitivity analysis and discussion are 
provided to demonstrate their practical usages. 
 
Keywords- Production; EPQ; Scrap-or-rework; Failure in repair Random defective 
rate. 
 
 

1. INTRODUCTION 

 

The Economic Order Quantity (EOQ) model was first introduced several decades ago to 
assist corporations in determining the optimal order quantity that minimizes overall 
inventory costs. Regardless of its simplicity, EOQ model is still applied industry-wide 
today [11,12,14,17]. In the manufacturing sector, when items are produced internally 
instead of being obtained from an outside supplier, the economic production quantity 
(EPQ) model is often used to determine the optimal production lot size. The classic 
EPQ model assumes that the manufacturing process will function perfectly at all times. 
But in reality, the production of defective items during a production run is inevitable. 
Sometimes, the imperfect quality items can be reworked and fixed with extra repairing 
cost [4,5,6,8,10,13,15]. For instances, printed circuit board assembly (PCBA) in the 
PCBA manufacturing, plastic goods in the plastic injection molding process, etc., 
sometimes employ rework as an acceptable process in terms of level of quality. 

A considerable amount of research has been carried out to address the imperfect 
quality EPQ model [1,3,9,16]. Additional examples are surveyed as follows. Rosenblatt 
and Lee [11] proposed an EPQ model that deals with imperfect quality. They assumed 
that at some random point in time the process might shift from an in-control to an 
out-of-control state and a fixed percentage of defective items are produced. 
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Approximate solutions for obtaining an optimal lot size were developed in their paper. 
Cheng [2] formulated inventory as a geometric program and obtained closed-form 
optimal solutions for an EOQ model with demand-dependent unit production cost and 
imperfect production processes. Chung [7] investigated bounds for production lot sizing 
with machine breakdown conditions. This paper employs the optimal production 
lot-sizing results from the work of Chiu and Gong [4] and develops an efficient rule for 
expediting scrap-or-rework decision making (on whether it is beneficial or not to rework 
the repairable defective items) in EPQ model with assumptions of failure-in-repair and 
backlogging not permitted. 

2. MATHEMATICAL MODELING AND ANALYSIS 

 

This paper studies the decisions on whether to rework-or-scrap the defective items in an 
EPQ model with an imperfect rework process. We reconsider the model studied by [3,4] 
where the assumptions of the production rate ‘P’ is constant and is much larger than the 
demand rate ‘λ’, and ‘x’ percent of defective items are randomly generated by the 
regular production process; and the inspection cost per item is involved when all items 
are screened. 

All defective items are assumed to be repairable and if the decision is to rework the 
defective items then they will be reworked right after the regular process ends, at a rate 
of ‘P1’. The rework process itself is assumed to be imperfect either, a portion ‘θ1’ of 
defective items fail the reworking and become scrap items. The production rate ‘d’ of 
the defective items could be expressed as the production rate times the defective 
percentage, i.e. d=Px. Other notation used is displayed as follows. 

Q1 = production lot size per cycle for the EPQ model with the reworking of defective 
items, 

Q2 = production lot size per cycle for the EPQ model without the rework process, 
C = production cost per item ($/item, inspection cost per item is included), 
CR = repair cost for each imperfect quality item reworked ($/item), 
CS = disposal cost for each scrap item produced ($/item), 
H = the maximum level of on-hand inventory in units, when rework process ends,  
K = setup cost for each production run; 
h = holding cost per item per unit time ($/item/unit time), 
h1 = holding cost for each reworked items per unit time ($/item/unit time), 
b = shortage cost per item per unit time (i.e. $/item/unit time), 
TCU(Q1)= the total production-inventory costs per unit time for the EPQ model with 

the reworking of defective items, 
TCU(Q2)= total production-inventory costs per unit time for the EPQ model without 

the rework process. 
 

The EPQ model with the reworking of defective items has the optimal production 
lot-size and the optimal expected annual costs [4] as shown in Equations (1) and (2). 
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When the rework process is not considered, the optimal production lot-size and the 
optimal expected annual costs [3] are as shown in Equations (3) and (4). 
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The decision on whether to rework or to scrap defective items in such an imperfect 
quality EPQ model, can be determined by selecting the smaller values between 
Equations (2) and (4). Let Cγ represents the breakeven value of unit repair cost that 
makes the optimal expected annual costs E[TCU(Q1)=E[TCU(Q2)]. Hence from 
Equations (2) and (4), we obtain Cγ as: 
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Substituting ω and ε in Equation (5), one obtains: 
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The decisions on either to rework or to scrap the defective items in an imperfect 
quality EPQ model can be made by comparing CR and Cγ. That is, for instance, if CR < 
Cγ then it will be better off to rework the repairable defective items. 

In Equation (8), suppose we would like to find an approximation to Cr without 
involving the complex computation of ε, then let χ1 satisfies the following: 
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Hence, if an approximation to (ε/Y1) is obtainable, then the computation of Cr can be 
simplified as was shown in Equation (9). Furthermore, let 
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if we would like to find an approximation to Cr without involving the complicated 
computations of εx and ε; then let χ2 satisfies the following: 
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Hence, if an approximation of (εx+ε)/Y2 is obtainable, then computation of Cr can be 
simplified as was shown in Equation (11). 

A numerical example is provided in the following section to demonstrate the above 
equations’ practical usages. Sensitivity analysis of Cγ in regard to various cost-related 
parameters and the estimated ranges for χ1 and χ2 are presented in Section 3. 

 
 

3. A NUMERICAL EXAMPLE AND DISCUSSION 

 
An item can be produced at a rate P=10,000 units per year and this item has experienced 
a relatively flat demand of 4,000 units per year. The percentage of defective items 
produced x is assumed to follow the uniform distribution over the interval [0, 0.1]. Right 
after the regular production process ends, all of the imperfect quality items can be 
reworked, at a rate of P1=600 units per year. The rework process is considered to be 
imperfect, when it finishes a portion θ1=0.1 of the reworked items fail the repairing and 
become scrap items. Other parameters are given below: 
 

K = $450 for each production run, 
C = $2 per item, 
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CR = $0.5 repaired cost for each item reworked, 
CS = $0.3 disposal cost for each scrap item, 
h = $0.6 per item per unit time, 
h1 = $0.8 per item reworked per unit time. 

 

For the decision on either to rework or to scrap the repairable defective items, one can 
use Equation (8) and find the critical value of repair cost Cγ = $2.18. In this example, 
since CR=$0.5 < Cγ , so “to rework” is a better choice. □ 

To verify the above decision, for the case of reworking the repairable defective items, 
one can use Equations (1) and (2) and obtain Q1* = 3,153 and the optimal annual 
expected costs E[TCU(Q1

*
)]= $9,294. On the other hand, suppose all defective items 

(whether they are repairable or not) are treated as scrap items and are discarded, then 
using Equations (3) and (4), one obtains Q2* = 3,323 and E[TCU(Q2

*
)] = $9,625. 

Obviously, E[TCU(Q1
*
)] < E[TCU(Q2

*
)], the above result is confirmed. 

 
3.1 Sensitivity Analysis 
 

From the above example and Equation (8), the critical value of Cγ , is determined by a 
set of parameters S={x, θ1, C, CS, K, h, h1}. For θ1 falls within the range [0.1, 0.3]; for 
CS/C limits within [0.1, 0.5] and h1/h falls within the interval of [1, 1.5]; and for K/h 
ranges from 400 to 1000; the impact of these variations on the components ε and εx of Cγ 
are analyzed and the results are presented in Table 1 (in Appendix). From analysis and 
Equations (2) and (4), the behavior of the optimal expected annual cost with respect to 
defective rate x can also be obtained as follows: As x increases, E[TCU(Q1)] and 
E[TCU(Q2)] both increase, and the difference between the costs increases too. 

The behavior of Cr and its simplified forms with respect to the defective rate x is 
depicted as in Figure 1. One notices that ε and Kω/[1-E[x]] are both negative and they 
are relatively small in comparison with the value of (C+Cs)(1-θ1)/[1-E[x]]. 

 

 
 

Figure 1: The behavior of Cr and its simplified forms 

 with respect to the defective rate x  
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The behavior of the optimal expected annual cost with respect to the scrap rate θ1 
value is illustrated as in Figure 2. One notices that as θ1 increases, E[TCU(Q1)] 
increases, and the difference between the costs reduces. When θ1 approaches to 1, 
E[TCU(Q1)] = E[TCU(Q2)] as one would expect. 

The behavior of Cr and its simplified forms with respect to λ/P is illustrated in Figure 
3. One notices that as λ/P increases, the value of Cr decreases slightly. 

 

 

Figure 2: The behavior of the optimal expected annual 

   costs with respect to the scrap rate θ1 

 

 

 

Figure 3: The behavior of Cr and its simplified forms 

with respect to λ/P 

 
3.2 Comments on Sensitivity Analysis 

 

From the analytical results of Table 1, one realizes that (ε/Y1) [ ]8.57%, 0.02%− −∈ , hence 
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from Equation (10), we obtain χ1 [ ]0.9143,  0.9998∈ . One notices that as K/h ratio increases, 

the range of χ1 becomes narrower; and as Cs/C decreases, the range of χ1 is thinner too. 
Since the approximation to (ε/Y1) is obtainable, one can use the following procedures to 
determine whether or not “to rework” the defective items. 
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Also, from the example and analytical results of Table 1, one realizes that the range of 

(εx+ε)/Y2 [ ]15.78%, 0.03%− −∈ . Hence, from Eq. (12), we obtain [ ]2 0.8422,  0.9997 χ ∈ . 

One notices that as Cs/C decreases, the range of χ2 becomes narrower; and as K/h ratio 

increases, the range of χ2 is thinner too. For example, if K/h ≧ 600 then 

[ ]2 0.8714,  0.9997 χ ∈ . Once χ2 is available, one can use the following procedures for the 

rework-or-scrap decision making. 
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For instance, if we take advantage of Equation (14) to resolve the example stated 

earlier, since all parameters fall within the anticipated ranges and K/h ≧ 600: 
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4. CONCLUSION 

 

This paper uses a mathematical method to develop an efficient rule for practitioners in 
production-inventory management to expedite scrap-or-rework decision making in EPQ 
model with failure in repair. With straightforward derivations, this study proposes a set 
of mathematical equations, including the exact critical point of repair cost and its 
approximated forms, to assist in determining whether it is beneficial to rework the 
defective items. A numerical example with sensitivity analysis and discussion is 
provided to demonstrate practical usages of these decision procedures. For future 
research, one interesting topic among others will be to consider a similar model with 
backlogging permitted. 
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APPENDIX 
 

Table 1: Variations of parameters in S effects on the components of Cγ, when x =0.1 

x θ CS/C h1/h K/h ε 
1

%
Y

ε 
 
 

 
xε  

2

%x

Y

ε ε +
 
 

 
x θ CS/C h1/h K/h ε 

1

%
Y

ε 
 
 

 
xε  

2

%x

Y

ε ε +
 
 

 

400 -0.001 -0.02% -0.001 -0.05% 400 -0.016 -0.66% -0.016 -1.32% 

600 -0.001 -0.02% -0.001 -0.04% 600 -0.013 -0.54% -0.013 -1.07% 

800 -0.001 -0.02% -0.001 -0.03% 800 -0.011 -0.47% -0.011 -0.93% 
1 

1000 0.000 -0.02% 0.000 -0.03% 

1 

1000 -0.010 -0.42% -0.010 -0.83% 

400 -0.019 -0.61% -0.019 -1.21% 400 -0.034 -1.43% -0.034 -2.81% 

600 -0.015 -0.49% -0.015 -0.98% 600 -0.028 -1.16% -0.028 -2.29% 

800 -0.013 -0.43% -0.013 -0.85% 800 -0.024 -1.00% -0.024 -1.98% 
1.25 

1000 -0.012 -0.38% -0.012 -0.76% 

1.25 

1000 -0.022 -0.90% -0.022 -1.78% 

400 -0.037 -1.19% -0.037 -2.36% 400 -0.052 -2.20% -0.052 -4.30% 

600 -0.030 -0.97% -0.030 -1.92% 600 -0.043 -1.78% -0.043 -3.51% 

800 -0.026 -0.84% -0.026 -1.66% 800 -0.037 -1.54% -0.037 -3.03% 

0.1 

1.5 

1000 -0.023 -0.75% -0.023 -1.49% 

0.1 

1.5 

1000 -0.033 -1.38% -0.033 -2.72% 

400 -0.001 -0.06% -0.001 -0.12% 400 -0.016 -1.70% -0.016 -3.34% 

600 -0.001 -0.05% -0.001 -0.10% 600 -0.013 -1.38% -0.013 -2.72% 

800 -0.001 -0.04% -0.001 -0.09% 800 -0.011 -1.19% -0.011 -2.35% 
1 

1000 0.000 -0.04% 0.000 -0.08% 

1 

1000 -0.010 -1.07% -0.010 -2.11% 

400 -0.019 -1.55% -0.019 -3.06% 400 -0.034 -3.70% -0.034 -7.14% 

600 -0.015 -1.26% -0.015 -2.49% 600 -0.028 -3.00% -0.028 -5.82% 

800 -0.013 -1.09% -0.013 -2.15% 800 -0.024 -2.58% -0.024 -5.03% 
1.25 

1000 -0.012 -0.98% -0.012 -1.93% 

1.25 

1000 -0.022 -2.31% -0.022 -4.51% 

400 -0.037 -3.09% -0.037 -5.99% 400 -0.052 -5.78% -0.052 -10.93% 

600 -0.030 -2.50% -0.030 -4.88% 600 -0.043 -4.66% -0.043 -8.90% 

800 -0.026 -2.15% -0.026 -4.21% 800 -0.037 -4.00% -0.037 -7.69% 

0.3 

1.5 

1000 -0.023 -1.93% -0.023 -3.78% 

0.3 

1.5 

1000 -0.033 -3.57% -0.033 -6.90% 

400 -0.001 -0.09% -0.001 -0.18% 400 -0.016 -2.47% -0.016 -4.83% 

600 -0.001 -0.07% -0.001 -0.14% 600 -0.013 -2.01% -0.013 -3.93% 

800 -0.001 -0.06% -0.001 -0.12% 800 -0.011 -1.73% -0.011 -3.40% 
1 

1000 0.000 -0.06% 0.000 -0.11% 

1 

1000 -0.010 -1.55% -0.010 -3.05% 

400 -0.019 -2.26% -0.019 -4.42% 400 -0.034 -5.44% -0.034 -10.32% 

600 -0.015 -1.83% -0.015 -3.60% 600 -0.028 -4.39% -0.028 -8.41% 

800 -0.013 -1.58% -0.013 -3.11% 800 -0.024 -3.77% -0.024 -7.26% 
1.25 

1000 -0.012 -1.41% -0.012 -2.79% 

1.25 

1000 -0.022 -3.36% -0.022 -6.51% 

400 -0.037 -4.52% -0.037 -8.65% 400 -0.052 -8.57% -0.052 -15.78% 

600 -0.030 -3.65% -0.030 -7.04% 600 -0.043 -6.87% -0.043 -12.86% 

800 -0.026 -3.14% -0.026 -6.09% 800 -0.037 -5.88% -0.037 -11.11% 

0.1 0.1 

0.5 

1.5 

1000 -0.023 -2.80% -0.023 -5.46% 

0.1 0.3 

0.5 

1.5 

1000 -0.033 -5.24% -0.033 -9.96% 

 

 


