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Abstract: Cuticular waxes can be used in high-value applications, including cosmetics, foods and
nutraceuticals, among the others. The extraction process determines their quality and purity that are
of particular interest when biocompatibility, biodegradability, flavor and fragrance are the main fea-
tures required for the final formulations. This study demonstrated that supercritical fluid extraction
coupled with fractional separation can represent a suitable alternative to isolate cuticular waxes from
vegetable matter that preserve their natural properties and composition, without contamination of
organic solvent residues. Operating in this way, cuticular waxes can be considered as a fingerprint of
the vegetable matter, where C27, C29 and C31 are the most abundant compounds that characterize the
material; the differences are mainly due to their relative proportions and the presence of hydrocarbon
compounds possessing other functional groups, such as alcohols, aldehydes or acids. Therefore, selec-
tivity of supercritical fluid extraction towards non-polar or slightly polar compounds opens the way
for a possible industrial approach to produce extracts that do not require further purification steps.

Keywords: cuticular waxes; extraction; fractional separation; supercritical CO2; gas chromatography-
mass spectroscopy

1. Introduction

Cuticular waxes are compounds ubiquitously present on the surface of all kinds of
vegetable matter. They cover leaves, flowers, seeds and other vegetable structures, exerting
the main functions of (i) controlling the perspiration, (ii) insulating the plant from external
water and (iii) protecting it from pathogens [1,2], biotic and abiotic stresses and plant-insect
interaction [3–5]. A cuticular wax is a complex mixture of long-chain alkanes, alkenes,
alcohols, aldehydes, alkyl esters, fatty acids and other compound families [2,4,5]; although
the large majority is represented by long-chain hydrocarbons [2]. Depending on the
plant species, the total amount and composition of cuticular waxes can vary widely [4,6]:
i.e., every vegetable species (and even organs from the same vegetable) can exhibit a
unique composition. Cuticular waxes are not only interesting from an analytical point
of view; they can have industrial applications in the field of cosmetic formulations and
healthcare products [7,8], since they show a very large affinity with human skin thanks
to the prevalence of odd long-chain hydrocarbons with respect to the analogous products
coming from fossil feedstocks [8,9].

The current methods for extracting natural waxes from vegetable matter use large
quantities of toxic organic solvents [10]. Guo and Jetter [11] studied cuticular waxes coming
from potato leaves and other potato organs, after extraction using chloroform; the samples
were extracted twice for 30 s. The same procedure was adopted by Jetter et al. [12] to
process Prunus laurocerasus L. leaves. Cheng et al. [1] extracted cuticular waxes from rose
petals and leaves using chloroform as the extraction solvent, in which the samples were
immersed three times for 30 s. Trivedi et al. [2] used the same organic solvent to extract
cuticular waxes from bilberry fruits; the immersion was 1 min long. Pimentel et al. [13]
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processed Croton leaves using three consecutive immersions of 30, 20 and 10 s duration in
dichloromethane. They systematically identified C19 to C33 alkanes and C18 to C34 alcohols.

Therefore, the extraction of cuticular waxes is carried out, as a rule, by liquid solvent
extraction and chloroform is the most frequently used solvent. Moreover, the process
is performed in a very fast manner to minimize the co-extraction of other undesired
compounds [14]. However, when other extraction techniques are used, as in the case of
Soxhlet method that can last some hours, other compounds and intracuticular waxes can be
also extracted and the authors generally do not give indications about these co-extracts. In
particular, cuticular waxes represent interfering compounds that are extracted together with
the desired ones, since the target compounds generally have a biological/industrial interest,
such as essential oil, coloring matter, antioxidants and active principles for pharmaceutical
applications [8]. However, they are systematically co-extracted during solvent extraction,
as previously discussed [15], and during alternative processes [16], like ultrasound assisted
extraction (UAE), microwave assisted extraction (MAE), pressurized liquid extraction
(PLE) and supercritical fluid extraction (SFE). Therefore, they have to be eliminated by
post-processing procedures, such as the so-called winterization [17], in which the extract,
dissolved in the organic solvent, is cooled at very low temperatures (e.g., from −10 ◦C to
−40 ◦C) for several hours to precipitate cuticular waxes that are subsequently separated by
filtration [18].

CO2 at supercritical conditions (SC-CO2) is largely used to extract the compounds
of interest from vegetable matter. In particular, above its critical point (Pc = 73.8 bar and
Tc = 31 ◦C), CO2 shows a liquid-like density and a gas-like diffusivity that favor the extrac-
tion of chemically affine compounds from solid matrices. Several studies [19–24] reported
in the scientific literature describe the main advantages of using this green technique in-
stead of the traditional ones, such as lower operative temperatures and higher selectivity.
Moreover, post-processing steps, adopted to purify the extracts from cuticular waxes, are
not required when winterization is performed in series to the extraction process in the
same operative plant. In particular, Reverchon and co-workers demonstrated in several
papers [25–27] that, by using SC-CO2 extraction coupled with high-pressure fractional
separation, it is possible to separate cuticular waxes during the extraction process by the
selective precipitation from the overall extract [28]. Specifically speaking, the compounds of
interest for extraction are generally located well inside the vegetable structure; whereas cu-
ticular waxes are located on the surface of the vegetable material and show a non-negligible
solubility in SC-CO2 [28]. For this reason, they are inevitably co-extracted at all SC-CO2
processing conditions due to the overlap of mass transfer limitations and thermodynamic
(solubility) limits [28]. However, since they are generally considered as an interfering
matter that reduces the quality (purity) of the extracts, a procedure has been developed
that allows the selective separation of cuticular waxes from the extract by cooling the
mixture CO2 plus overall extract at the exit of the extractor down to temperatures lower
than 0 ◦C [25–27,29,30]. Operating at these process conditions, the solubility of cuticular
waxes reduces to near zero in SC-CO2 and, therefore, they can be precipitated in a separator
before the final collection of the extract of interest.

Therefore, according to the previous discussion of the literature, the scope of this work
is to attempt, for the first time, a systematic analysis of cuticular waxes extracted by SC-CO2
plus fractional separation from several vegetables. After performing the specific SC-CO2
extraction processes, several high-resolution gas chromatography-mass spectroscopy (GC-
MS) identifications are carried out on cuticular waxes obtained from more than ten different
vegetable species, to analyze their composition and dependence on the vegetable tested,
and to show that their composition can be specific for the different vegetable species and
tissue analyzed.
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2. Materials and Methods
2.1. Materials

Basil leaves (Ocimum basilicum L.), cannabis inflorescence (Cannabis sativa L.), chamomile
flower heads (Chamomilla recutita L. Rausch.), clove buds (Eugenia caryophyllata Thun.), gin-
ger rhizomes (Zingiber officinale Roscoe), lavender inflorescence, marjoram leaf (Origanum
Majorana L.), rosemary leaf (Rosmarinus officinalis L.), tangerine peels and tobacco leaves
were supplied by Planta Medica srl (Pistrino di Citerna (PG), Italy). Jasmine concrete
(Jasminum grandiflorum L.) was supplied by Chauvet (Seillans, France). Vegetable materials
(except for jasmine concrete) were dried and ground using an electric stainless-steel grinder
(KYG, mod. 304, China); mean particle size was determined by mechanical sieving. Carbon
dioxide (CO2, 99.9% purity, Morlando Group srl, Naples, Italy) was used to carry out
SFE processing.

2.2. SFE Plant Description

SC-CO2 extraction experiments were carried out in a homemade laboratory apparatus
equipped with a 490 cm3 internal volume extractor. One hundred grams of vegetable
matter, with a mean particle size of 600 µm, were used in all the experiments. In the
case of jasmine concrete, since it was a semi-solid material and can produce undesired
caking/channeling phenomena during extraction, it was mixed with glass beads (3 mm
diameter) to create an inert core surrounded by a thin shell of jasmine concrete. Extracts
were recovered using two separation vessels with an internal volume of 200 cm3 each,
operated in series. The first separator was cooled down to −10 ◦C using a thermostated
bath (Julabo, mod. F38-EH, Milan, Italy); the second one allowed the continuous discharge
of the extract using a valve located at the bottom of the vessel. It was operated at 25 bar and
15 ◦C. A high-pressure pump (Lewa, mod. LDB1 M210S, Leonberg, Germany) pumped
liquid CO2 at the desired flow rate. CO2 was then heated to the extraction temperature in a
thermostated bath (Julabo, mod. CORIO C-B27, Milan, Italy). CO2 flow rate was monitored
by a calibrated rotameter (ASA, mod. d6, Sesto San Giovanni (MI), Italy), located after
the last separator, coupled with a volumetric meter (Sacofgas 1927 SpA, mod. G.4, Milan,
Italy). Temperature and pressure along the plant were measured by thermocouples and
test gauges, respectively. More details about the apparatus and the experimental procedure
are published elsewhere [25,27,30,31].

The operative conditions selected for the experiments carried out in this work were
90 bar and 50 ◦C (ρCO2 ≈ 0.280 g/cm3) in the extractor, 90 bar and −10 ◦C in the first
separator and 25 bar and 15 ◦C in the second one. CO2 flow rate was fixed at 0.8 kg/h for
all the experiments. The first separator, used for cuticular waxes precipitation, was operated
at the same extraction pressure and at a temperature lower than 0 ◦C since, operating in
this way, the solubility of cuticular waxes in CO2 drastically reduced [25,27,28,30,31].

2.3. Characterization of Cuticular Waxes

Gas chromatography-mass spectroscopy (GC-MS) analysis was carried out using a
Varian 3900 apparatus (Varian, Inc., San Fernando, CA, USA), equipped with a fused-silica
capillary column (mod. DB-5, J & W, Folsom, CA, USA) of 30 m length, 0.25 mm internal
diameter and 0.25 µm film thickness, and connected to a Varian Saturn Detector 2100T
(Varian, Inc., San Fernando, CA, USA). Helium was used as the carrier gas, at a flow rate
of 1 mL/min. Column temperature was set at 120 ◦C and held for 5 min; then, it was
ramped up to 320 ◦C, at 2 ◦C/min, where it was held for 10 min. An injection step was
performed using 1 µL of a 1:10 n-hexane solution in split mode; the injector temperature
was set at 320 ◦C. The mass spectrometer operated at an ionization voltage of 70 eV in
the 40–650 a.m.u. range, at a scanning speed of 5 scans/s. The retention indices (RI) were
determined considering the retention time (Rt) values of homologous series of n-alkanes
(C21-C40) obtained at the same operating conditions. The various components were also
identified by a comparison of their RI with published data in the scientific literature. Further
identifications were performed, by comparison, of the mass spectra with those stored in the
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NIST 02 (National Institute of Standards and Technology, Gaithersburg, MD, USA) library.
The relative amounts of the components were evaluated as a percentage of normalized
peak area.

3. Results and Discussion

As reported in the literature, the major constituents of cuticular waxes extracted by
SFE processing plus high-pressure fractionation of the vegetable matter were paraffinic
compounds and, among them, heptacosane, nonacosane, hentriacontane and tritriacontane
showed the larger percentages [32–38]. Moreover, odd-carbon-atom hydrocarbons were
largely more represented than the homologous, even-carbon atoms. This is an interesting
characteristic from an applicative point of view; indeed, differently from paraffins coming
from fossil fractions, odd-carbon-atom hydrocarbons are largely more compatible with the
human skin and can be applied in cosmetics and health care products [9,39–42].

A photograph of the cuticular waxes extracted during SFE processing of cannabis
inflorescence is reported in Figure 1. In all cases, the precipitated material looks like a white
powder, sometimes with a light smell, similar to that of the starting vegetable species.
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Figure 1. Macroscopic and qualitative example of cuticular waxes extracted by SFE processing of
cannabis inflorescence.

Eleven GC-MS traces of the produced cuticular waxes are summarized in Figure 2,
for overall comparison purposes. These traces can give a qualitative perspective of the
compounds present in the various plants tested and their relative abundance.
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Figure 2. Comparison of GC−MS traces of cuticular waxes extracted by SC−CO2 plus fractional
separation from different vegetable matter, studied in this work.

Extensive identification of the cuticular waxes extracted and analyzed in this work
is reported in Table 1. In particular, Figure 2 and Table 1 confirm that the most abundant
compounds present in the cuticular waxes extracted by SC-CO2 are C27, C29 and C31 for all
the vegetable species studied. These results are in agreement with the previous literature
related to the same vegetable matter [32–39]. However, data in the literature are referred
only to straight paraffins. Analysis performed in this work demonstrates, instead, the
presence of some high-molecular-weight paraffinic alcohols (namely, C24, C26, C28 and
C30). The largest percentages of these compounds are found in marjoram (16.22%), tobacco
(5.94%) and lavender (5.48%). Additionally, aldehydes and traces of a paraffinic acid,
namely octacosanoic acid, are detected in jasmine and tobacco. More specifically, C28 and
C30 aldehydes are the most widespread compounds and the largest percentage of C28
aldehyde is found in tobacco (6.57%) and marjoram (6.40%).

The prevalence of long-chain alkanes is confirmed, and they range from C23 to C33,
with a prevalence of odd paraffins, as C27, C29 and C31, that largely confirm as the major
components, though their relative proportions vary from one vegetable species to an-
other [43,44]. Some small quantities of paraffinic alcohols, aldehydes and fatty acids are
also identified, as expected. They all show the same carbon atoms’ skeleton of the identified
paraffins, with the further presence of a functional group: i.e., alcoholic, aldehydic or
acid group.
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Table 1. Percentage (area %) of the compounds identified by GC−MS of cuticular waxes extracted by SC−CO2 plus fractional separation from different vegetable
matter, studied in this work.

Compound Identified Chamomile Basil Ginger Jasmine Lavender Tobacco Marjoram Tangerine Cannabis Rosemary Clove Buds

Tricosane, C23H48 10.69 0.10 - 1.25 - - 0.05 - 0.04 0.07 -

Tetracosane, C24H50 0.99 0.15 - 0.18 - 0.08 0.12 - 0.51 0.07 -

Pentacosane, C25H52 15.12 5.38 - 6.88 2.32 3.97 3.53 2.17 12.04 3.41 5.80

1-Tetracosanol,
C24H50O 0.65 - - - 0.69 - 2.81 - 2.36 0.09 -

Hexacosane, C26H54 1.26 1.76 - 1.75 - 0.39 1.41 0.73 3.08 1.45 1.50

Methylhexacosane,
C27H56

- - - - - - 1.38 - 0.44 0.62 -

Heptacosane, C27H56 20.94 22.52 8.33 28.70 20.40 3.69 12.93 28.45 61.85 23.01 65.80

1-Hexacosanol,
C26H54O 0.65 - - 2.52 2.32 1.69 9.78 0.41 4.06 1.41 -

Octacosane, C28H58 1.63 3.33 1.07 3.19 2.74 - 1.85 3.56 2.88 1.87 3.90

Octacosanal, C28H56O - 1.51 0.38 1.42 - 6.57 6.40 0.23 0.14 1.74 -

Nonacosane, C29H60 16.47 21.53 19.01 33.24 31.60 18.34 11.54 41.09 15.73 22.25 22.30

Methylhexacosanoate,
C17H34O2

0.78 - 0.73 - - - - - - - -

1-Octacosanol,
C28H58O 0.33 3.46 - 2.94 5.48 5.94 16.22 1.65 - 2.46 -

Triacontane, C30H62 1.36 3.34 2.09 1.61 2.54 3.11 1.40 2.93 0.35 1.67 -

Octacosanoic acid,
C28H56O2

- - - 0.86 - 0.09 - - - - -

Methylheptacosanoate,
C29H58O2

0.69 2.40 1.74 0.51 - 4.02 2.36 0.34 - 2.14 -

Triacontanal, C30H60O - 0.57 - 0.19 - 1.14 2.84 0.12 - 0.32 -

Hentriacontane,
C31H64

9.68 16.69 19.27 7.12 13.45 27.84 8.57 11.41 0.26 13.20 -

1-Triacontanol,
C30H62O 1.03 4.14 2.85 2.12 3.92 1.89 4.24 2.34 - 2.22 -



Separations 2022, 9, 80 7 of 9

Table 1. Cont.

Compound Identified Chamomile Basil Ginger Jasmine Lavender Tobacco Marjoram Tangerine Cannabis Rosemary Clove Buds

Dotriacontane, C32H66 0.61 0.96 0.76 0.17 0.52 0.89 0.30 0.16 0.07 0.38 -

Tritriacontane, C33H68 1.13 1.23 1.06 0.52 0.84 1.36 0.54 0.49 0.56 0.62 -

Methyldotriacontane,
C33H68

- 0.50 0.16 - 1.41 0.34 0.30 0.82 - 0.13 -
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4. Conclusions

In the present work, a detailed study on the composition of cuticular waxes extracted
and fractionated by SFE is reported. GC-MS analysis confirmed that the separation from
the other extractable materials was accurate, and these products can be considered a sort
of fingerprint of the specific vegetable matter. C27, C29 and C31 were the most abundant
compounds found in the investigated vegetable materials, in line with the previous findings
reported in the literature. Moreover, the specific selectivity of SC-CO2 extraction towards
non-polar or slightly polar compounds makes these cuticular waxes suitable for higher
added-value applications, such as in the medical and pharmaceutical field, in which purity
and biocompatibility are key features that justify the selection of a more complex extraction
process with respect to the traditional ones.
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writing—original draft preparation, L.B. and E.R.; writing—review and editing, L.B.; supervision,
E.R. All authors have read and agreed to the published version of the manuscript.
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