
 

 

 
 

Mathematical and Computational Applications, Vol. 12, No. 3, pp. 125-134, 2007.  

© Association for Scientific Research 

 

ON THE INVENTORY MODEL WITH TWO DELAYING BARRIERS 

Ihsan Unver 

Gaziantep University, Faculty of Arts and Sciences, 

Department of Mathematics, 24130, Gaziantep 

unverihsan@yahoo.com 

 

Abstract: In this paper the process of semi-Markovian random walk with negative drift 

under angle )900( oo <α<α  , and positive jumps with probability )10(  <ρ<ρ  

having two delaying screens at level zero and )0a(a >  is constructed. The exact 

expressions for Laplace transforms of the distributions of the first moments in 

order to reach to these screens by the process and, in particularly, the expectations 

and the variances of indicated distributions are obtained. 
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1. INTRODUCTION 

It is known that a numerous interesting problems in the fields of reliability, 

queuing, inventory theories, biomedicine etc., are given in terms of the stochastic 

processes with discrete chance interference. Particularly, these problems can often be 

modeled by using random walk with one or two barriers. There is large literature on 

theory and application about random walk with one or two barriers. For example, 

Spitzer (1964), Feller (1966), Skorohod & Slobedenyuk (1970), Borovkov (1975), 

Korolyuk & Turbin (1976), Nasirova (1984, 1999), Lotov (1991), Alsmeyer (1992), 

El-Shehaway (1992), Zhang (1992), Khaniev & Ozdemir (1995,1998), Khaniev & 

Kucuk  (2004), Unver (1997), etc. On the other hand the process with negative drift 

under the angle )900(   oo << aa  having positive jumps with probability 

)10(  <ρ<ρ  with two delaying screens have not be investigated properly yet. In this 

paper, the process of semi-Markovian random walk with negative drift under the 

angle )90a0(a oo << , and positive jumps with probability )10( <ρ<ρ   having 

two delaying screens at level zero and )0a(a >   is constructed. The exact expressions 

for Laplace transforms of the distributions of the first moments in order to reach to 

these screens by the process, in particularly, the expectations and the variances of 

indicated distributions are obtained. 

 

2. DESCRIPTION OF THE PROBABILISTIC MODEL 

Suppose that, initially, there is )0(  azz <<  stock in a warehouse, with size a. 

Let 0

1ξ  denotes the amount which customer demands. The customers are served with a 

fixed speed. After serving to all customers, the expected stock level at the end of the 

inventory cycle equals to 0

1ξ−z . An inventory cycle is defined as the time period 

between two successive arrivals of orders. If the warehouse meets the demands of all 

customers and still keeps a stock of amount 00

1 >−ξz  then the stock ceases 

serving until new customers arrive. When a new demand arrives, there are two 

possibilities to continue: 
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a) A new demand is immediately served with the probability )10(   1 ≤ρ≤ρ−  

b) A stock with the amount 1ζ  and probability ρ  is stored at the warehouse and 

then the new demand is served. 

Since storage capacity in the warehouse is limited, amount of inventory in the 

warehouse can't be greater than a. In this case, in the beginning of the inventory 

cycle (right after quantity order 1ζ  of size is received), the expected stock level is 

)z,amin( 1

0

1 ζ+ξ− . After serving all the customers, inventory in the warehouse is 

consumed )0z( 0

1 ≤ξ−  new arriving customer service is started after an order of size 

),amin( 0

1ζ  is received. The level of the stock is a stochastic process and we denote it by 

X(t). For this inventory model, it is important to determine the distributions of the first 

moments of the exhaustion and to fill the warehouse. 

 

3. STRUCTURE OF THE PROCESS AND MATHEMATICAL STATEMENT 

OF THE PROBLEM 

Suppose that, { } ∞=ζηξ
,1kkk

0

k ,,  is a sequence of independent and identically distributed 

random variables defined on probability space )P,,( ℑΩ  such that 0,0,0 kk

0

k ≥ζ>η>ξ  

are independent random variables. Construct the following process: 
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where 0z,,1k    ,tg0kk >∞=αξ=ξ . Delaying the process )t(X1  with screen "0", we 

have 

)))t(X,0(inf)t(X)t(X 1
ts0

12 ≤≤
−=  and delaying the process )t(X 2  with screen "a", we have  

))s(X,a(sup)t(Xa)t(X 2
ts0

2
≤≤

−+= .  

The process )t(X  is called the process of semi-Markovian random walk with negative 

drift under the angle )90(0  oo <α<α , positive jumps with probability )10(  ≤ρ≤ρ  

and two delaying screens at the level of zero and a (a>0). The first moments for 

reaching screens at the level of zero and a (a>0) by this process can be obtained by 

writing 

0
1

0
1 1

1i

ii

0

1 )(
ν

−ν

=

ξ′+η+ξ=τ ∑   and ∑
ν

=

η+ξ=τ
a
1

1i

ii

a

1 )( ,                                                  (3.1) 

where 0

1ν  and a

1ν  are the numbers of the steps (inventory cycles) for the first moments 

of reaching screens at level zero and a (a>0) by process )t(X , respectively; 0
1ν

ξ′  is the 

part of the random variable 0
1ν

ξ . 

 

4. DETERMINATION OF LAPLACE TRANSFORM )(L 0
1

θ
τ

 

Denote the Laplace transforms of the random variables 11

0

1 ,, ηξτ  by 
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0
1

0
1

Ee)(L
θτ−

τ
=θ , 1

1
Ee)(L

θξ−
ξ =θ  and 0  ,Ee)(L

0
1

0
1

>θ=θ θτ−

τ
.                          (4.1) 

Using the Wald equality from (3.1), (4.1.), (4,2) and (4.3), we obtain 

)(L)(L

))(L)(L(
)(L)(L

11

11

0
1

0
1

0

θθ

θθΨ
θ=θ

ηξ

ηξ
ξ′τ ν

                                                                   (4.2) 

We denote the generating function of the random variable 0

1ν  by 

1u0  ,Eu)u(
0
1

0 ≤<=Ψ ν
. After that, by using the total probability formula for 

expectations, we have 

{ } 0z  ,dz)0(XP)z,u()u(

a

0

00 >∈Ψ=Ψ ∫ ,                                                             (4.3) 

where { } 1u0  ,z)0(X/kPu)z,u(
1k

0

1

k

0 ≤<==ν=Ψ ∑
∞

=

 .  

Using total probability formula for 2k ≥ , we have 

{ } { } { }+=−=ν∈ξ−=ζ>ξ−===ν ∫
+=

a

0y

0

1

0

11

0

1

0

1 y)0(X/1kPdyz;0;0zPz)0(X/kP  

{ } { }∫
+=

=−=ν∈ζ+ξ−>ζ>ξ−+
a

0y

0

11

0

11

0

1 y)0(X/1kPdy)z,amin(;0;0zP . 

Multiplying both sides of this equality by )1u0(  u k ≤< , summing up for ∞= ,2k  and 

after a simple transformation we obtain 

{ } { }+>ζ+ξ−>ζ>ξ−Ψ+>ξ=Ψ az;0;0zuP)a,u(zuP)z,u( 1

0

11

0

10

0

10  

{ } { }+<ξ−Ψ=ζ+ ∫
+=

yzPd)y,u(0uP 0

1y

a

0y

01  

{ }∫
+=

<ζ+ξ−>ζ>ξ−Ψ+
a

0y

1

0

11

0

1y0 yz;0;0zPd)y,u(u .                                     (4.4)   

Suppose that the distribution of the random variable 0

1ξ  has the density function 

0x  ),x(P 0
1

>
ξ

 and the distribution of the random variable 1ζ  has the density function 

0x  ),x(P
1

>ζ  and has a jump with size ρ−1  at 0=x . Then (4.4) can be written as 

follows: 

{ } { } +−+>ζΨ+>ξ=Ψ ∫
=

ξ

a

0x

10

0

10 dxPzxaPu)a,u(zuP)z,u( 0
1

 

{ } ∫
+=
ξ Ψ−=ζ+

a

y

01 dy)y,u()yz(P0uP 0
1

+Ψ−++ ∫ ∫
+= −=

ζξ
dy)y,u(]dx)zyx(P)x(P[u 0

z

0y

z

yzx

0
1

0
1

 

dy)y,u(]dx)zyx(P)x(P[u 0

a

0y

z

0x

0
1

0
1

Ψ−++ ∫ ∫
+= =

ζξ
.                                                             (4.5) 

We can solve this equation by using the Erlang class of distributions. 
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{ } t0

1 e1tP µ−=<ξ ,  { } 10  ,0 ,0 ,0t  ,e1tP t

1 ≤ρ<>λ>µ>ρ−=<ζ λ                (4.6) 

Using this distribution we can write expression (4.5) as 

+Ψ−
µ+λ

µρ
+=Ψ µ−λλ−µ− )a,u()ee(eue)z,u( 0

zzaz

0  

+Ψρ−+
µ+λ

λρ
µ+ ∫

+=

µµ−
z

0y

0

yz dy)y,u(eue)]1([   

∫∫
+=

λ−µ−

=

λ−λ Ψ
µ+λ

λµρ
−Ψ

µ+λ
λµρ

+
a

0y

0

yz

a

zy

0

yz dy)y,u(euedy)y,u(eue . 

From this integral equation we have the following differential equation 

)z,u()u1()z,u(]u)1([)z,u( 0z0z0 Ψ−λµ−Ψ′ρ−µ+µ−λ−Ψ ′′                               (4.7) 

which has the solution: 
)u(zk

2

)u(zk

10
21 e)u(ce)u(c)z,u( +=Ψ ,                                                                  (4.8) 

where )u(k1  and )u(k 2  are the roots of the characteristic equation 

0)u1()u(k]u)1([)u(k 2 =−λµ−ρ−µ+µ−λ− . 

Hence, we have 

2/)u1(4]u)1([]u)1([)u(k
2

2,1






 −λµ+ρ−µ+µ−λρ−µ+µ−λ= m                                (4.9) 

The functions )u(c1  and )u(c2  can be obtained from the following boundary conditions 

∫
+=

λ−λ− Ψλµρ+ρ−µ+Ψµρ+µ−=Ψ′=Ψ
a

0y

0
y2

0
a

z00 dy)y,u(euu)1(u)a,u(eu)0,u(     ;u)0,u(  

from which we obtain 

0)u(ce)]u1()u(k[)u(ce)]u1()u(k[   ;u)u(c)u(c 2
)u(ak

21
)u(ak

121
21 =−µ++−µ+=+        (4.10) 

Hence, we have 

ue)]u1()u(k[e)]u1()u(k[

e)]u1()u(k[u
)u(c

)u(ak

2

)u(ak

1

)u(ak

2
1

21

2

−µ+−−µ+

−µ+
−= ,                         (4.11) 

)u(cu)u(c 12 −= .                                                                                             (4.12) 

Using the fact that the distribution of the random variable )0(X  coincides with the 

distribution of the random variable ),amin( 1ζ  and in addition to this using the 

distribution of the random variable 1ζ , which has a jump with of size )1( ρ− , we can 

write (4.3) as 

∫ Ψλρ+Ψρ+Ψρ−=Ψ λ−λ−
a

0

0

z

0

a

00 dz)z,u(e)a,u(e)0,u()1()u( .                        (4.13)    

where )z,u(0Ψ  is given by (4.8) together with  (4.11) and (4.12). Substituting (4.8) into 

(4.13) and using the expression u)0,u(0 =Ψ  that was obtained earlier, we finally have 

2,1i,)u(c]e)u(k[
)u(k

1
u)1()u(

2

1i

i

a)]u(k[

i

i

0
i =−λ

−λ
ρ+ρ−=Ψ ∑

=

−λ−
.                (4.14) 

Now we can find the Laplace transform of the random variable 0

1τ . In fact, the 
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random variable 1ξ  has the exponential distribution, and we have )(L)(L
10

1

θ=θ ξξ
ν

. 

Then we can write (4.2) as 

)u()(L)(L 0

1

1
0
1

Ψθ=θ −
ητ

,                                                                                     (4.15) 

where )(L)(L)(Lu
111
θ

θ+µ
µ

=θθ= ηηξ . Finally substituting (4.14) into (4.15), we get 

])u(c]e)u(k[
)u(k

1
u)1)[((L)(L

2

1i

i

a)]u(k[

i

i

1 i

1
0
1

∑
=

−λ−−
ητ

−λ
−λ

ρ+ρ−θ=θ .              (4.16) 

 

5. CALCULATION OF 0

1Eτ  AND 0

1Varτ  

From (3.1), we have 

0
1

E)1E)(EE(E 0

111

0

1 ν
ξ′+−νη+ξ=τ ,                                                                    (5.1) 

0
1

VarVar]EE[)1E)(VarVar(Var 0

111

0

111

0

1 ν
ξ′+νη+ξ+−νη+ξ=τ .                     (5.2) 

Note that, these formulas can also be obtained from (4.16). As the random 

variable 1ξ  is exponential the distributed, we have 1EE 0
1

ξ=ξ′
τ

, 1VarVar 0
1

ξ=ξ′
τ

. Then  

1

0

111

0

1 EE)EE(E η−νη+ξ=τ ,                                                                             (5.3) 

1

0

111

0

111

0

1 VarVar]EE[E)VarVar(Var η−νη+ξ+νη+ξ=τ .                              (5.4) 

By using the property of generating function of a random variable, we can write 

)u(E u0

0

1 Ψ′=ν  and )]1(1)[1()1(Var u0u0u0

0

1 Ψ′−Ψ′+Ψ ′′=ν                                          (5.5) 

The expressions for )1(0Ψ′  and )1(0Ψ ′′  can be found by using (4.14). But we will use 

(4.13) to determine these derivations easily. Firstly, we have to determine expressions 

for 2,1i  ),1(c),1(c),1(c),1(k),1(k),1(k iiiiii =′′′′′′ . These expressions can be obtained from 

(4.9), (4.11) and (4.12) at u=l (Table 5.1). 

 By differentiating (4.13) with u=1 and substituting obtained expressions for 

)1(0Ψ′ , )1(0Ψ ′′  into (5.5) together with 0)1(c,0)1(c,0)1(k,0)0,u( 2110 ====Ψ  we get 

µ′+′=ν /)]1(c)1(k)1(k[E 221
0
1

,                                                                                  (5.6) 

]E1[E)}1(c)1(k)]1(c)1(k)1(c)1(k[2)1(k{
1

Var 0

1

0

12222111

0

1 ν+ν−′′+′′+′′+′′′
µ

=ν .      (5.7) 

Table 5.1. Expressions for 2,1i  ),1(c),1(c),1(c),1(k),1(k),1(k iiiiii =′′′′′′  

)1(k1  0 )1(k1′  

µρλ
λµ
−

 
)1(c1  1 )1(c1′  a)(2 e)(1 µρ−λ−ρ

µρ−λ
µ

+  

)1(k1′′  
−

µρ−λ

ρµρ−λ+µρ+λµ
3

22

)(2

])([

)(2

)]1([ 2

µρ−λ

ρ−µ
−  

)1(c1′′  [ ]{ +µ−′′+′′ − a)1(k

111

2

2e])1(k)[1(ka2)1(k
)1(k

1

ce])1(k[2 a)1(k

1
2−µ−′+ + 

)1(c])1(k)1(ak)1(k[2 1112
′µ−′+′+  

)1(k 2  µρ−λ  )1(c2  0 

)1(k 2′  )]/([)1( µρ−λλµ−ρ−µ  )1(c2′  1- )1(c1′  

)1(k 2′′  - )1(k1′′  )1(c2′′  - )1(c1′′  
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Finally, from (5.3) and (5.4) together with (5.6) and (5.7), we have 

1

0

11

0

1 EE)E
1
(E η−νη+
µ

=τ ,                                                                                 (5.8) 

1

0

1

2

1

0

112

0

1 VarVar]E
1
[E)Var

1
(Var η−νη+

µ
+νη+

µ
=τ ,                                     (5.9) 

where 01 >η  has a general distribution. 

 

6. DETERMINATION OF THE LAPLACE TRANSFORM )(L a
1

θ
τ

 

Denote the Laplace transform of the random variable a

1τ  by 

0,Ee)(L
a
1

a
1

>θ=θ θτ−

τ
                                                                                         (6.1) 

Using the Wald equality from (6.1), (3.1), (4,1), we obtain 

))(L)(L()(L
11

a
1

a θθΨ=θ ηξτ
                                                                                  (6.2) 

Denote the generating function of random variable a

1ν  by 1u0,Eu)u(
a
1

a ≤<=Ψ ν
. Then, 

by using total probability formula for expectations, we have 

{ } 0z,dz)0(XP)z,u()u(

a

0

aa >∈Ψ=Ψ ∫                                                                (6.3) 

where { } 1u0,z)0(X/kPu)z,u(
1k

0

1

k

a ≤<==ν=Ψ ∑
∞

=

. Using the total probability formula 

for 2k ≥  and multiplying both sides of this equality by )1u0(u k ≤< , summing up for 

∞= ,2k , and transforming, we obtain 

{ } { } { } { }+>ξ>ζ+∈ξ+−>ζ=Ψ ∫
=

zPauPdxPxzaPu)z,u( 0

11

z

0x

0

11a  

{ } { } )0,u(zP0uP a
0
11 Ψ>ξ=ζ+ { } { }+∈ξ−+<ζ>ζΨ+ ∫∫

==

z

0x

0

111

a

zy

a dxPzyx;0P)y,u(u  

{ } { }+∈ξ−+<ζ>ζΨ+ ∫∫
−==

a

yzx

0

111

z

0y

a dxPzyx;0Pdy)y,u(u  

{ } { }+<ζ>ζΨ>ζ+ ∫
=

y;0Pd)y,u(0uP 11

a

0y

ya

0

1  

{ } { }dy;0zPd)y,u(0uP 0

1

0

1

a

0y

ya1 ∈ξ>ξ−Ψ=ζ+ ∫
=

.                                                         (6.4) 

Analogous to the Sec. 5 by using the distributions of the random variables 0

1ξ  and 1ζ , 
which are given by  (4.8) we can write 

+ρ+−
µ+λ

µρ
=Ψ µ−λ−µλλ− zazza

a eu)ee(eu)z,u(  

+Ψ
µ+λ

λµρ
−Ψ

µ+λ
λµρ

+ ∫∫
=

λ−µ−

=

λ−λ
a

0y

a

yz

a

zy

a

yz dy)y,u(ee
u

dy)y,u(ee
u
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+Ψλρ−Ψ
µ+λ

λµρ
+ ∫∫

=

λ−µ−

=

µµ−
a

0y

a

yz

z

0y

a

yz dy)y,u(euedy)y,u(ee
u

 

{ } { } )0,u(e0uPdy)y,u(ee0Pu a

z

1

z

0y

a

yz

1 Ψ=ζ+Ψ=ζµ+ µ−

=

µµ− ∫ .                            (6.5) 

From this integral equation we have the following differential equation 

0)z,u()u1()z,u(]u)1([)z,u( zazaza =Ψ−λµ−Ψ′ρ−µ+µ−λ−Ψ ′′ ,                     (6.6) 

which has the solution 
)u(zk

2

)u(zk

1a
21 e)u(de)u(d)z,u( +=Ψ ,                                                                 (6.7) 

where )u(k1  and )u(k 2  are given by (4.9). The expressions for )u(d1  and )u(d 2  are 

obtained from the following boundary conditions 

 ∫
+=

λ−λ− Ψλρ+Ψρ−+ρ=Ψ=Ψ′
a

0y

a

y

a

a

aza dy)y,u(eu)a,u()1(ueu)0,u(            ;0)0,u(  

from which we obtain 

 a

21 e)u(ku)u(d λ−µρ= . 

                             { ]e1)][u(k)[u(k)]u(k)u(k)][1(u1[ a)]u(k[

2212
1−λ−−−λ−−ρ−−µ  

                                } 1a)]u(k[

11 ]e1)][u(k)[u(k 2
−−λ−−−λ+  

)u(d)]u(k/)u(k[)u(d 1212 −=                                                                                  (6.8) 

Analogous to the Sec. 4 [Eq. (4.13)] generating function for )u(aΨ  can be written as 

∫ Ψλρ+Ψρ+Ψρ−=Ψ λ−λ−
a

0

a

z

a

a

aa dz)z,u(e)a,u(e)0,u()1()u( .                         (6.9) 

Inserting (6.7) together with (6.8) into (6.9), we have 

∑
=

−λ−−λ− −
−λ
λρ

+ρ+ρ−=Ψ
2

1i

i

a)]u(k[

i

a)]u(k[

a )u(d]}e1[
)u(k

e)1{()u( ii ,                (6.10) 

Finally substituting (6.10) into (6.2), we have 

∑
=

−λ−−λ−

τ
−

−λ
λρ

+ρ+ρ−=θ
2

1i

i

a)]u(k[

i

a)]u(k[
)u(d]}e1[

)u(k
e)1{()(L ii

a
1

,               (6.11)                   

where )(L)/(u
1
θθ+µµ= η . 

 

7. CALCULATION OF THE a

1Eτ  AND THE a

1Varτ  

From (3.2), we have  
a

111

a

1 E)EE(E νη+ξ=τ ,   a

1

2

11

a

111

a

1 Var]EE[E)VarVar(Var νη+ξ+νη+ξ=τ    (7.1)  

Note that these formulas also can be obtained from (6.3). By analogy with Sec.5 

we can write  

)1(E ua

a

1 Ψ′=ν  and )]1(1)[1()1(Var uauaua

a

1 Ψ′−Ψ′+Ψ ′′=ν .                                         (7.2) 

The expressions for )1(uaΨ′  and )1(uaΨ ′′  can be found by using (6.11). But we will use 

(6.9) to determine these derivations easily. Firstly, we determine expressions for 

2,1i),1(d),1(d),1(d iii =′′′
.  
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These expressions can be obtained from (6.8) and (6.9) with 1u =  (Table 7.1). 

Table 7.1. Expression for 2,1i),1(d),1(d),1(d iii =′′′
 

)1(d1  1 )1(d1′  
)1(de]e)1(k[

1
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1
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e
2
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a
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ρ
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+

λ
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λ
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1
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2
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2
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)
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By differentiation of (6.9) with 1u =  and substituting the obtained expressions 

for )1(uaΨ′ , )1(uaΨ ′′  into (7.2) together with 0)1(d,1)1(d,0)1(k 211 ===  we get 

 )1(d]e1[)1(d]e1[e)1(ka1E 2

a

1

aa

1

a

1
′ρ++′ρ++′ρ+−=ν µρ−λ−λ− ,                           (7.3) 

 +′′+′′+′+′−=ν )]1(d)1(d[)]1(d)1(d[22Var 2121

a

1  

{ }+′+′′+′′+′′+′′+′′ρ+ λ− 2

1

2

12

a)1(k

2112

a)1(k

1

a )]1(k[a)1(k)]1(de)1(k)1(d)1(k[a2)1(de)1(de 22

           ]E1[E a

1

a

1 ν−ν+ .                                                                                                 (7.4) 

Finally, from (7.1) together with (7.3) and (7.4), we have 

 a

11

a

1 E)E
1
(E νη+
µ

=τ ,    a

1

2

1

a
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a

1 Var]E
1
[E)Var

1
(Var νη+

µ
+νη+

µ
=τ           (7.5) 

where 01 >η  has a general distribution. 

 

8. NUMERICAL RESULTS 

This section presents numerical results which are obtained by using Matlab5. 

Fig.8.1 shows the plot of the expected values 0

1Eν  and a

1Eν  obtained from (5.6) and 

(7.3), as a function of µρλ / . 

In Fig.8.2 we plot (7.5) as a function of µρλ / . The values of µρλ /  are changed in 

the interval (0.3, 2.5). From this figure, we see that for 0
11 EE ζ=ξ  the expected values 

a
1Eν  increases. 

The explanations above are valid for 0
1Varτ  as well. Fig.8.3. shows the plot of the 

expected values a
1Eν  as a function of capacity of warehouse. 
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Figure 8.1. The plots of the expectations of the random variables 0

1ν  and a

1ν  as 

the functions of µρλ / . 

 

Figure 8.2. The plot of the expectations of the random variable a

1ν  as the 

function of µρλ / . 

 

 

Figure 8.3. The plot of the expectations of the random variable 0

1ν  as the 

function of a. 

In the following the parameters 0

1Eτ  and 0

1Varτ  are calculated using formulas 

(5.8) and (5.9). Results are given in Table 8.1.  

Table 8.1 Results dates (for a=300, 15Var   ,5E 11 =η=η ) 

 0

1Eν  
0

1Varν  
0

1Eτ  
0

1Varτ  

for µρ<λ  1.29x10
3 

1.09x10
6
 2.32x10

3
 3.50x10

6
 

for µρ>λ  3.28 46.79 72.1 2.73x10
3
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According to Table 8.1, the expected value 0

1Eν  is much greater when 

)EE(  11 ζ<ξµρ<λ than that of )EE(, 11 ζ>ξµρ>λ   . Similarly the expected value 0

1Eτ  
is much greater in this case than that of µρ>λ . 

 

9. CONCLUSION 

In this paper the process of semi-Markovian random walk with negative drift 

under the angle )900(   oo <α<α  having positive jumps with probability 

)900(   oo <ρ<ρ  and with two delaying screens at level zero and )0a(  a >  is 

constructed. The exact expressions for Laplace transforms of the distributions of the 

first moments of reaching these screens by this process and in particularly the 

expectations and the variances of indicated distributions are obtained. The results 

obtained in this study can be practiced in queering and reliability theory. 
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