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Abstract-The focus in this study is on the application of the discrete singular
convolution (DSC) method to the differential equation, which governs the free vibration
of anisotropic plates. Regularized Shannon’s delta (RSD) kernel is selected as singular
convolution to illustrate the present algorithm. In the present study, free vibration
analysis of rectangular composite plates via discrete singular convolution has been
presented. In the proposed approach, the derivatives in both the governing equations
and the boundary conditions are discretized by the method of DSC. The obtained results
are compared with those of other numerical methods available in the literature.
Numerical calculations showed that accurate results can be achieved.
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1. INTRODUCTION

Discrete singular convolution (DSC) method is a new method that was introduced
by Wei [1]. Several researchers have applied the DSC method to solve a variety of
problems in different fields of science and engineering [3-12]. The pioneer work for the
application of the DSC method to the general area of solid mechanics was carried out by
Wei [6,7,8], Wei et. al. [6,7,8], Zhao et al. [11], Lim et al. [12,13] and Civalek
[15,16,17,25]. New developments, such as the new way to apply the boundary
conditions [4] to increase the solution accuracy, have been made on the DSC approach
to make the method more attractive for engineering practice. Details on the
development of the DSC method and its applications to structural mechanics problems
may be found in a recent paper by Wei [6]. The unique properties of advanced
composite materials have resulted in extensive applications of laminated plates to
aerospace, automobile, mechanical, shipbuding, and nuclear industries. Because of the
increasingly wide application of composite structural elements, especially laminated
plates, the analysis of such structures has been receiving much interest in the past [19-
22]. The primary objective of this study is to explore the application of the DSC method
to the buckling and vibration analysis of anisotropic rectangular plates. To the author‘s
knowledge, this is the first instance in which the DSC method has been adopted for free
vibration and buckling analysis of anisotropic rectangular plates.
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2. DISCRETE SINGULAR CONVOLUTION (DSC)

The method of discrete singular convolutions (DSC) has emerged as a new
approach for numerical solutions of differential equations. This new method has a
potential approach for computer realization as a wavelet collocation scheme [2,3]. By
using the appropriate realizations of a singular convolution kernel, this method can be
efficient, accurate and reliable approach for numerical solutions [5-13]. In this paper,
details of the DSC method are not given; interested readers may refer to the works of [1-
8]. In the method of DSC, weighted linear combination of the function values in the
direction of space variable is used to approximate the any order derivative of a given
function with respect to a space variable at a discrete point. Consider a distribution, 7
and #(¢) as an element of the space of the test function. A singular convolution can be

defined by [6]

F@)=T*n)t)= [T(@-x)n(x)dx 1)

— o0

where T'(¢ — x) is a singular kernel. For example, singular kernels of delta type [7]

T(’C) = (5(71)(){) ;0 (n=0,1,2,...,) (2)

Kernel 7(x)=0(x)is important for interpolation of surfaces and curves, and

T(x) =5 (x) for n>1 is essential for numerically solving differential equations. The
DSC algorithm can be realized by using many approximation kernels. However, it was
shown [6,7,8,26] that for many problems, the use of the regularized Shannon kernel
(RSK) is very efficient. The RSK is given by [6]

. . o T 3
S (x ) = sin[(m/A)(x — x;)] - ("'_X/{)z
C - XLr) = XP| —
AT (W) (x - xy) 252

: >0 (3)

where A=m/(N-1) is the grid spacing and N is the number of grid points. Thus, it is
suitable to say that in the DSC method, the function f'(x) and its derivatives with respect
to the x coordinate at a grid point x; are approximated by a linear sum of discrete values
f (xx) in a narrow bandwidth [x-xy, xtxym ]. For example mth order derivative of a
function g(x) at the ith point is given by

tf(m\(x,') = , (\;(/(70)»(.)\‘,‘ - XJ')g(Xj); (’n:()slaz"") (4)

a,

where superscript m denotes the mth-order derivative with respect to x.
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3. APPLICATIONS

The governir ferential equation for vibration of

given as g’74

- composite plates is

N4
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x and y are
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at x=0,a (6a)
w=0 ¢ at y=0,b (6b)
i) Clamped edges
. ow ~ . _-
w=0 and — -=0 at x=0,a (7a)
ox
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w=0and —=0 at y=0,b (7b)
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Governing equations can be written in DSC form as
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M
+4D,, L()“/A’“’g(/i’f:\.\_') Wi = yhao W, (8)
k=M

~ ~ , ~(3) ‘/4‘ . - . i 12
where J, ,(x),0%a0(x), 0Ps0(x), and 6“4 s(x)are the first-, second-, third-and

fourth-order derivatives of the regularized Shannon’s delta kernel. These are can be
found in open literature [7,8].

3.1. Implementation of boundary conditions

Simply supported and clamped boundary conditions are applied in the analysis. It is
known that, to obtain a unique solution for a differential equation, appropriate boundary
conditions must be satisfied. In applying the DSC method Wei et al. [9,10] and Zhao et
al. [11] proposed a practical method in applying the simply supported and clamped
boundary conditions. In the present study, same procedure proposed by Wei et al.[9, 10]
and Zhao et al.[11] are used. More detailed formulation about the implementation of
boundary conditions in DSC can be found in these references [9,10,11,16]. Consider a
uniform grid having following form

0=X,<X, <.<X, =1 (9a)
0=Y, <Y <..<Y, =1. (9b)

Consider a column vector W given as
W =W, g, Wy, W, 00 Wy )" (10)

with (N, + l)(N_y +1) entries Ww = W(XI,YJ.); @=0L.,N_; j= O,l,...,N}_‘). Let us
define the (N, +1)(NV, +1)differentiation matrices D (r = X,Y;n=1,2,...), with their
elements given by

[D.(\I-]) ]1:/ = O(a”l (x; ~ x_/) (11a)

[DY],; =0ex (¥ = ;) (11b)

where 61} (r, - r;), (r=x,y)is a DSC kernel of delta type. In this stage, we consider

the following relation between the inner nodes and outer nodes on the left boundary
[9,11]:
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W(X_)-W(X,)=W(X, )[ >aX. ][W( X )=W(X,)] (12)

j=0

where parameter a,,(i =1,2,...,M)are to be determined by the boundary conditions.
Thus, the first and second order derivatives of W on the left boundary are approximated
by

j=0

( J A
W'(X,)= Lo‘;‘}A (X, = X,) =D (1-a)d0 (X, - X, )JW(XO)

+ 2(1 —a,)00 (X, - X )W (X)) (13)

J=0

J
W'(X,)= (a‘ X =X)+D (1-a)d00 (X, - X ) W(X,)
k. j=0 '

J
+> (1+a,)6 0 (X, - X ) W(X)) (14)

Jj=0

Similarly, the first and second order derivatives of f on the right boundary (at X,,_, )
are approximated by

WXy )= WXy ) =W( Xy, )(ian»i ][W(Xx) -W(Xy)] (15)

Jj=0

Consequently, we obtain the following relation

WXy )=aW X,y )+WX, )Oll-aqa,l (16)

Hence, the first and second order derivatives of f on the right boundary are given by

W (Xya)= [52',2 (X, = Xy.) =2 (1=a)d0 (X, - X, )}W(X N-1)

Jj=0

J

+Y (1-a,)80\ (X, - X )W (X)) (17)

J=0
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As a result the DSC forms of gi
above procedure. For example, D
be given for right boundary by

4
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4. NUMERICAL RESULTS

In this section some numerical results are presented. As a first example, consider
the free vibration problem of isotropic plate. The results are listed in Table 1 and Table
2 for CCCC and SSSS boundary conditions. Comparisons are made with the analytical
solutions provided by Leissa [23]. It can be seen that good accuracy is achieved by the
present DSC method with N=16. Non-dimensional fundamental frequency of CCCC
rectangular anisotropic plates are given in Table 2 for two different aspect ratios. From
Table 3, it can be seen that the results compare well with data obtained by the Rayleigh-
Ritz [18] and differential quadrature [24] method. Other results of a convergence study
of frequencies are presented in Table 4. Results from the present DSC method are
compared with the results of the method of differential quadrature (DQ) and harmonic
differential quadrature (HDQ) by Bert et al. [24]. From the results presented in this
table, it is clear that the present DSC results are in excellent agreement with those
obtained using a variety of numerical methods using N=16. Non-dimensional frequency
parameters of CCCC anisotropic rectangular plates are analysed and results are listed in
Table 5 -6. The geometric and material properties are b/a=0.5 and b/a=1; E,/E, = 10,
G12/E;=0.25, v, =0.3. The present results are compared with the results of Whitney
[18]. In comparison with the results of Whitney [18], the DSC results provide
satisfactory accuracy. Consequently, by comparing the computed results with those
available in published works, the present analysis by the DSC method is examined and a
very good agreement is observed.
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Table 1. Non-dimensional frequency (Q = (wa’®)/ph/ D ) parameters of
“CCC isotropic plates

Present DSC results

N Mode sequence
1 2 3 -

12 36.005 73.433 73.421 108.278

16 35.993 73.415 73.415 108.273

18 35.992 73.413 73.413 108.273

20 35.992 73.413 73.413 108.270

22 35.992 73.413 73.413 108.270
Leissa [23] 35.992 73.413 73.413 108.270

Table 2. Non-dimensional frequency parameters of SSSS isotropic plates

Present DSC results

N Mode sequence
1 2 3 4

12 19.7401 49.3493 49.3493 78.9578

16 19.7398 49.3488 49.3488 78.9573

18 19.7393 49.3482 49.3482 78.9573

20 19.7392 49.3480 49.3480 78.9571

22 19.7392 49.3480 49.3480 78.9570
Leissa [23] 19.7392 49.3480 49.3480 78.9568

Table 3. Non-dimensional fundamental frequency of CCCC rectangular
anisotropic plates (Q = (wb?)\/ph/D ;D =Eh* [[12(0-v}E, 1;E, = E, / E,; 6=15)

a/b Bert et al. [24] Whitney [18] DSC
1 23.09 23.10 23.12
2 9.67 9.68 9.70

Table 4. Non-dimensional frequencies (Q = (wa’ / 7*)4/ ph/ D,, ) of SSSS square
anisotropic plates (D2/Dy1=1; Do+ 2Dgs/ D11=1)

N Bertetal. [24]  Bertetal. [24] Present study Present study
DQ HDQ HDQ DSC

9 2.00 2.00 - 2.008

13 - 2.00 2.00 2.000

16 - - 2.00 2.000
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Table 5. Non-dimensional frequency parameters of CCCC anisotropic plates
(b/a=0.5; E//E; = 10; G2/E;=0.25; v, =0.3;D=Eh’ [[12(1-0,,0,,)])

Whitney
Orientation [Ref.18] Present DSC results
’ Mode sequence Mode sequence
1 2 3 1 2 3
0° 9.34 17.61 20.83 9.34 17.61 20.84
15° 9.68 17.19 22.02 9.68 17.20 22.03
45° 13.88 17.73 23.85 13.86 17.66 23.68
60° 17.87 19.86 23.75 17.88 19.78 23.58
90° 22.57 23.38 25.30 22.57 23.38 25.31

Table 6. Non-dimensional frequency (Q = (wa® )\f;}h / D) parameters of CCCC
anisotropic square plates (b/a=1; E;/E; = 10; G;,/E>=0.25;
v, =03;D=Eh’ [12(1-0v,,0,,)])

Whitney
Orientation [Ref.18] Present DSC results
B
Mode sequence Mode sequence
1 2 3 1 2 3
0° 23.97 31.15 46.41 23.97 31.13 46.40
15° 23.10 31.52 47.65 23.08 31.50 47.61
30° 21.35 33.18 50.72 21.33 33.16 50.64
45° 20.51 35.01 47.07 20.50 34.98 46.88
5. CONCLUSIONS

Free vibration analysis of rectangular composite plates via discrete singular
convolution has been presented. In the proposed approach, the derivatives in both the
governing equations and the boundary conditions are discretized by the method of DSC.
The obtained results are compared with those of other numerical methods available in
the literature. Numerical results indicate that the discrete singular convolution is a
simple, accurate and reliable algorithm for vibration analysis of anisotropic composite
plates. In addition, the new numerical technique DSC algorithm has been examined and
found to be simple, accurate and efficient.
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