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Abstract-In this study, modelling of microhardness values by means of artificial neural 
networks of Al/SiCp metal matrix composite material couples with diffusion method 
and manufactured by powder metallurgy process, were obtained using a back-
propagation neural network that uses gradient descent learning algorithm.  

After diffusion bonding and relevant test, to prepare the training and test 
(checking) set of the network, results were recorded in a file on a computer. Then, the 
neural network was trained using the prepared training set. At the end of the training 
process, the test data were used to check the system accuracy. As a result the neural 
network was found successful in the prediction of modelling of microhardness values of 
Al/SiCp metal matrix composite material couples processed with diffusion method and 
behavior.   
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1. INTRODUCTION 

Aluminum-based, particulate-reinforced metal matrix composites (MMCs) are 
of concerns for structural carrying outs where weight saving is of primary concern. 
There are several production techniques to getting in manufacturing the MMC 
materials. An artificial neural network is a parallel-dispensed information proceeding 
system. It stores the specimens with dispensed coding, thus forming a trainable 
nonlinear system. The main idea of neural network draw near to resembles the human 
brain functioning. Given the inputs and longing outputs, it is also self-adaptive to the 
habitat so as to respond different inputs rationally. The neural network theory deals with 
learning from the preceding obtained data, which is named as training or learning set, 
and then to check the system accomplishment using test data [1-2]. Artificial Neural 
networks (ANNs) have been used to model the human vision system. They are 
biologically inspired and contain a large number of simple processing elements that 
perform in a manner analogous to the most elementary functions of neurons. Artificial 
neural networks learn by experience, generalize from previous experiences to new ones, 
and can make decisions. Neural elements of a human brain have a computing speed of a 
few milliseconds, whereas the computing speed of electronic circuits is on the order of 
microseconds. The ANNs are parallel process elements which has characteristic in 
below.  

-ANN is a mathematical model of a biological neuron.  
-ANN has very process elements which are related another.  
-ANN keeps knowledge with connection weights.  
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Neural network models provide an alternative approach to implementing 
enhancement techniques. A simple process element of the NNs is given in Fig.1. Output 
of ith process element at this simple model is given at Equation 1. 
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 In there, a is activation function, θi is threshold value of ith process element. 
Knowledge processes of process element compose from two parts: input and output. 
Output of ith  process element is calculated with Equation 2 [3-4].  
 

 ∑
=

−=
m

1j iθjxijwinet∆if                                                                                                   [2] 

f(.) a(.)

x1

x2

xm

wi2

wi1

wim

Weights

θi

Outputs

yi

Threshold

Inputs

 

Figure 1. The Mathematical Model of Neuron 

 

Neural networks were procured a basically different draw near to material 
modeling and material processing control techniques than statistical or numerical 
procedures. This method is feasible in many areas of engineering and has produced 
promising to prepare results in the areas of material modeling and proceduring. One of 
the main advantages of this approach is that there is no need to make a priori 
assumptions about material behavior although in more were sophisticated neural 
network modeling projects one may take advantage of the information of the procedure 
in network design. Even though multi-layered neural network models cannot make sure 
a global minimum solution for any given problem, it is a sensible assumpttions that if 
the network is trained on a extensive database with a suitable representation project, the 
resulting model will approximate all of the laws of mechanics that the actual material or 
process obeys [5-6]. 

Neural networks are essentially connectionist system, in which different nodes 
called neurons are interconnected. A typical neuron accepts one or more input signals 
and procures an output signal trusting in the proceduring function of the neuron. This 
output is conveyed to connected neurons in varying intensities, the signal intensity 
being decided by the weights. Feed forward networks are jointly used. A feed forward 
network has a consecutive of layers consisting of a number of neurons in each layer. 
The output of neurons of one layer come to exists input to neurons of the achieving 



 
 

Modelling of Microhardness Values by Means of ANN  
 

165 

layer. The first layer, called an input layer, accepts data from the outside world. The last 
layer is the output layer, which sends knowledge out to users. Layers that lie between 
the input and output layers are called hidden layers and have no direct touch with the 
environment. Their presence is  needed in order to procure complexity to network 
architecture for modeling non-linear functional kinship. After choosing the network 
architecture, the network is tested by using back propagation algorithm, where back 
propagation algorithm is the productive optimization method used for underrating the 
error through weight arrangement The trained neural network has to be experimented by 
supplying testing data [7]. 

The basic fundamentals to build the system model on the basis of NN consist of:  
(a) connecting the artificial neurons into a network with respect to certain rules and a 
topology;  
(b) regulating the weights between neurons in term of an proofreading criterion;  
(c) establishing the topology and free parameters of the NN by learning specimen data 
(input patterns) repeatedly;  
(d) determining the system model by taking advantage of the strong learning ability of 
ANN (Fig. 2).  
 

 

Figure 2.  Scheme of Modelling The System by ANN [8]. 

 

The information included in the illustration data was acquired via the improved 
back propagation (BP) learning algorithm. The parameters of the BP network were 
defined as follows: 
The input vectors [X = x0, x1, . . . , xn1]T 
The output vectors [Y = y0, y1, . . . , ym1]T 
where the symbols n, h and m represented the number of neurons in the input layer, the 
hidden layer and the output layer, sequentially.  

Joining of the powder metallurgy products (P/M) by diffusion bonding process is 
important both to protect the microstructural properties of parent materials and bonding 
behavior of joining materials [9]. Diffusion bonding is a solid state coalescence of 
contacting surfaces occur at a temperature below the melting point (Tm) of the materials 
to be joined with the loads and the period, below those that would cause macro 
deformation and a significant properties change at the parent materials [10]. The process 
is depended on a number of parameters in particular, bonding temperature, atmosphere, 
time, pressure and surface roughness. Process pressure is selected high enough to 
dislocate the surface oxides. Bonding period should be selected long enough for the 
completion of the diffusion mechanism at the interface. Diffusion bonding is an 
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advanced bonding process in which two materials, similar or dissimilar, can be bonded 
in solid state. Process temperature is selected as 0.5-0.7 (Tm). Super plasticity may occur 
at low  temperatures [11-12].  
 

2. EXPERIMENTAL STUDIES 
 

SiC particulate Al alloy MMCs specimens to be produced by hot pressing 
method were fabricated by powder metallurgy process. 1 % Mg, 3 % Si powders were 
mixed with 99 % Al.  SiC particles with a 42 µm mean diameter were added to the 
matrix at 5, 10, 20 (wt) % fractions. Powders were properly mixed with mechanic 
mixers for homogeneity of the formation. The mixture was cold compacted at 400 MPa 
in the φ12x60 mm steel dies. This is followed by sintering at 600 ºC in argon 
atmosphere for 30 minutes. Finally the specimens were hot compacted and extruded at 
200 MPa pressure. Mixture rations and density of specimens were presented in Table 1. 
 

Table 1. Specimens of  Density and Mixture Rations Values 

Sample % Al %Mg %Si %SiC Density (gr/cm3) 

N 1 91 1 3 5 2.69 
N 2 86 1 3 10 2.72 
N 3 81 1 3 20 2.76 

 
Work pieces were prepared for diffusion bonding and surfaces to be joined were 

protected against corrosion and oxidation. Al alloy MMC specimens with 5-5, 5-10,    
5-20, 10-10, 10-20 ve 20-20 % SiC (wt) fractions were coupled and bonded at diffusion 
bonding apparatus. Schematic illustration of diffusion bonding apparatus is given in   
Fig. 3. Diffusion bondings were performed at 550, 575, 600 and 625 ºC process 
temperatures and for 20, 40 and 60 min periods under 0.25 MPa constant pressure.    

 

 
1-Load  2-Argon Outlet  3-Heat Coil   4-Argon Inlet   5-Specimens  6-Thermocouple 

 
Figure 3. Schematic İllustration of Diffusion Bonding Apparatus 

 
After the bonding process, specimens were tested for microhardness. Specimens 

were cut perpendicular to the bonding interface to facilitate longitudinal microstructure 
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cross section examinations. Micro hardness values were measured at interface and it’s 
both side by Hv scale under a load of 100 gr. (Fig. 4). Grinding of the surface were 
followed by etching with Keller etchant. Metallographic evaluations and investigations 
were made by the aid of optical microscopy and SEM.  

 

 

 

Figure 4. Schematic İllustraion of Microhardness Measuremend of Specimens 

 
Modeling of microhardness values of diffusion bonding behavior at MATLAB 

program diffusion bonding period, process temperature and SiCp reinforcement (weight) 
fractions were employed as input and  microhardness of the bonded interfaces were 
recorded as output parameters. Back propagation Multilayer Perceptron (MLP) ANN 
were used for training of experimental results. ANN modeling the microhardness of the 
interface of diffusion bonded composites were carried out with the aid of ANN block 
diagram given at Fig. 5. MLP architecture and training parameters were presented in 
Table 2.  
 

 

Figure 5. Block diagram of the ANN 

 

Table 2. MLP Architecture and Training Parameters 

The number of layers  3 
The number of neuron on the layers  Input: 3, Hidden: 10, Output: 1 
The initial weights and biases  The Nguyen-Widrow method 
Activation functions  Log-sigmoid 
Training parameters Learning rule  Back-propagation 

Adaptive learning rate  Initial: 0.0001 Increase: 1.05 Decrease: 0.7 
Momentum constant  0.98 
Sum-squared error  0.0000001 
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3. RESULTS AND DISCUSSION 

 

Deformation of surface asperities by plastic flow and creep, grain boundary 
diffusion of atoms to the voids and grain boundary migration, volume diffusion of 
atoms to voids can be listed as a sequence of metallurgical stages of the diffusion 
bonding. Especially with aluminum alloys diffusion bonding can be achieved with 
adherent surface oxides. In general, the oxide is not removed, but is simply dispersed 
over a greater surface area in an enclosed environment, in which oxidation cannot recur.  

At elevated temperatures diffusion mechanism were accelerated and diffusion 
period were decreased to achieve the same coalescence. Relatively poor coalescence 
were achieved at 550-575 ºC process temperatures. Voids were traced at the bond 
interface. SEM micrographs of weld specimens bonded at 550-575 ºC process 
temperatures presented at Fig.6 and 7.  

 

 

 

 

 

 

 

 

Figure 6.  SEM Micrograph of Specimens Bonded at 550 ºC Process Temp. for a-20,  b-40,  c-60 min. 

 

 

 
Figure 7.  SEM Micrograph of Specimens Bonded at 575 ºC Process Temp. for a-20,  b-40,  c-60 min  

 

 
Reliable coalescence were achieved at weld specimens bonded  at 600-625 ºC. 

The interface were free of voids and were nearly indistinguishable from parent 
materials. The mean microhardness results were relatively higher than the other process 
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temperatures. SEM micrographs of weld specimens bonded at 600-625 ºC process 
temperatures were presented at Fig.8 and 9.  

 
 

 

 

 

 

 

 

 

 

 

 
Figure 8.  SEM Micrograph of Specimens Bonded at 600 ºC Process Temp. for a-20,  b-40,  c-60 min  

 

 

 

 

 

 

 

 

 
Figure 9.  SEM Micrograph of Specimens Bonded at 625 ºC Process Temp. for a-20,  b-40,  c-60 min  

 
 
In this study, prediction of microhardness of diffusion bonded  MMC couples 

were performed by using a back-propagation neural network that uses gradient descent 
learning algorithm.  
a- Bonding process temperature, bonding period and SiC particulate (wt) fractions were 
used as the model inputs while the microhardness was the output of the model. These 
datas were obtained from experimental works.  
b- Comparison of experimental microhardness test results with predicted values inline 
with bonding parameters were presented in  Table 3. Experimental microhardness of 
specimens have shown a consistency with predicted results differing 0.01-3. This 
trained values can lead maximum 5 % error in microhardness calculations.   
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Table 3. Microhardness of Predicted Values with Actual Values 

Samp, 

No 

Couples of 

samples 
Temp. 

(ºC) 

Duratı-

ons(dk.) 

Actual values of 

microhardness 

Predicted values of 

microhardness 
Error (MPa) % Error 

    H1 H2 H3 H1 H2 H3 H1 H2 H3 H1 H2 H3 

1 % 5-5 SiCp 550 20 61.7 69.9 66.0 52.3 73.0 59.4 +9.4 -3.1 +6.6 +15.2 -4.43 +10.0 
2 % 5-10 SiCp 550 20 71.2 70.0 65.6 80.0 76.3 55.2 -8.8 -6.3 +10.4 -12.3 -9.00 +15.8 
3 % 5-20 SiCp 550 20 67.6 74.0 71.4 60.5 77.7 75.0 +7.1 -3.7 -3.6 +10.5 -5.00 -5.04 
4 % 10-10 SiCp 550 20 66.5 77.0 72.3 64.2 75.8 70.0 +2.3 +2.8 +2.3 +3.45 +3.63 +3.18 
5 % 10-20SiCp 550 20 67.1 78.0 74.2 71.4 72.8 76.0 -4.3 +5.2 -1.8 -6.40 +6.66 -2.42 
6 % 20-20 SiCp 550 20 70.5 80.0 77.2 68.5 86.6 74.7 +2.0 -6.6 +2.5 +2.83 -8.25 +3.23 
7 % 5-5 SiCp 550 40 71.2 79.0 74.8 68.0 77.5 77.9 +3.2 +1.5 -3.1 +4.49 +1.89 -4.14 
8 % 5-10 SiCp 550 40 67.0 81.0 73.6 73.0 74.3 70.0 -6.0 +6.7 +3.6 -8.95 +8.27 +4.89 
9 % 5-20 SiCp 550 40 69.3 83.0 72.2 72.7 88.8 75.9 -3.4 -5.8 -3.7 -4.90 -6.98 -5.12 
10 % 10-10 SiCp 550 40 76.8 85.0 78.6 80.0 81.6 82.3 -3.2 +3.4 -3.7 -4.16 +4.00 -4.70 
11 % 10-20SiCp 550 40 80.0 87.2 81.5 73.9 90.0 78.4 +6.1 -2.8 +3.1 +7.62 -3.21 +3.80 
12 % 20-20 SiCp 550 40 82.9 90.0 85.3 79.3 87.1 82.0 +3.6 +2.9 +3.3 +4.34 +3.22 +3.86 
13 % 5-5 SiCp 550 60 85.7 91.0 86.7 88.0 96.2 90.3 -2.3 +5.2 -3.6 -2.68 +5.71 -4.15 
14 % 5-10 SiCp 550 60 88.2 94.0 92.4 84.7 90.0 89.5 +3.5 +4.0 +2.9 +3.96 +4.25 +3.13 
15 % 5-20 SiCp 550 60 87.8 92.0 88.7 83.8 95.8 90.7 +4.0 -3.8 -2.0 +4.55 -4.13 -2.25 
16 % 10-10 SiCp 550 60 88.3 95.0 94.4 84.0 93.6 92.0 +4.3 +1.4 +2.4 +4.86 +1.47 +2.54 
17 % 10-20SiCp 550 60 85.7 93.0 87.5 90.8 95.6 90.0 -5.1 -2.6 -2.5 -5.95 -2.79 -2.85 
18 % 20-20 SiCp 550 60 88.1 96.0 94.8 84.9 91.5 97.4 +3.2 +4.5 -2.6 +3.63 +4.68 -2.74 
19 % 5-5 SiCp 575 20 87.0 92.0 84.5 85.0 90.4 80.4 +3.0 +1.6 +4.1 +3.44 +1.73 +4.85 
20 % 5-10 SiCp 575 20 86.9 93.0 92.4 88.7 91.9 95.3 -1.8 +1.1 -2.9 -2.07 +1.18 -0.31 
21 % 5-20 SiCp 575 20 84.3 95.0 93.4 82.3 91.8 90.0 +2.0 +3.2 +3.4 +2.37 +3.36 +0.36 
22 % 10-10 SiCp 575 20 89.2 97.0 89.9 94.6 93.7 86.6 -5.4 +3.3 +3.3 -6.05 +3.40 +3.67 
23 % 10-20SiCp 575 20 89.8 99.0 97.0 85.7 96.2 100.9 +4.1 +2.8 -3.9 +4.56 +2.82 -4.02 
24 % 20-20 SiCp 575 20 99.0 105.0 97.1 100.2 107.8 94.7 -1.2 -2.8 +2.4 -1.21 -2.66 +2.47 
25 % 5-5 SiCp 575 40 91.2 94.0 91.1 88.2 90.9 89.4 +3.0 +3.1 +1.7 +3.28 +0.34 +1.86 
26 % 5-10 SiCp 575 40 89.1 96.0 92.6 90.4 99.0 89.8 -1.3 -3.0 +2.8 -1.45 -3.12 +3.02 
27 % 5-20 SiCp 575 40 89.3 97.0 92.5 86.6 94.5 94.0 +2.7 +2.5 -1.5 +3.02 +2.57 -1.62 
28 % 10-10 SiCp 575 40 92.4 99.0 92.8 88.1 95.9 87.0 +4.3 +3.1 +5.8 +4.65 +3.13 +6.25 
29 % 10-20SiCp 575 40 94.0 101.0 95.7 96.3 103.6 98.6 -2.3 +7.4 -2.9 -2.44 +7.32 -3.03 
30 % 20-20 SiCp 575 40 94.2 103.0 98.6 91.7 100.0 95.2 +2.5 +3.0 +3.4 +2.65 +2.91 +3.44 
31 % 5-5 SiCp 575 60 84.4 97.0 91.5 80.0 92.9 89.8 +4.4 +4.1 +1.7 +5.21 +4.22 +1.85 
32 % 5-10 SiCp 575 60 88.2 99.0 95.0 90.0 96.4 96.6 -1.8 +2.6 -1.6 -2.04 +2.62 -1.68 
33 % 5-20 SiCp 575 60 88.9 100.0 94.2 91.3 102.4 90.9 -2.4 -2.4 +3.3 -2.69 -2.40 +3.50 
34 % 10-10 SiCp 575 60 93.8 103.0 94.9 90.2 100.2 91.7 +3.6 +2.8 +3.2 +3.83 +2.71 +3.37 
35 % 10-20SiCp 575 60 93.7 104.0 101.4 95.0 106.4 105.0 -1.3 -2.4 -3.6 -1.38 -2.30 -3.55 
36 % 20-20 SiCp 575 60 97.7 108.0 102.3 100.0 110.5 104.7 -2.3 -2.5 -2.4 -2.35 -2.31 -2.34 
37 % 5-5 SiCp 600 20 90.0 100.0 91.5 86.9 95.8 87.3 +3.1 +4.2 +4.2 +3.44 +4.20 +4.59 
38 % 5-10 SiCp 600 20 93.4 102.0 98.7 90.0 99.2 94.6 +3.4 +2.8 +4.1 +3.64 +2.74 +4.15 
39 % 5-20 SiCp 600 20 94.3 104.0 100.0 90.4 99.6 92.8 +3.9 +4.4 +7.2 +4.13 +4.23 +7.20 
40 % 10-10 SiCp 600 20 94.3 107.0 99.6 86.6 108.3 95.7 +7.7 -1.3 +3.9 +8.16 -1.21 +3.91 
41 % 10-20SiCp 600 20 100.2 109.0 104.2 96.8 111.4 100.5 +3.4 -2.4 +3.7 +3.39 -2.20 +3.55 
42 % 20-20 SiCp 600 20 100.5 111.0 105.3 91.9 108.6 101.7 +8.6 +2.4 +3.6 +8.55 +2.16 +3.41 
43 % 5-5 SiCp 600 40 93.3 104.0 94.4 90.0 100.8 90.9 +3.3 +3.2 +3.5 +3.53 +3.07 +3.70 
44 % 5-10 SiCp 600 40 94.0 105.0 99.2 91.6 101.3 94.9 +2.4 +3.7 +4.3 +2.55 +0.25 +4.33 
45 % 5-20 SiCp 600 40 96.2 107.0 102.9 92.5 104.7 100.0 +3.7 +2.3 +2.9 +3.84 +2.14 +2.81 
46 % 10-10 SiCp 600 40 98.6 110.0 103.3 100.0 112.7 99.7 -1.4 -2.7 +3.6 -1.41 -2.45 +3.48 
47 % 10-20SiCp 600 40 100.2 108.0 102.6 103.6 110.9 99.8 -3.4 -2.9 +2.8 -3.39 -2.68 +2.72 
48 % 20-20 SiCp 600 40 103.3 113.0 105.7 106.2 109.8 109.6 -2.9 +3.2 -3.9 -2.80 +2.83 -3.68 
49 % 5-5 SiCp 600 60 96.8 107.0 101.9 99.7 110.4 104.0 -2.9 -3.4 -2.1 -2.99 -3.17 -2.06 
50 % 5-10 SiCp 600 60 97.2 108.0 100.9 93.8 104.7 96.6 +3.4 +3.3 +4.3 +3.49 +3.05 +4.26 
51 % 5-20 SiCp 600 60 100.5 110.0 106.1 92.7 100.0 101.2 +7.8 +10.0 +3.9 +7.76 +9.09 +3.67 
52 % 10-10 SiCp 600 60 104.3 110.0 103.1 100.7 103.8 100.0 +3.7 +6.2 +3.1 +3.54 +5.63 +3.01 
53 % 10-20SiCp 600 60 105.6 113.0 110.1 99.9 110.2 114.2 +5.7 +2.8 -4.1 +5.39 +2.47 -3.72 
54 % 20-20 SiCp 600 60 108.6 116.0 108.2 110.4 120.8 104.4 -1.8 -4.8 +3.8 -1.65 -4.13 +3.51 
55 % 5-5 SiCp 625 20 96.9 110.0 103.5 92.2 103.3 98.8 +3.3 -3.3 +4.7 +3.40 -3.00 +4.54 
56 % 5-10 SiCp 625 20 98.6 111.0 107.7 93.6 104.6 100.3 +5.0 +6.4 +7.4 +5.07 +5.76 +6.87 
57 % 5-20 SiCp 625 20 101.9 113.0 110.3 92.5 110.4 107.8 +9.4 +2.6 +2.5 +9.22 +2.30 +2.26 
58 % 10-10 SiCp 625 20 100.0 114.0 108.7 97.2 108.0 104.9 +2.8 +6.0 +3.8 +2.80 +5.26 +3.49 
59 % 10-20SiCp 625 20 103.6 112.0 109.1 99.6 108.9 105.7 +4.0 +3.1 +3.7 +3.86 +2.76 +3.39 
60 % 20-20 SiCp 625 20 109.9 118.0 113.0 112.8 113.6 115.4 -2.9 +4.4 -2.4 -2.63 +3.72 -2.12 
61 % 5-5 SiCp 625 40 100.6 112.0 105.1 105.8 114.6 107.2 -5.2 -2.6 -2.1 -5.16 -2.32 -1.99 
62 % 5-10 SiCp 625 40 104.6 114.0 109.1 101.1 109.8 104.6 +3.5 +4.2 +4.5 +3.34 +3.68 +4.12 
63 % 5-20 SiCp 625 40 106.6 116.0 107.6 100.0 112.3 105.0 +6.6 +3.7 +2.6 +6.19 +3.18 +2.41 
64 % 10-10 SiCp 625 40 108.0 117.0 109.0 104.6 113.9 104.9 +3.4 +3.1 +4.1 +3.14 +2.64 +3.76 
65 % 10-20SiCp 625 40 109.5 115.0 109.1 107.2 110.3 106.1 +2.3 +4.7 +3.0 +2.10 +4.08 +2.74 
66 % 20-20 SiCp 625 40 112.6 118.0 113.2 110.0 116.4 109.8 +2.6 +1.6 +3.4 +2.30 +1.35 +3.01 
67 % 5-5 SiCp 625 60 107.0 115.0 107.9 109.4 112.0 110.0 -2.4 +3.0 -2.1 -2.24 +2.60 -1.94 
68 % 5-10 SiCp 625 60 106.2 117.0 107.9 103.4 114.6 103.7 +2.8 +2.4 +4.2 +2.63 +2.05 +3.89 
69 % 5-20 SiCp 625 60 106.0 119.0 112.2 108.5 121.2 115.0 -2.5 -2.2 -2.8 -0.23 -1.84 -2.49 
70 % 10-10 SiCp 625 60 112.3 120.0 112.5 110.0 117.3 110.6 +2.3 +2.7 +1.9 +2.04 +2.25 +1.68 
71 % 10-20SiCp 625 60 114.0 120.0 117.8 111.8 118.1 115.6 +2.2 +1.9 +2.2 +1.92 +1.58 +1.86 
72 % 20-20 SiCp 625 60 114.2 122.0 117.3 110.9 117.9 114.4 +3.3 +4.1 +2.9 +2.88 +3.36 +2.47 
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c- The Sum-squared error (SSE) graphic trained for 623500 Epochs was presented in 
Fig.11. 
 

 

Figure 11. Sum-Squared Error Curve Versus İteration Number 

 

4. CONCLUSIONS 

 

The overall performance of the model was quite satisfactory. The low error 
fractions indicate that ANNs could be a useful tool for modeling and predicting 
microhardness of  bonded interfaces of SiCp reinforced Al alloy MMCs.  Under given 
conditions, and with prescribed materials predicted microhardness can be utilized by 
designers and process engineers as and where necessary.  Given and predicted values of  
the ANN system can also be employed at feasibility programs at no cost. This can be 
handled as a cost saving item at advanced production planning. 
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