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Abstract- In this study, time dependence of large-scale nuclear shell model calculations in 

a parallel cluster is investigated. Shell model calculations have been done for the light Sb 

isotopes by using serial and parallel versions of Drexel University Shell Model (DUSM) 

code and the time dependence of these calculations are obtained on the local Cyborg 

Parallel Cluster at Drexel University. Some analyses about what kind of parallel system we 

need to do the calculations have been done in order to do the nuclear shell model 

calculations for the other nuclei. 

 

Keywords- Shell model, parallel system 
 

 

1. INTRODUCTION 

 

The shell model problem aims at solving the many-body system in a set of valence shells in 

terms of independent particle wave functions with the dynamics specified by the 

Hamiltonian 

∑ ∑ +++ += γδβααβγδαααε aaaaVaaH effective

2

1
   (1.1) 

The first term in this equation is the one-body term which describes the interaction of the 

valence nucleons with the closed core. The second term is the two-body term which 

describes the two-body interaction. The theoretical details of the calculations are given in 

Ref. [1]. The solution implies deriving systematically the energy spectra, electromagnetic 

transitions, and beta decay of series of nuclei in specific region of the periodic table.  

 

The solution of nuclear model implied by the Hamiltonian above is extremely complex. It 

is normally divided in two sub-problems, each one being very complex in its own right. 

The first one is the establishment of an effective interaction V
effective

 from the bare nucleon-

nucleon force in a given valence space and of a set of single particle energies ε for 

sequences of nuclei. In order to obtain an effective two-body interaction for shell model 

studies, one starts with a free nucleon-nucleon (NN) interaction V which is appropriate for 

nuclear physics at low and intermediate energies. The second problem is that the many-

body calculations that follows the establishment of the effective interaction. Each of these 

sub-problems is by itself very complex and challenging. The successes of the nuclear shell 

model can be traced to the development of powerful codes to implement the approach. 
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The calculations described basically above involved Hamiltonian matrices that reached 

dimensions in excess of 1,900,000. These are very large matrices that require particular 

care to handle. In this sense the nuclear shell model can be considered as the most computer 

intensive model in nuclear physics. This study extended significantly the calculations of 
51
Ca, 

52
Sc by Novoselsky et al. [2,3] who dealt with matrices of order about 50,000. Table 1 

shows the range of dimensions encountered in modeling the Sb isotopes. Large-scale 

nuclear shell model calculations require enormous amount of CPU time and storage. The 

calculations of 
110

Sb required the largest Hamiltonian dimension in this work. These are at 

the limit of the current Beowulf hardware at Drexel University, USA. There are two aspects 

of the calculations that prohibit us to go further: large CPU needs and tremendous storage 

capacity. There are many measurements of the larger Sb isotopes 
111

Sb, 
112

Sb, 
113

Sb that 

beg for theoretical modeling; we are unable to do these calculations due to size. This article 

illustrates how we perform the calculations on a local parallel Beowulf system. In particular 

we address the need for parallel computing and the issue of the scalability of the Parallel 

DUSM code (DUPSM). 

 

Table 1: Minimum and maximum dimensions encountered for the  

       nuclear shell model calculations of light Sb isotopes. 

 
103

Sb 
104

Sb 
105

Sb 
106

Sb 
107

Sb 
108

Sb 
109

Sb 
110

Sb 

Min. Size 38 104 1175 2544 19227 31157 173770 213247 

Max. Size 81 595 3655 18187 74731 258583 762253 1932826 

 

 

 

2. ADAPTATION OF ALGORITHMS TO PARALLEL PLATFORM 

 

An ideal program running on a parallel computer ought to be perfectly scalable, i.e., 

increasing the number of processors by a factor N should decrease the time spent to 

perform the task by a factor 1/N. However, in practice, very few programs achieve this 

level of scalability. There are three major causes for this: existence of sequential parts in the 

algorithm, necessity of node to node communications, and load unbalance. 

 

Adapting a sequential code to run on a parallel computer often requires some major 

changes in the algorithm in order to obtain good performance. A major guiding principle is 

to maximize the work done simultaneously on the different nodes. An important issue here 

is data dependency; for instance, if node 0 requires x after node 1 has calculated x, then it 

will have to wait until node 1 releases x before proceeding with x.  

 

Even the best algorithms will often harbor some sections which are intrinsically sequential. 

This fact is expressed in Amdahl's law [4], which says that a program can only be sped up 

by the use of a parallel computer in the sections of the algorithm which is parallelized.  
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t
tt

p

s +=        (2.1) 

where ts is the time for the sequential part of the code, tp is the time for the parallelizable 

part of the code, and N is the number of the processors. The parallel algorithms resulting in 

significant practical speed ups can be quantified by how well a code scales which is often 

measured as efficiency. 

 

 

3. PARALLEL ASPECTS OF DUSM CODE 

 

A parallel version of DUSM code, called Drexel University Parallel Shell Model (DUPSM) 

code, was recently written by using the message passing paradigm for distributed memory 

parallel machines. The code was implemented using PVM [5], a dynamic environment for 

parallel programming, supporting the message passing paradigm. Recall that the DUSM 

code involves two computational parts: building the Hamiltonian matrix and the Lanczos 

diagonalization procedure. Both computational parts, the construction of the Hamiltonian 

matrix and the Lanczos diagonalization, are fully parallelized by the domain decomposition 

in Hilbert space. The use of the permutational symmetry group introduces extra 

(unconserved) labels with which to label the basis; this splits the Hamiltonian matrix into 

independent submatrices. These submatrices are distributed to different processors, 

effectively giving a straightforward domain decomposition in Hilbert space. The 

Hamiltonian matrix is built up in blocks given by the permutation and the angular momenta 

labels on each slave machines. Then each block is stored on the local disk of each slave 

machine. Once the slave completes the calculation of the block it requests a new block to 

calculate. Each slave node continues to do so until all the independent submatrices of the 

Hamiltonian matrix are calculated and stored. 

 

The Lanczos diagonalization procedure is also parallelized by using the domain 

decomposition method and master-slave algorithm. The Hamiltonian matrix is read 

piecewise from local disk of each node. The matrix multiplication is done piecewise  on 

each node, then the resulting vector is gathered on the master node. The parallel 

input/output technique is extensively used whereby each node writes and reads on the local 

disk for increased I/O speeds. The Beowulf system uses a network switch to enhance 

communication speed and avoid communication collisions. Finally the master node 

calculates and diagonalizes Lanczos matrix. 

 

The first computational phase of DUPSM code, calculation of the Hamiltonian matrix,  is 

scalable and efficient. In this part all nodes use almost 99\% of the CPU and scales almost 

perfectly with the number of the processors. On the other hand, Lanczos diagonalization is 

scalable, but not efficient because of the limited disk input.  That is why the parallel version 

of DUSM is good for the large calculation ( the size of the Hamiltonian larger than about 

2,000). It is better to use the serial version of DUSM code to avoid communication 
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collisions for small calculations – using the parallel version would require way too much 

communication for the actual amount of calculations to perform. 

 

 

4. CONSRUCTION OF HAMILTONIAN MATRIX 

 

The building of the Hamiltonian matrix uses the bulk of the CPU time in large calculations. 

In Figure 1 and 2 we plot the calculation time of the Hamiltonian matrix for different sizes 

versus the number of processors in the parallel system. In Figure 1 there are some 

fluctuations since any time disturbance from any one of the nodes is comparable to the 

calculation time. For the larger Hamiltonian sizes, these disturbances are negligible. This is 

reflected in the smoother curves in Figure 2. 

 

 
Figure 1: Time dependence of the construction of Hamiltonian matrix of  

small sizes to the number of the processors. 

 

 

In both Figure 1 and 2, we can see that the curves almost converged to a constant for a 

larger number of processors (60 or more). This fixed amount of time in the calculations 

refers to the serial part of the DUPSM code mostly due to the overhead on the master node. 

It would require much effort to reduce this serial time. 
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Amdahl's law, Equ. (2.1), can fit these timings very well. The dashed lines in Figure 1 and 

2 show these fits. The parameters ts and tp are given in Table 2. 

 

Table 2: Fitted sequential and parallel timings.  

Size ts tp 

2544 8 71 

11768 19 1296 

18187 26 3533 

31157 44 4911 

52087 134 18315 

74731 164 39596 

146383 173 102995 

 

The Hamiltonian matrix calculation scales almost perfectly with the number of the 

processors. Amdahl's law fits the timing data well. The scalar piece of the code is always 

relatively small. It scales roughly with the size.  

 

 
Figure 2: Time dependence of the construction of Hamiltonian matrix of  

relatively large sizes to the number of the processors. 
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The parallel piece of the code varies like N
1.8
. This is the bulk of the time needed to 

compute the Hamiltonian matrix. This time should depend on N
2
. However the occupation 

of the matrix diminishes mildly with size which contributes to a milder N dependence. 

 

Figure 1 and 2 point to another aspect of the need for parallel computing, that of memory 

and storage. The largest Hamiltonian matrices doable on a single processor computer are of 

order of few thousands. The aggregate memory and disk space of a parallel computer allow 

much larger Hamiltonian sizes to be calculated and stored. 

 

 

5. LANCZOS DIAGONALIZATION 

 

The Lanczos diagonalization procedure in DUPSM code is also parallelized using the same 

domain decomposition method in Hilbert space. In this part the matrix elements of the 

Hamiltonian matrix and the left and right indices of the matrix elements are read from the 

local disk of each node. This requires extensive use of input and output (I/O) from disk and 

very little computing. 

 

Once the product φH  is performed on each node, the complete vector is gathered on node 

0. This requires a significant amount of communication for large sizes. Then, node 0 

extracts the new Lanczos vector, orthogonalizes it, normalizes it, and diagonalizes the 

Lanczos tri-diagonal matrix. This is done serially on node 0. Then node 0 broadcast this 

new vector to all the nodes. 

 

Of course, this amount of communication and serial coding break the scalability of this part 

of the DUPSM code. It means that increasing number of the processors may not give the 

expected time reduction, but it still provides a solution for diagonalization of the 

Hamiltonian matrix in that it solves the storage problem. 

 

In Figure 3 and 4 we plot the calculation times of the Lanczos diagonalization for different 

sizes of Hamiltonian matrix versus the number of processors. The calculation time scales 

with the number of processors up to about 28. 

 

The system that we used to do the calculation, Cyborg Parallel Cluster at Drexel University, 

has double CPU on each node including node 0, but a single local disk. Therefore after 31 

processes, the amount of I/O doubles on each subsequent channel. This results in a jump of 

the time for N=32 in Figure 3 and 4. 

 

This feature which increases the I/O times prevents the scalability of the diagonalization 

part of the DUPSM code. 
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Figure 3: Time dependence of Lanczos diagonalization of the small size  

Hamiltonian matrix to the number of the processors. 

 

 

In a parallel system, the increasing number of processors reduces the calculation time if the 

parallel code would scale perfectly well. In the case of the Lanczos diagonalization of the 

Hamiltonian matrix, the increasing number of processors also increases the communication 

in the internal network to gather and broadcast the Lanczos vectors. So, at some point the 

communication cost may be dominant against the time gain. This problem does not occur in 

the case of the construction of the Hamiltonian matrix since this part does not include 

extensive use of I/O and node-node communication.  

 

Even if the Lanczos diagonalization part of DUPSM code does not scale perfectly, the 

calculation times are still reasonable and allow the calculations to be done. Note that the 

storage of the Hamiltonian matrices is only possible on the aggregate disk capacity of all 

the nodes. 
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Figure 4: Time dependence of Lanczos diagonalization of the relatively large  

size Hamiltonian matrix to the number of the processors. 

 

 

6. CONCLUSION 

 

We have explored the capabilities of the DUPSM code by systematically performing large 

nuclear shell model calculations of the antimony isotopes from 
103

Sb to 
110

Sb. The code 

allowed us to handle matrices up to sizes 1.9M with no difficulty. The calculation of the 

Hamiltonian matrix is costly because of the large amount of computing time and the very 

large amount of disk capacity to store the Hamiltonian matrices. The first problem can be 

handled by using the latest fast CPU's and by increasing the number of nodes in the system. 

The second problem can also be handled by increasing the disk capacity of each slave 

machines. As of now our computer resources are somewhat limited in availability of 

temporary disk storage. Recomputing the Hamiltonian matrix was found less efficient than 

the parallel input from the disk. 
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