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Abstract: The presence of antibiotic residue in eggs is a current issue due to the increasingly important
phenomenon of antibiotic resistance. A multiclass, confirmatory method for the determination of
seventy-three antimicrobial agents (amphenicols, cephalosporins, diaminopyrimidines, lincosamides,
macrolides, penicillins, pleuromutilins, quinolones, sulfonamides, and tetracyclines) with liquid
chromatography high-resolution mass spectrometry was applied to 200 egg samples collected from
119 Italian farms during the years 2018–2021.
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1. Introduction

For the last few decades, antibiotics have been widely administered in animal hus-
bandry to treat and prevent diseases and to act as growth-promoting agents. Their residues
can become part of the food chain through various environmental pathways (i.e., water,
soil, plant, and aquaculture), affecting human health [1]. Particularly, sub-therapeutic
consumption of drugs can activate allergic reactions and antibiotic resistance phenomena.
However, it is noteworthy that in some European countries, a decline in antibiotics sales
has been observed from 2010 to 2018 [2]. The European Food Safety Authority (EFSA)
and the European Centre for Disease Prevention and Control (ECDC) analyze annual data
collected by the EU Member States on antimicrobial resistance in zoonotic and indicator
bacteria. The last summary report of 31 January 2020 pointed out the growth of this is-
sue [3]. For these reasons, the European Union has established maximum residue limits
(MRLs) on animal-origin matrices and foodstuffs such as eggs [4]. Eggs are one of the most
representative foods of the European diet due to their affordability and nutritive properties.
For some antibiotics such as tetracyclines, i.e., chlortetracycline, oxytetracycline and tetra-
cycline, the MRL in eggs is set at 200 µg kg−1; and 50, 25, and 1000 µg kg−1 for lincomycin
(lincosamide), penicillin V (penicillin), and tiamulin (pleuromutilin), respectively. For
erythromycin A, 150 µg kg−1 has been established, 200 µg kg−1 for tylvalosin and tylosin
A (macrolides), and finally, the MRL of neomycin B (aminoglycoside) is set at 500 µg kg−1.
Other regulated antibiotics such as amphenicols, cephalosporins, doxycycline (tetracy-
clines), several β-lactams, some macrolides, quinolones, and sulfonamides are prohibited
in laying hens. The EU Member States implement yearly official monitoring programs
in order to ensure the MRLs and the regular use of antimicrobial agents in farming are
observed. Therefore, sensitive and reliable methods for the determination of antibiotics
in eggs are required. To date, liquid chromatography coupled with tandem mass spec-
trometry and high-resolution mass spectrometry techniques (especially referring to hybrid
instruments) represent the gold standards for the development of multiclass methods due
to the selectivity and sensitivity that they can offer, despite generic sample preparation,
which is mandatory for wide ranges of analytes [5]. Several research studies [5–13] have
reported antibiotic residues in eggs. To the best of our knowledge, surveys with more than
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150 samples have not previously been conducted. Thus, the aims of this study were to
develop a confirmatory multiclass method for more than 70 of the regulated and most used
antibiotics (except for aminoglycosides and colistin) in eggs, and apply it to 200 Italian,
commercial egg samples produced with conventional and organic approaches, collected
during the years 2018–2021. Moreover, an exposure assessment of Italian public health was
evaluated based on the most recent survey of Italian food consumption [14–16].

2. Materials and Methods
2.1. Chemicals, Reagents, Stock, and Intermediate Solutions

Acetonitrile (ACN), LC-MS-grade methanol, EDTA disodium salt dihydrate, and
ammonium acetate were supplied by Merck KGaA (Darmstadt, Germany). LC-MS-grade
deionized water was purchased from Biosolve Chimie (Dieuze, France). Formic acid
≥98% was provided by Carlo Erba Reagents (Milano, Italy), and N,N’-dimethylformamide
(DMF) was supplied by Fluka (Buchs, Switzerland). The 73 analytes are presented in
Table S1. The majority were purchased from Merck KGaA. Florfenicol-d3, cefacetrile,
ceftiofur-d3, cephapirin, desacetyl cephapirin, pirlimycin, neospiramycin, spiramycin I-
d3, tildipirosin, tulathromycin A, tulathromycin marker (CP60,300), tylvalosin, penicillin
G-d7, enrofloxacin-d5, and sulfachloropyridazine were obtained from TRC Inc. (Toronto,
ON, Canada); cefazolin and lincomycin from USP Reference Standards (Maryland, USA).
Ciprofloxacin, difloxacin, enrofloxacin, marbofloxacin, nalidixic acid, norfloxacin, oxolinic
acid, sarafloxacin, tylosin-3-acetate, ampicillin, cloxacillin, nafcillin, sulfadiazine, sulfamer-
azine, sulfadimethoxine, sulfathiazole, chlortetracycline, doxycycline, methacycline, and
tetracycline were provided by LGC Standards (London, UK). Sulfamethazine-13C6 was
purchased from Cambridge Isotope Laboratories Inc. (Tewksbury, MA, USA). Lastly, 4-
epichlortetracycline and 4-epioxytetracycline were provided by ACROS ORGANICS (Geel,
Belgium). The details about the preparation of stock and intermediate solutions were
reported elsewhere [17] and the stability of stock is shown in Table S2 [18,19].

2.2. Chromatographic Conditions

Chromatography was performed on a Thermo Ultimate 3000 High Performance Liquid
Chromatography system (San Jose, CA, USA). Analytes were separated on a Poroshell
120 EC-C18 column (100 × 3.0 mm; 2.7 µm; Agilent Technologies, Santa Clara, CA, USA),
connected to a Poroshell guard column (5 × 3.0 mm). HPLC eluent A was an aqueous
solution containing 0.1% (v/v) formic acid and eluent B was methanol. The gradient was
set as described elsewhere [17]. The injection volume was 5 µL.

2.3. MS Conditions

A Q-Orbitrap mass spectrometer (Thermo Scientific, San Jose, CA, USA) was equipped
with a heated electrospray ionization (HESI-II) source. The parameters were set similarly
to previously published work [17]. Particularly, the HESI-II and capillary temperatures
were set at 320 and 300 ◦C, respectively, and the electrospray voltage at 3.60 kV (positive
ionization mode). Sheath and auxiliary gas were 35 and 15 arbitrary units, respectively.
The mass spectrometer was controlled by Xcalibur 3.0 software (Thermo Fisher Scientific,
San Jose, CA, USA). The exact mass of the compounds was calculated using Qualbrowser
in Xcalibur 3.0. Instrument calibration was performed for every analytical batch with a
direct infusion of an LTQ Velos ESI Positive Ion Calibration Solution (Pierce Biotechnology
Inc., Rockford, IL, USA). The individual compounds were infused with a syringe through
a T union connected to an LC system with a mobile phase flow rate of 0.1 mL min−1 (50%
eluent A). The product ions were found by increasing the collision energy (CE) using Q-
Exactive Tune 2.3 software (Thermo Fisher Scientific, Waltham, MA, USA). After choosing
the more intense product ions, fragmentation energies were optimized with spiked samples
at 10 µg kg−1 using the selected gradient program. All Q Exactive parameters (resolution,
AGC, and IT) were optimized to improve sensitivity and selectivity. MS acquisition
was performed as described elsewhere [17], with some modifications to obtain the best
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instrumental signal mixing full scan/dd-MS2 and SIM experiments. The monitored adducts
and product ions such as the collision energies are presented in Table S3.

2.4. Sample Preparation

One-half gram of homogenized eggs was weighed in a Falcon tube. The sample
was spiked with internal standards (ISs), particularly, 15 µL of a solution containing
the two labelled beta-lactams at 1 µg mL−1 (ceftiofur-d3 and penicillin G-d7), 15 µL of
a solution of all other antibiotics ISs (florfenicol-d3, enrofloxacin-d5, spiramycin I-d3,
sulfamethazine-d5 and methacycline) at the same concentration. Later, 900 µL of 0.15 M
EDTA was added and the sample was extracted with 2.4 mL of acetonitrile. After shaking
and centrifugation, a second extraction with 3 mL of acetonitrile was performed. The
reunited extracts were evaporated and then redissolved in 1.5 mL of 200 mM ammonium
acetate. After centrifugation, the sample was injected.

2.5. Method Validation

A full validation study was carried out in accordance with the performance criteria
required by Commission Decision 2002/657/EC [20] and SANTE/12682/2019 [21] for
quantitative confirmatory methods. The approach followed was based on [5]. Briefly, the
analytes were validated at the spiking concentration levels, encompassing 3.3–100 µg kg−1;
for tetracycline, oxytetracycline, chlortetracycline and their epimers, erythromycin A,
tylosin A, tylvalosin, tylosin-3-acetate, the range was 3.3–1000 µg kg−1; and finally, for
tiamulin, the interval was 3.3–3330 µg kg−1. Moreover, the analytes were successfully
validated at the additional level of 2 µg kg−1 (data not shown).

2.6. Real Samples Analysis

The validated method was applied to 200 real egg samples taken from the Italian
market during October 2018–June 2021. Each sample was placed in a plastic container and
stored at −20 ◦C after homogenization.

2.7. Risk Exposure

The risk for Italian public health was determined based on food consumption data
of [14]. The daily intake for the detected substance in eggs is related to the acceptable daily
intake (ADI). To calculate the ADI percentage, the following Equation (1) [22] was used:

ADI%
(

d−1
)
=

C
(
µg kg−1

)
·E

(
kg d−1

)
w (kg)·ADI

(
µg kg−1 bw

) ·100 (1)

where C is the detected concentration of the antibiotic residue during the real sample
analysis, E is the egg consumption per day, and w is the mean weight of the people. The
updated ADI for the detected analyte was provided by [23].

3. Results and Discussion
3.1. Sample Preparation

The sample extraction was optimized starting from [5,17] with some modifications.
Despite the good performances of [5], a strong matrix effect was evident for several ana-
lytes. Therefore, the intent was the development of a sample protocol able to achieve a
compromise between performance and cleanliness of the final extract. Due to the high con-
centrations of minerals in the matrix and the well-known chelating properties of quinolones,
sulfonamides, and tetracyclines, three variables that affect the yield of extraction were
investigated: volume of acetonitrile and volume and concentration of the EDTA solution.
For reducing the concentration of the extracted interferent substances, the preliminary
experiment was reducing the volume of acetonitrile during the first extraction, but more
crucial (and just cited) substances demonstrated poor recoveries (data not shown). Conse-
quently, experiments were carried out to explore the effects of a higher concentration and
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volume of EDTA. Particularly, Figure 1 presents the molecules for which the recoveries
provided a rise ≥10% from 300 to 900 µL of 0.15 M EDTA. The highest tested volume
(i.e., 1200 µL) demonstrated probably the worst performance for several analytes for the
enhancement in polarity of the extraction mixture.

Figure 1. Extraction efficiency of different volumes of EDTA solution evaluated in egg samples (n = 4 per experiment)
spiked at 10 µg kg−1 for (a) amphenicols and beta-lactams, (b) sulfonamides and trimethoprim, (c) lincomycin, rifaximin
and macrolides, and (d) quinolones.

3.2. Method Validation

Method validation was based on the approach followed by Paoletti et al. [5]. Partic-
ularly, the selectivity was evaluated, analyzing more than 20 blank samples during the
validation study, and no peaks were found, considering the established criteria.

Good linearity was observed for all the analytes (deviations of back-calculated con-
centration ≤20%) [21]. It was judged by analyzing curves in matrix-matched calibration
(MMC) samples and in solvent (i.e., 200 mM ammonium acetate) in the concentration
range encompassing the lowest and highest validation level (3.3–100 µg kg−1), and to
evaluate the matrix effect. The absolute matrix effect study demonstrated moderate ion
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suppression/ion enhancement, as the differences in the slopes in MMC standard and in
solvent were below 29%, except for valnemulin (40%), in absolute value (Table 1).

Table 1. Validation performances of the investigated analytes, sorted by class and elution order.

Analyte Class
Mean

Recovery
(%)

CVr
(%)

CVwR
(%)

CCα
(µg kg−1)

LOD
(µg kg−1)

LOQ
(µg kg−1) ME a (%)

Florfenicol amine
Amphenicols

74 9.0 9.8 3.3 3.3 3.3 3
Thiamphenicol b 77 8.9 11 10 3.3 10 −9

Florfenicol b 80 8.1 11 10 3.3 10 −17

Desacetyl cephapirin

Cephalosporins

74 8.6 9.7 3.3 3.3 3.3 −5
Caphapirin 77 7.5 9.5 3.3 3.3 3.3 −2
Cefquinome 76 7.5 9.7 3.3 3.3 3.3 11
Cefacetrile 76 8.9 11 3.3 3.3 3.3 −28
Cefalonium 75 6.8 8.8 3.3 3.3 3.3 −9

Cefalexin 64 9.8 13 3.3 3.3 3.3 1
Cefazolin b 75 7.7 9.5 10 3.3 10 12

Cefoperazone 78 8.7 10 3.3 3.3 3.3 −12
Ceftiofur 67 9.0 13 3.3 3.3 3.3 −13

Trimethoprim Diaminopyrimidines 77 9.8 11 3.3 3.3 3.3 −7

Lincomycin
Lincosamides

73 9.2 11 59 3.3 3.3 −12
Pirlimycin 60 14 14 3.3 3.3 3.3 −11

Tildipirosin

Macrolides

63 8.3 11 3.3 3.3 3.3 −2
Tulatromycin marker

(CP 60,300) 66 7.6 10 3.3 3.3 3.3 −5

Tulathromycin A b 62 8.3 9.6 3.3 3.3 10 −4
Neospiramycin 68 8.4 13 3.3 3.3 3.3 −14

Spiramycin I 75 8.7 11 3.3 3.3 3.3 −10
Gamitromycin 74 14 15 3.3 3.3 3.3 −8

Tilmicosin 77 11 13 3.3 3.3 3.3 −6
Tylosin A 82 10 13 242 3.3 3.3 −10

Erythromycin A 80 7.3 10 175 3.3 3.3 −12
Tylosin-3-acetate 85 11 13 244 3.3 3.3 −4

Tylvalosin 90 9.5 14 245 3.3 3.3 17

Amoxicillin

Penicillins

65 8.2 11 3.3 3.3 3.3 −5
Ampicillin 69 7.8 9.7 3.3 3.3 3.3 1
Penicillin G 77 9.9 13 3.3 3.3 3.3 −9

Oxacillin 77 8.8 9.8 3.3 3.3 3.3 −9
Penicillin V 76 9.1 10 29 3.3 3.3 −7
Cloxacillin 75 10 11 3.3 3.3 3.3 −8

Dicloxacillin 74 9.1 11 3.3 3.3 3.3 −18
Nafcillin 76 9.9 10 3.3 3.3 3.3 −9

Tiamulin
Pleuromutilins

79 10 12 1199 3.3 3.3 −18
Valnemulin 76 9.8 15 3.3 3.3 3.3 −40

Marbofloxacin

Quinolones

80 10 13 3.3 3.3 3.3 −13
Norfloxacin 69 7.4 13 3.3 3.3 3.3 −12
Enrofloxacin 81 8.0 7.2 3.3 3.3 3.3 −7
Ciprofloxacin 70 7.3 13 3.3 3.3 3.3 −9
Danofloxacin 76 8.8 12 3.3 3.3 3.3 10

Difloxacin 81 9.4 11 3.3 3.3 3.3 −2
Sarafloxacin 75 8.9 12 3.3 3.3 3.3 −7
Oxolinic acid 82 8.6 11 3.3 3.3 3.3 −13
Nalidixic acid 81 8.4 11 3.3 3.3 3.3 −5
Flumequine 82 9.1 10 3.3 3.3 3.3 −23
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Table 1. Cont.

Analyte Class
Mean

Recovery
(%)

CVr
(%)

CVwR
(%)

CCα
(µg kg−1)

LOD
(µg kg−1)

LOQ
(µg kg−1) ME a (%)

Rifaximin Rifamycins 84 7.9 13 3.3 3.3 3.3 6

Sulfaguanidine

Sulfonamides

76 8.8 12 3.3 3.3 3.3 20
Sulfanilamide 76 8.3 11 3.3 3.3 3.3 −7

Sulfacetamide b 76 7.3 8.1 10 3.3 10 −1
Sulfadiazine 78 8.1 10 3.3 3.3 3.3 8
Sulfathiazole 78 7.8 9.2 3.3 3.3 3.3 −9
Sulfapyridine 79 8.1 9.3 3.3 3.3 3.3 −5

Sulfamerazine b 76 9.0 9.9 10 3.3 10 22
Sulfamoxole 76 7.9 11 3.3 3.3 3.3 −12
Sulfameter 83 9.3 9.7 3.3 3.3 3.3 −12

Sulfamethizole 78 8.4 10 3.3 3.3 3.3 −3
Sulfamethazine 80 9.4 12 3.3 3.3 3.3 −3

Sulfamethoxypyridazine 78 9.8 12 3.3 3.3 3.3 −6
Sulfachloropyridazine 78 9.1 11 3.3 3.3 3.3 −1

Sulfamethoxazole 81 8.6 10 3.3 3.3 3.3 −14
Sulfamonomethoxine 80 9.2 11 3.3 3.3 3.3 −3

Sulfadoxin 80 8.6 11 3.3 3.3 3.3 −12
Sulfisoxazole 79 8.1 11 3.3 3.3 3.3 −2

Sulfadimethoxine 81 7.9 9.9 3.3 3.3 3.3 −22
Sulfaquinoxaline 80 7.7 10 3.3 3.3 3.3 −25

4-Epitetracycline

Tetracyclines

68 7.7 9.2 230 3.3 3.3 −5
4-Epioxytetracycline 64 7.1 9.0 230 3.3 3.3 3

Tetracycline 72 8.0 11 235 3.3 3.3 −1
Oxytetracycline 68 6.9 10 234 3.3 3.3 4

4-Epichlortetracycline 67 6.8 11 236 3.3 3.3 18
Chlortetracycline 73 6.3 10 233 3.3 3.3 16

Doxycycline 69 9.5 13 3.3 3.3 3.3 −12
a Matrix effect calculated as ME (%) = mm−ms

ms
× 100, where mm and ms are the slopes of the curve prepared in matrix-matched standard

and ms in solvent, respectively. b The performance parameters were calculated excluding the spiking level at 3.3 µg kg−1.

Moreover, the relative matrix effect (egg to egg) was evaluated comparing the recovery
of spiked samples, calculated with different matrix-matched standards, and was considered
negligible. This approach compensates for the ME on completion of the results [24,25].

Validation data in terms of recovery (trueness) and precision were calculated with the
analyte concentrations of spiked samples, obtained from the linear regression equation of
the matrix-matched calibration standards, and are shown in Table 1. Recoveries were in
the range of 62% (tulathromycin A)–90% (tylvalosin), repeatability and within-laboratory
reproducibility encompass the interval of 6.3% (chlortetracycline) –14% (gamithromycin
and pirlimycin) (CVr,pooled), and 7.2% (enrofloxacin) –15% (gamithromycin and valnemulin)
(CVwR, pooled), respectively [26].

The limits of detection (LOD) and quantification (LOQ) were primarily estimated
on the basis of the recovery and precision observed at the first two validation levels
(3.3 and 10 µg kg−1). However, prior to monitoring, an additional validation level (i.e.,
2 µg kg−1) was tested, with the aim of evaluating the background contamination levels.
The LOD and LOQ were equal to 2 µg kg−1 for all of the analytes, except for thiamphenicol,
florfenicol, cefazolin, tulathromycin A, sulfacetamide, and sulfamerazine for which an
LOQ of 10 µg kg−1 was fixed, as they showed poor precision and/or linearity.

Consequently, the validated method was fit for purpose, and on July 2021, the labora-
tory accredited it [27,28].

3.3. Real Samples Analysis

The validated method was employed for the determination of antibiotic residues
in 200 egg samples. They belonged to farms spread out throughout most of Italy and
encompass the three farming methods, i.e., 60 organic, 73 free-range, and 67 barn. The
samples were randomly collected by supermarkets during 2018 (n = 27), 2019 (n = 100),
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2020 (n = 45), and 2021 (n = 28), and came from 119 farms located in 45 provinces (Figure
2).

Figure 2. Sites (provinces) of farms where no residue (grey) and one residue (black) was detected
during the survey.

An internal quality control was implemented for the analytical batches by adding the
internal standards solution to each sample prior to extraction. These ISs were not used
with quantitative aims; rather, they were used to check the yield of the process. Moreover,
a blank and at least a spiked muscle at 10 µg kg−1 was analyzed to verify the absence of a
false positive/negative result. Lastly, a matrix-matched calibration standard was prepared,
adding the analytes immediately prior to LC injection.

Suspected samples were newly analyzed by twice performing ad hoc spiked sample
and matrix-matched calibration curves based on the preliminary analysis.

Among the 200 samples, antibiotic residue was detected in only one sample, collected
in 2019, representing 0.5%. Particularly, doxycycline, belonging to the tetracycline family
and banned in eggs, was found at 22 µg kg−1. Figure 3 shows the full scan chromatograms
and the MS2 spectra of the incurred and a spiked sample.
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Figure 3. Chromatograms (left) and product ion spectra (right) of doxycycline in the real egg sample at 22 µg kg−1 (a) and
in a spiked sample at 10 µg kg−1 (b).

Interestingly, this positive sample belonged to the free-range farming method, showing
a case of illicit use.

3.4. Risk Exposure

The calculation of the daily intake and the consequent ADI percentage was based on
egg consumption presented in the most recent published survey of the Italian diet [14].
Table 2 shows the data in detail: ADI percentage values were calculated on the basis of
the mean and 99th percentile daily intake, encompassing age and sex categories. The ages
ranged from infants (0–2.9 years), children (3–9.9 years), teenagers (10–17.9 years), and
adults (18–64.9 years) to the elderly (≥65 years).

Table 2. Risk exposure based on the Italian diet.

Detected
Analyte

Detected
Concentration

(µg kg−1)

MRL
(µg kg−1)

ADI
(µg kg−1

b.w.)

ADI % (Mean) ADI % (99th)

Infants Children
Teenagers Adults Elderly

Infants Children
Teenagers Adults Elderly

M F M F M F M F M F M F

Doxycycline 22 Not fixed 3 0.4 0.6 0.3 0.3 0.2 0.2 0.2 0.2 2.9 3.6 1.5 1.7 1.2 1.1 1.1 0.8

M: Male, F: Female.

The ADI values related to the contaminated sample with doxycycline did not pose
any risk for human health; even taking into account the 99th percentile, the ADI percentage
reached 2.9 and 3.6% for infants and children, respectively. Despite the noncompliance of
the positive sample, these values are not dangerous because they are far below 100%. In
fact, the sample is considered toxicologically acceptable.

4. Conclusions

The developed and validated multiclass method for the determination of 73 antibiotic
residues was applied to 200 egg samples collected between 2018 and 2021 from the Italian
market. The monitoring showed the presence of antibiotic residues in 0.5% of the cases
and the same percentage of noncompliant samples. This value doubles (1%), when only
taking 2019 into account.

Doxycycline, found in an egg sample in this survey, is more lipophilic than the other
tetracyclines, and causes long-term persistence in eggs and animal tissues, which is why the
EU banned its use in laying hens [4]. Nevertheless, some incidences of this antibiotic residue
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in food occurred during the yearly monitoring plans of European Member States. It is
important to note, in this respect, that the latest monitoring reports of veterinary medicinal
products in live animals and animal products of EFSA (2018 and 2019) declared 0.19% and
0.17% of non-compliant samples as positive for the B1 substance group, respectively [29,30].

Particularly, in 2018, doxycycline was found in Italy and Spain for a total of two egg
samples (2.5% and 0.4%, respectively); the Italian percentage was calculated on a limited
number of samples (i.e., 40). In 2019, doxycycline was not found in European eggs and,
unfortunately, the total number of egg samples analyzed was not reported in the document.
However, this survey suggests that the number of the monitored samples in Italy should
be increased to offer a better overview of egg contamination and, especially, to find cases
of illicit use of veterinary drugs.

In conclusion, the results of this wide survey are reassuring in relation to Italian public
health, considering the acceptable toxicological level.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/separations8090148/s1, Table S1: List of the 73 investigated analytes, Table S2: Individual
stock solutions of analytes (storage temperature: −20 ◦C), Table S3: UHPLC-Q-Orbitrap parameters
of the 73 analytes and 7 ISs.
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