

Mathematical and Computational Applications, Vol. 11, No. 1, pp. 41-49, 2006.

© Association for Scientific Research

TIME DEPENDENCE OF SHELL MODEL CALCULATIONS

E. Dikmen

Süleyman Demirel University, Isparta, Turkey, edikmen@fef.sdu.edu.tr

Abstract- In this study, time dependence of large-scale nuclear shell model calculations in

a parallel cluster is investigated. Shell model calculations have been done for the light Sb

isotopes by using serial and parallel versions of Drexel University Shell Model (DUSM)

code and the time dependence of these calculations are obtained on the local Cyborg

Parallel Cluster at Drexel University. Some analyses about what kind of parallel system we

need to do the calculations have been done in order to do the nuclear shell model

calculations for the other nuclei.

Keywords- Shell model, parallel system

1. INTRODUCTION

The shell model problem aims at solving the many-body system in a set of valence shells in

terms of independent particle wave functions with the dynamics specified by the

Hamiltonian

∑ ∑ +++ += γδβααβγδαααε aaaaVaaH effective

2

1
 (1.1)

The first term in this equation is the one-body term which describes the interaction of the

valence nucleons with the closed core. The second term is the two-body term which

describes the two-body interaction. The theoretical details of the calculations are given in

Ref. [1]. The solution implies deriving systematically the energy spectra, electromagnetic

transitions, and beta decay of series of nuclei in specific region of the periodic table.

The solution of nuclear model implied by the Hamiltonian above is extremely complex. It

is normally divided in two sub-problems, each one being very complex in its own right.

The first one is the establishment of an effective interaction V
effective

 from the bare nucleon-

nucleon force in a given valence space and of a set of single particle energies ε for

sequences of nuclei. In order to obtain an effective two-body interaction for shell model

studies, one starts with a free nucleon-nucleon (NN) interaction V which is appropriate for

nuclear physics at low and intermediate energies. The second problem is that the many-

body calculations that follows the establishment of the effective interaction. Each of these

sub-problems is by itself very complex and challenging. The successes of the nuclear shell

model can be traced to the development of powerful codes to implement the approach.

E. Dikmen

42

The calculations described basically above involved Hamiltonian matrices that reached

dimensions in excess of 1,900,000. These are very large matrices that require particular

care to handle. In this sense the nuclear shell model can be considered as the most computer

intensive model in nuclear physics. This study extended significantly the calculations of
51
Ca,

52
Sc by Novoselsky et al. [2,3] who dealt with matrices of order about 50,000. Table 1

shows the range of dimensions encountered in modeling the Sb isotopes. Large-scale

nuclear shell model calculations require enormous amount of CPU time and storage. The

calculations of
110

Sb required the largest Hamiltonian dimension in this work. These are at

the limit of the current Beowulf hardware at Drexel University, USA. There are two aspects

of the calculations that prohibit us to go further: large CPU needs and tremendous storage

capacity. There are many measurements of the larger Sb isotopes
111

Sb,
112

Sb,
113

Sb that

beg for theoretical modeling; we are unable to do these calculations due to size. This article

illustrates how we perform the calculations on a local parallel Beowulf system. In particular

we address the need for parallel computing and the issue of the scalability of the Parallel

DUSM code (DUPSM).

Table 1: Minimum and maximum dimensions encountered for the

 nuclear shell model calculations of light Sb isotopes.

103

Sb
104

Sb
105

Sb
106

Sb
107

Sb
108

Sb
109

Sb
110

Sb

Min. Size 38 104 1175 2544 19227 31157 173770 213247

Max. Size 81 595 3655 18187 74731 258583 762253 1932826

2. ADAPTATION OF ALGORITHMS TO PARALLEL PLATFORM

An ideal program running on a parallel computer ought to be perfectly scalable, i.e.,

increasing the number of processors by a factor N should decrease the time spent to

perform the task by a factor 1/N. However, in practice, very few programs achieve this

level of scalability. There are three major causes for this: existence of sequential parts in the

algorithm, necessity of node to node communications, and load unbalance.

Adapting a sequential code to run on a parallel computer often requires some major

changes in the algorithm in order to obtain good performance. A major guiding principle is

to maximize the work done simultaneously on the different nodes. An important issue here

is data dependency; for instance, if node 0 requires x after node 1 has calculated x, then it

will have to wait until node 1 releases x before proceeding with x.

Even the best algorithms will often harbor some sections which are intrinsically sequential.

This fact is expressed in Amdahl's law [4], which says that a program can only be sped up

by the use of a parallel computer in the sections of the algorithm which is parallelized.

Time Dependence of Shell Model Calculations

43

N

t
tt

p

s += (2.1)

where ts is the time for the sequential part of the code, tp is the time for the parallelizable

part of the code, and N is the number of the processors. The parallel algorithms resulting in

significant practical speed ups can be quantified by how well a code scales which is often

measured as efficiency.

3. PARALLEL ASPECTS OF DUSM CODE

A parallel version of DUSM code, called Drexel University Parallel Shell Model (DUPSM)

code, was recently written by using the message passing paradigm for distributed memory

parallel machines. The code was implemented using PVM [5], a dynamic environment for

parallel programming, supporting the message passing paradigm. Recall that the DUSM

code involves two computational parts: building the Hamiltonian matrix and the Lanczos

diagonalization procedure. Both computational parts, the construction of the Hamiltonian

matrix and the Lanczos diagonalization, are fully parallelized by the domain decomposition

in Hilbert space. The use of the permutational symmetry group introduces extra

(unconserved) labels with which to label the basis; this splits the Hamiltonian matrix into

independent submatrices. These submatrices are distributed to different processors,

effectively giving a straightforward domain decomposition in Hilbert space. The

Hamiltonian matrix is built up in blocks given by the permutation and the angular momenta

labels on each slave machines. Then each block is stored on the local disk of each slave

machine. Once the slave completes the calculation of the block it requests a new block to

calculate. Each slave node continues to do so until all the independent submatrices of the

Hamiltonian matrix are calculated and stored.

The Lanczos diagonalization procedure is also parallelized by using the domain

decomposition method and master-slave algorithm. The Hamiltonian matrix is read

piecewise from local disk of each node. The matrix multiplication is done piecewise on

each node, then the resulting vector is gathered on the master node. The parallel

input/output technique is extensively used whereby each node writes and reads on the local

disk for increased I/O speeds. The Beowulf system uses a network switch to enhance

communication speed and avoid communication collisions. Finally the master node

calculates and diagonalizes Lanczos matrix.

The first computational phase of DUPSM code, calculation of the Hamiltonian matrix, is

scalable and efficient. In this part all nodes use almost 99\% of the CPU and scales almost

perfectly with the number of the processors. On the other hand, Lanczos diagonalization is

scalable, but not efficient because of the limited disk input. That is why the parallel version

of DUSM is good for the large calculation (the size of the Hamiltonian larger than about

2,000). It is better to use the serial version of DUSM code to avoid communication

E. Dikmen

44

collisions for small calculations – using the parallel version would require way too much

communication for the actual amount of calculations to perform.

4. CONSRUCTION OF HAMILTONIAN MATRIX

The building of the Hamiltonian matrix uses the bulk of the CPU time in large calculations.

In Figure 1 and 2 we plot the calculation time of the Hamiltonian matrix for different sizes

versus the number of processors in the parallel system. In Figure 1 there are some

fluctuations since any time disturbance from any one of the nodes is comparable to the

calculation time. For the larger Hamiltonian sizes, these disturbances are negligible. This is

reflected in the smoother curves in Figure 2.

Figure 1: Time dependence of the construction of Hamiltonian matrix of

small sizes to the number of the processors.

In both Figure 1 and 2, we can see that the curves almost converged to a constant for a

larger number of processors (60 or more). This fixed amount of time in the calculations

refers to the serial part of the DUPSM code mostly due to the overhead on the master node.

It would require much effort to reduce this serial time.

Time Dependence of Shell Model Calculations

45

Amdahl's law, Equ. (2.1), can fit these timings very well. The dashed lines in Figure 1 and

2 show these fits. The parameters ts and tp are given in Table 2.

Table 2: Fitted sequential and parallel timings.

Size ts tp

2544 8 71

11768 19 1296

18187 26 3533

31157 44 4911

52087 134 18315

74731 164 39596

146383 173 102995

The Hamiltonian matrix calculation scales almost perfectly with the number of the

processors. Amdahl's law fits the timing data well. The scalar piece of the code is always

relatively small. It scales roughly with the size.

Figure 2: Time dependence of the construction of Hamiltonian matrix of

relatively large sizes to the number of the processors.

E. Dikmen

46

The parallel piece of the code varies like N
1.8
. This is the bulk of the time needed to

compute the Hamiltonian matrix. This time should depend on N
2
. However the occupation

of the matrix diminishes mildly with size which contributes to a milder N dependence.

Figure 1 and 2 point to another aspect of the need for parallel computing, that of memory

and storage. The largest Hamiltonian matrices doable on a single processor computer are of

order of few thousands. The aggregate memory and disk space of a parallel computer allow

much larger Hamiltonian sizes to be calculated and stored.

5. LANCZOS DIAGONALIZATION

The Lanczos diagonalization procedure in DUPSM code is also parallelized using the same

domain decomposition method in Hilbert space. In this part the matrix elements of the

Hamiltonian matrix and the left and right indices of the matrix elements are read from the

local disk of each node. This requires extensive use of input and output (I/O) from disk and

very little computing.

Once the product φH is performed on each node, the complete vector is gathered on node

0. This requires a significant amount of communication for large sizes. Then, node 0

extracts the new Lanczos vector, orthogonalizes it, normalizes it, and diagonalizes the

Lanczos tri-diagonal matrix. This is done serially on node 0. Then node 0 broadcast this

new vector to all the nodes.

Of course, this amount of communication and serial coding break the scalability of this part

of the DUPSM code. It means that increasing number of the processors may not give the

expected time reduction, but it still provides a solution for diagonalization of the

Hamiltonian matrix in that it solves the storage problem.

In Figure 3 and 4 we plot the calculation times of the Lanczos diagonalization for different

sizes of Hamiltonian matrix versus the number of processors. The calculation time scales

with the number of processors up to about 28.

The system that we used to do the calculation, Cyborg Parallel Cluster at Drexel University,

has double CPU on each node including node 0, but a single local disk. Therefore after 31

processes, the amount of I/O doubles on each subsequent channel. This results in a jump of

the time for N=32 in Figure 3 and 4.

This feature which increases the I/O times prevents the scalability of the diagonalization

part of the DUPSM code.

Time Dependence of Shell Model Calculations

47

Figure 3: Time dependence of Lanczos diagonalization of the small size

Hamiltonian matrix to the number of the processors.

In a parallel system, the increasing number of processors reduces the calculation time if the

parallel code would scale perfectly well. In the case of the Lanczos diagonalization of the

Hamiltonian matrix, the increasing number of processors also increases the communication

in the internal network to gather and broadcast the Lanczos vectors. So, at some point the

communication cost may be dominant against the time gain. This problem does not occur in

the case of the construction of the Hamiltonian matrix since this part does not include

extensive use of I/O and node-node communication.

Even if the Lanczos diagonalization part of DUPSM code does not scale perfectly, the

calculation times are still reasonable and allow the calculations to be done. Note that the

storage of the Hamiltonian matrices is only possible on the aggregate disk capacity of all

the nodes.

E. Dikmen

48

Figure 4: Time dependence of Lanczos diagonalization of the relatively large

size Hamiltonian matrix to the number of the processors.

6. CONCLUSION

We have explored the capabilities of the DUPSM code by systematically performing large

nuclear shell model calculations of the antimony isotopes from
103

Sb to
110

Sb. The code

allowed us to handle matrices up to sizes 1.9M with no difficulty. The calculation of the

Hamiltonian matrix is costly because of the large amount of computing time and the very

large amount of disk capacity to store the Hamiltonian matrices. The first problem can be

handled by using the latest fast CPU's and by increasing the number of nodes in the system.

The second problem can also be handled by increasing the disk capacity of each slave

machines. As of now our computer resources are somewhat limited in availability of

temporary disk storage. Recomputing the Hamiltonian matrix was found less efficient than

the parallel input from the disk.

Time Dependence of Shell Model Calculations

49

REFERENCES

1. E. Dikmen, Shell Model Studies in the sdgh Shell for the Proton Drip Line, Ph.D.

Thesis, Drexel University, PA, USA, 2002.

2. A. Novoselsky, M. Vallieres, O. La’adan, Full fp Shell Calculation of
51
Ca and

51
Sc,

Phys. Rev. Lett. 79, 4341, 1997.

3. A. Novoselsky, M. Vallieres, Full fp Shell Calculation of
52
Sc, Phys. Rev. C 57,

R19, 1998.

4. G. M. Amdahl, In AFIPS Conference Proceedings vol. 30, pp. 483-485, AIFPS

Press, Reston, VA, 1967.

5. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam, PVM

– Parallel Virtual Machine, MIT Press, Cambridge, MA, 1994.

