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Abstract- A method is described for the calculation of the three-parameter Weibull 

distribution function from censored samples. The method introduces a data driven 

technique based on an adapted Gaussian like kernel to match the censoring scheme. The 

method minimizes the Cramer von Mises distance from a non-parametric density 

estimate and the parametric estimate at the order statistics. The maximum likelihood 

estimators are found and a comparison is made with the new estimator. A Monte Carlo 

experiment of size 1000 is conducted to test the performance of the new parameter 

estimation technique. The mean integrated square error is taken as a measure of the 

closeness of the estimated density and the true density. 

 

Key Words- Non-parametric density, Weibull censored samples, Gaussian kernel, type 

II censoring, hybrid methods, Cramer von Mises statistic 

 

1. INTRODUCTION 

 

 The method of moment, the method of maximum likelihood, and other methods 

have considered the estimation of the parameters of Weibull population based on a 

censored sample. In this paper, an approach using an adapted non-parametric density 

estimation is introduced as a methodology for the parameter estimation. Section 2 

discusses the solution of the log likelihood equations for the censored sample. The 

method of solution is a modification of the classical Newton-Raphson iterative scheme. 

The method is based on the numerical solution of the log likelihood equation using a 

quasi Newton method and an active set strategy to maximize the log likelihood function 

subject to simple bounds on the distribution parameters. The method is surveyed and a 

stopping rule is stated. In section 3 the application of a non-parametric density estimator 

to obtain estimates of the parameters of the three-parameter Weibull distribution from a 

censored sample is discussed. An adapted kernel is used which is a Gaussian like kernel 

with a finite right tail. A Monte Carlo comparison of the maximum likelihood 

estimators and the minimum distance estimators is given using the integrated squared 

error (ISE) between the true density and the estimated true model. Samples of size 10, 

20, and 30 censored at the 7th , 15th , and 20th order statistic respectively are used. The 

experiment is done for thousand Monte Carlo repetitions. A comparison is made 

between the maximum likelihood estimators and the new estimators for location 

parameter 10, with scale parameter 5 and 10 and for shape parameter 3, 4,5, and 6 in 

tables and figures. The results are shown in section 4. These results indicate an 

improvement of the new method over the classical maximum likelihood method.  
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2. MAXIMUM LIKELIHOOD PARAMETER ESTIMATION 

  

 The maximum likelihood estimation for the parameters of the Weibull 

distribution has been studied extensively for complete and censored samples. The 

studies include those by Harter and Moore (1965, 1967) where they studied the 

maximum likelihood estimation of the gamma and Weibull population, from censored 

samples. They also studied the asymptotic variances and covariances of maximum 

likelihood estimators from censored samples from Weibull and gamma populations. 

Cohen (1965) studied the maximum likelihood estimation in the Weibull distribution 

based on complete and censored samples. He also studied (1975) the multi-censored 

sampling in case of the three-parameter Weibull distribution. Some results on complete 

and censored sampling from the three parameter Weibull distribution were shown by 

Wycoff et al.(1980). Cohen et. al.  (1984) introduced modified estimators for the 

parameters of the three-parameter Weibull with smaller biases and smaller variances. 

The probability density function of the three-parameter Weibull denoted by 

W(γ , β ,δ )with location γ , scale β , and shape δ  is given by: 
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where ∞<< xγ  , 0>δ  ,    0>β . The corresponding cumulative distribution function 

is given by: 
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 Now, consider that a sample of size n has been censored at the 
th

r  order statistic 

using a type II censoring mechanism. The resulting density for the first r order statistics 

will be given as: 
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 Taking the logarithm for the above density gives the following log-likelihood 

function: 
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 The partial derivatives for the log-likelihood function with respect to the three 

unknown parameters  ( δβγ ,, ) are:  
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 Equating the partial derivatives to zero and solving the system of nonlinear 

equations simultaneously gives an estimator ( ),ˆ,ˆ,ˆˆ δβγ=Θl  that maximizes the log-

likelihood function and maximizes the likelihood function as well. 

The system of the 3-non linear equations for the maximum likelihood in ( )δβγ ,,=Θ  is 

solved using a numerical technique.  The method is known as the hybrid method.  This 

method is basically an iterative method based on Newton-Raphson method. Such 

methods need to compute 3 components of  L  and 9 entries of L′  .  Several other 
modifications are introduced by Powell (1970) to relieve such a problem by computing 

the difference approximations instead of the direct computation of L′ . 
In Powell’s iterative scheme the derivative is not just scaled by a small factor but by 

introducing a negative multiple of the gradient of ( )ΘL  such that the direction for the 

correction in the different iterations will be sensible when the Jacobian becomes almost 

singular. 

 For details about cases when method can, and different factors that affect the 

running time of the method, see Powell (1970). 

An accuracy of .01 was used for the absolute difference between two successive Θ ‘s 

while the Euclidean norm accuracy was relaxed since the mean integrated square error 

(MISE) criteria is to be used latter for the comparison and the interest was in the 

convergence of the Θ  parameter mainly. 

 The algorithm did not converge in a few cases (number in bold in tables 1-3 in 

the first column) which were excluded from the Monte Carlo results.  This happened 

because the method was searching for a zero of the system of nonlinear equations ( )ΘL   

= 0 by minimizing the quadratic form ( ) ( )ΘΘ LLT  or the sum of squares of the 
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maximum likelihood equations. In this case, the minimum would not give a zero of the 

system. The same initial guess is chosen for all the different Monte Carlo samples of 

size 1000. 

 The results from the previous for sample sizes 10, 20, and 30 censored at the 

7th, 15th, and 20th respectively are shown. The parameters used for the Monte Carlo 

experimentation are 3, 4, 5, and 6 for the shape parameter, 5 and 10 for the scale 

parameter, and 10 for the location parameter. 

 

3. MINIMUM DISTANCE ESTIMATION 

 

 In this section of the paper, we find estimators of the parameters δβγ ,, . These 

estimators are the minimum distance estimators that minimize a goodness of fit statistic. 

This goodness of fit statistic is taken as the Cramer von Mises statistic 2W  which 

measures the integral of the squared difference between the density and the sample 

empirical distribution function. This 2W  is defined as: 
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 This computational form uses the step function 
n

i 5.0−
   as an estimator for 

)(ˆ xF  . The basic notion in this section of the paper is to implement the concept of 

nonparametric density estimation to replace the step function representing the sample 

empirical distribution function. Of course to do that it is needed to define a kernel and 

the parameter to be used with that kernel. In our case an adapted Gaussian kernel 

together with a heuristic or empirical choice for the window width are introduced. First, 

the definition of the new adapted Gaussian kernel was driven by how to benefit from the 

fact that the sample is right censored sample. Also, the definition takes care of that the 

sample is an ordered sample. This adapted kernel takes the form: 
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where τ  determines a threshold from the right that gives a zero weight to the x-values 

beyond that τ  and )(τφ is the C.D.F of the standard normal distribution. This τ  value 
will be used to compensate the ordering of the sample in which case it will consider the 

information that    ( ) ( )1+≤ ii XX    for all  ri ≤≤1   with r as the right censoring limit. This 

can simply be shown from the way the kernel or the bump is placed over each 

observation. This kernel is placed over each observation such that a zero weight ( mass ) 

is given for observation ( )iX   at and beyond ( )1+iX  for all observations other than  ( )rX . 
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While for ( )rX  , the threshold is arbitrary chosen to be at multiples of ( )rX  ( taken at 5 

multiples of ( )rX  in our case ). 

 Thus, the kernel at order statistic ( )iX  will be : 
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 Second, the optimal value of the window width h (in the MISE sense) depends 

on the choice of the kernel K, the underlying unknown density f(x) and the sample size 

i.e. 

( ) ( )( ) ( )nfxffKfhopt 321 ..=  

with explicit expression for 
hopt  given as: 
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where 2m  denotes the kernel second moment. A reasonable approximation for this 

optimal value for basically a normal sample was suggested to be 5
1−

= knh where k is a 

real constant.  Although this approximation simplifies the optimal expression for the 

window width and works fine with the normal distribution it is not as good for other 

distributions. An alternative for computing the window width that is more efficient 

computationally and gives a good improvement in this application is to choose an 

empirical h which equals c 5

1
−

sr  where s  represents the data driven parameter from the 

censored sample and r represents the censored sample size.  This s is equal to 










 +
Γ−











+

+
Γ

g

g

g

g

g δ

δ

δ

δ
β

1

1

2
2 .The ( )gg δβ ,  are initial guess for both the scale and shape 

parameters of the Weibull density. These are chosen as scaled sample standard 

deviation of the censored sample with scale 4.0 and 3.0 for both values respectively. 

Suggested h together with the adapted kernel showed an improvement in MISE besides 

being simple, without a need for extensive computations. 

The following figure (Fig. 1.) shows an example for the use of this new non-parametric 

density with the introduced kernel and the chosen window width. 
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 The sample used in the example is of size 20 censored at the 15th ordered 

observation and is from a Weibull distribution with location parameter 5, scale 

parameter 5, and shape parameter 3. The 15 ordered statistics are 6.957001, 7.009424, 

7.609188, 7.930433, 8.007868, 8.371517, 8.414957, 8.495595, 9.018893, 9.484709, 

10.187010, 10.485670, 10.487470, 10.692950, and 10.794190. The data driven window 

width in this case is h=0.7654 

 

4. METHODOLGY 

 

 Both results from MLE computations and the new technique are shown in the 

following tables (Table 1, Table 2, and Table 3). 

 
Table 1. Results from M.C size 1000 for type II Right Censored sample of size 7 out of 10 

 

Weibull (loc., sca., sha.) MISECvM  MISEMLE  

W(10,5,3) 

3 

0.04152560 

(0.0719672) 

0.21541840 

(0.12253522) 

W(10,5,4) 

8 

0.04926788 

(0.05453460) 

0.26278644 

(0.11724960) 

W(10,5,5) 

6 

0.05344808 

(0.06940708) 

0.28162700 

(0.13792380) 

W(10,5,6) 

5 

0.05973878 

(0.10077130) 

0.27194753 

(0.16992954) 

w(10,10,3) 

2 

0.02534832 

(0.02905686) 

0.03724256 

(0.05392057) 

W(10,10,4) 

1 

0.01101317 

(0.02811573) 

0.05318439 

(0.07417205) 

W(10,10,5) 

2 

0.00731237 

(0.02531788) 

0.09116063 

(0.09960468) 

W(10,10,6) 

5 

0.00676097 

(0.02890469) 

0.12782822 

(0.11734741) 
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Table 2. Results from M.C size 1000 for type II Right Censored sample of size 15 out of  20 

 

Weibull (loc., sca., sha.) MISECvM  MISEMLE  

W(10,5,3) 

6 

0.00946977 

(0.01492824) 

0.08318688 

(0.07245930) 

W(10,5,4) 

4 

0.034545593 

(0.01713189) 

0.05111313 

(0.0691607) 

W(10,5,5) 

2 

0.04582739 

(0.03089365) 

0.07171360 

(0.13317342) 

W(10,5,6) 

1 

0.05719306 

(0.04872664) 

0.1386413 

(0.19690372) 

w(10,10,3) 0.01679135 

(0.00664824) 

0.01799473 

(0.01731703) 

W(10,10,4) 0.00524905 

(0.00338150) 

0.01699780 

(0.02617111) 

W(10,10,5) 0.0165833 

(0.00234119) 

0.01724535 

(0.02328303) 

W(10,10,6) 0.00148641 

(0.00273267) 

0.02007358 

(0.03930784) 

 

Table 3. Results from M.C size 1000 for type II Right Censored sample of size 20 out of 30 

 

Weibull (loc., sca., sha.) MISECvM  MISEMLE  

W(10,5,3) 

3 

0.01474420 

(0.02094048) 

0.09620322 

(0.08285221) 

W(10,5,4) 

7 

0.01820016 

(0.03771030) 

0.04377227 

(0.05551330) 

W(10,5,5) 

2 

0.01927658 

(0.04633982) 

0.03095871 

(0.06553324) 

W(10,5,6) 

19 

0.01740239 

(0.04270043) 

0.04298951 

(0.12305474) 

w(10,10,3) 0.00815912 

(0.01044164) 

0.01606623 

(0.01381363) 

W(10,10,4) 0.00566419 

(0.00830887) 

0.01821797 

(0.02310432) 

W(10,10,5) 0.00350789 

(0.00604578) 

0.0173937 

(0.01944109) 

W(10,10,6) 0.00198457 

(0.00404555) 

0.01908424 

(0.03421304) 

 

The tables show the resulting MISE together with its standard deviation between 

brackets for samples of size 10, 20, and 30 censored at the 7th , 15th , and 20th order 

statistic for different parameter values for both the new proposed estimator concurrently 

with the modified nonlinear method for solving the maximum likelihood equations. In 

addition, the tables show that the new technique has a significant improvement over the 

MLE method for shape parameters 3, 4, 5, and 6. A quick look at the results from table 

2 , for example, without overgeneralizing conclusions depicts a better MISE and smaller 

standard deviation for the proposed method.  
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Thus, the new technique shows a significant improvement over the MLE method. The 

improvement in MISE ranges from close but yet smaller value of MISE to almost 13.5 

times smaller in case of location 10, scale 10, and shape 6. The variations in h together 

with the corresponding variations in MISE indicate that the method is an adaptive one 

in the sense that the choice of the parameter h that is data dependent varies with the 

variation of the distribution parameters and the sample size. 

The final conclusion is that the previously described method is recommended for use as 

an alternative to the MLE method for estimating the parameters of the Weibull 

distribution based on right censored samples for up to sample sizes 30. 
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