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Abstract: The recycling of rare metals such as platinum (Pt) from secondary resources, such as waste
electronic and electrical equipment and automotive catalysts, is an urgent global issue. In this study,
simple secondary amides and urea, N-(2-ethylhexyl)acetamide, N-(2-ethylhexyl)octanamide, and
1-butyl-3-(2-ethylhexyl)urea, which selectively extract Pt(IV) from a simulated effluent containing
numerous metal ions, such as in an actual hydrometallurgical process, were synthesized and achieved
efficient Pt(IV) stripping using only water. Comparison of Pt(IV) extraction behavior with a tertiary
amide without N–H moieties suggests that the secondary amides and urea extractants effectively use
hydrogen bonding to the hexachloroplatinate anion by N–H moieties. Examining the conditions for
the third phase formation revealed that the secondary amide extractant with the longest alkyl chain
can be used in the extraction process for a long time without forming any third phase, despite its
lower Pt(IV) extraction capacity. The practical trial with simple compounds developed in this study
should contribute to the development of Pt separation and purification processes.

Keywords: platinum group metal; extraction; secondary amide; urea; hydrogen bond; third phase;
secondary resources; simulated waste liquid; waste electrical and electronic equipment; stripping

1. Introduction

Platinum group metals (PGMs), namely, Pd, Pt, Rh, Ir, Ru, and Os, are in constant
demand due to their excellent physical and chemical properties [1–3]. Notably, Pt has been
widely used in jewelry goods, electronic devices, fuel cells, automobile exhaust catalysts,
and various industrial fields [1,2,4]. However, there are future concerns about a decrease
in demand in the exhaust catalyst field due to the shift from gasoline and diesel vehicles to
electric vehicles. Moreover, the availability of Pt is limited to certain locations in Russia
and South Africa [3,5]. Further, the amount of Fe and Au ore mined in 2019 were 48,000
and 200 tons, respectively, whereas Pt ore mined was only 3.6 tons [6]. Therefore, the
recovery of PGMs including Pt from secondary resources, such as waste electrical and
electronic equipment and spent catalysts, is an urgent issue. The refining of PGMs from
aqueous acidic chloride media is commonly achieved by hydrometallurgical processes
using the solvent extraction method for their separation and has been studied by several
researchers [7–9]. The solvent extraction method has various advantages in industrial
applications such as high capacity, high selectivity, room temperature operation, and
relatively easy scale-up. Although the extraction of Pt by industrial extractants has been
studied, more efficient extractants are required to stabilize the Pt supply and price.

Recently, the development of extractants for the selective extraction of Pt has been
studied by various researchers [7,8]. Costa et al. studied the extraction of Pt(IV) using a
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series of N,N′-dimethyl-N,N′-dialkylmalonamides, and reported that N,N′-dimethyl-N,N′-
dibutylmalonamide was reported to extract the hexachloroplatinate anion ([PtCl6]2−) by
means of two protonated carbonyl oxygen atoms [10–12]. Narita et al. reported that the
extraction performance of the [PtCl6]2− using a tertiary amide-containing tertiary amine,
i.e., N-2-ethylhexyl-bis(N-di-2-ethylhexyl-ethylamide)amine, as the extractant, was higher
than that with commercially available tri-n-octylamine (TOA) [13]. Further, Tasker and
coworkers have extensively investigated the extraction of anionic chloro-species, discov-
ering a notable selectivity of a series of tripodal amide-containing tertiary amines for
extracting [PtCl6]2− over a large excess of chloride anion (Cl−) [14–18]. These extractants
all share the idea that not only relatively strong interactions in the inner-sphere but also
the relatively weak interactions of the outer-sphere have been taken into account. Here,
relatively weak interactions refer to hydrogen bonding (4–60 kJ/mol) as opposed to rel-
atively strong interactions such as coulombic interactions between ions (5–300 kJ/mol)
and coordination bonds between a metal ion and a ligand (40–120 kJ/mol) [19,20]. Low
selectivity and suppression of back-extraction can result from an extremely strong affinity
for metal ions [5,7–9]. Further, the development of a more convenient extractant is essential
from a practical perspective.

In this study, we present conveniently prepared secondary amide and urea extractants
for Pt(IV) separation from the simulated secondary resources (SSRs) containing numerous
metal ions, as in the actual hydrometallurgical process. The secondary amide and urea
extractants are synthesized from the reaction of a primary amine (2-ethylhexylamine) with
acyl halide (acetyl chloride or n-octanoyl chloride) or an isocyanate (butyl isocyanate), both
of which are inexpensive starting materials [17,18,21–26]. The advantages of the secondary
amide and urea functional groups are that they provide an N–H donor for hydrogen
bond formation with the [PtCl6]2− anion and are stable under acidic solutions, which
are the requirements adopted in hydrometallurgical separation processes [14,16–18,27–31].
Secondary amide and urea compounds form continuous intermolecular hydrogen bonds,
which are expected to be an effective driving force for extracting [PtCl6]2− anion in an
apolar solvent [14,15,17,18]. The extraction of Ga(III) from the HCl solution by N-(2-
ethylhexyl)acetamide has been investigated and the formation of hydrogen bonds to
[GaCl4]− and H2O has been reported [32]. Further, amide and urea compounds are
completely incinerable at the end of the hydrometallurgical process due to their elemental
composition (C, H, N, O) [32,33]. In this study, simple amide and urea compounds were
developed for the selective extraction of Pt(IV). To verify the N–H moiety effect, a tertiary
amide extractant without the N–H moiety was also synthesized for comparison. Figure 1
represents the chemical structures and abbreviations of these four extractants. First, the
effect of HCl concentration on the extraction performance of precious and base metals was
investigated to preliminarily determine the extraction characteristics of these extractants
synthesized in this study at lower metal ion concentrations. Then, to investigate the
applicability of these extractants to the actual hydrometallurgical separation process, the
extraction rate, Pt(IV) separation ability, the conditions for the third phase formation, and
Pt(IV) stripping were examined.
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Figure 1. Representation of the chemical structures and abbreviations of the extractants.

2. Materials and Methods
2.1. Materials

TOA (Tokyo Chemical Industry Co., Ltd. (TCI), Tokyo, Japan; purity, >97.0%), tri-n-
butyl phosphate (TBP, FUJIFILM Wako Pure Chemical Corporation (Wako), Osaka, Japan;
purity, >98.0%), dibutyl carbitol (DBC, Sigma-Aldrich Japan, Tokyo, Japan; purity, >99%),
methyl isobutyl ketone (MIBK, TCI; purity, >99.5%), n-dodecane (Wako; purity, >99.0%),
2-ethylhexanol (Wako; purity, >98.0%), chloroform (Wako; purity, >99.0%), 2-ethylhexylamine
(Sigma-Aldrich Japan, Tokyo, Japan; purity, >98%), di(2-ethylhexyl)amine (Sigma-Aldrich
Japan, Tokyo, Japan; purity, >99%), acetyl chloride (Wako; purity, >98.0%), n-octanoyl chloride
(TCI; purity, >99.0%), butyl isocyanate (TCI; purity, >98.0%), HAuCl4·4H2O (Wako; purity,
>99.9%), H2PtCl6·6H2O (Wako; purity, >98.5%), IrCl3 (Wako; purity, >97.0%), RhCl3·3H2O
(Wako; purity, >99.5%), FeCl3·6H2O (Wako; purity, >99.0%), CuCl2·2H2O (Wako; purity,
>99.9%) NiCl2·6H2O (Wako; purity, 99.9%), CoCl2·6H2O (Wako; purity, >99.5%), ZnCl2
(Wako; purity, >98.0%), and PbCl2 (Wako; purity, 99.0%) were purchased and used without
further purification.

2.2. Synthesis of N-(2-Ethylhexyl)acetamide (MonoAA)

MonoAA was synthesized by modifying the procedure of Simon et al. [21–25]. Acetyl
chloride (25.6 g, 0.33 mol) was mixed with chloroform (CHCl3, 50 mL) in an ice–water
bath, and the solution was carefully added to a solution of 2-ethylhexylamine (40.0 g,
0.31 mol) and triethylamine (Et3N, 62.6 g, 0.62 mol) in CHCl3 (150 mL) using a dropping
funnel. The reacting solution was stirred (150 rpm) for 12 h at 40 ◦C and the reaction was
monitored using thin-layer chromatography (TLC); the resulting solution was transferred
to a separation funnel. The chloroform layer was washed three times with saturated
sodium hydrogen carbonate (NaHCO3) aqueous solution (50 mL) followed by another
three-time wash with distilled water (50 mL). The resulting organic solution was separated
and dried over anhydrous magnesium sulfate (MgSO4). The product was obtained as
a yellow oil (51.1 g, 96.3% yield) after filtration and evaporation of the solvent under
reduced pressure. The compound was characterized using proton nuclear magnetic reso-
nance (1H NMR) (JNM-GX300, JEOL Ltd., Tokyo, Japan) and IR (IRAffinity-1, Shimadzu
Co., Kyoto, Japan) spectroscopies: TLC (SiO2; chloroform/methanol = 9:1): Rf = 0.69;
1H NMR (400 MHz, CDCl3, TMS): δ 0.90 (6H, m, –CH(CH2)3–CH3 and –CHCH2–CH3),
δ 1.28–1.43 (9H, m, –CH(CH2)3–CH3 and –CHCH2–CH3), δ 2.00 (3H, s, –NH–CO–CH3),
δ 3.19 (2H, t, –NH–CH2–CH–), and δ 5.60 (1H, br, –NH–CO–CH3); IR (attenuated to-
tal reflectance (ATR), SeZn, cm−1) 1558 (δN–H), 1647 (νC=O), 2927 (ν–CH2–), 2958 (ν–CH3),
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3088 (νN–H), and 3290 (νN–H). The corresponding 1H NMR and IR spectra are depicted in
Figures S1 and S2 in the Supplemental Material.

2.3. Synthesis of N-(2-Ethylhexyl)octanamide (MonoOA)

MonoOA was synthesized by modifying the procedure of Simon et al. [21–25]. Oc-
tanoyl chloride (52.9 g, 0.33 mol) was mixed with chloroform (CHCl3, 50 mL) in an ice–
water bath, and the solution was carefully added to a solution of 2-ethylhexylamine (40.0 g,
0.31 mol) and Et3N (62.6 g, 0.62 mol) in CHCl3 (150 mL) using a dropping funnel. The
reacting solution was stirred (150 rpm) and heated to reflux for 12 h and the reaction was
monitored using TLC. The resulting solution was purified in the same manner as described
above. The product was obtained as a yellow oil (73.2 g, 92.5% yield) after filtration and
evaporation. The compound was characterized using 1H NMR and IR spectroscopies: TLC
(SiO2; chloroform/methanol = 9:1): Rf = 0.61; 1H NMR (400 MHz, CDCl3, TMS): δ 0.89 (9H,
m, –CH(CH2)3–CH3, –CHCH2–CH3 and –(CH2)6–CH3), δ 1.28–1.42 (17H, m, –CH(CH2)3–
CH3, –CHCH2–CH3 and –(CH2)2(CH2)4–CH3), δ 1.62 (2H, m, –NH–CO–(CH2)(CH2)–), δ
2.17 (2H, t, –NH–CO–(CH2)(CH2)–), δ 3.20 (2H, t, –NH–CH2–CH–), and δ 5.49 (1H, br, –NH–
CO–CH2–); IR (ATR, SeZn, cm−1) 1556 (δN–H), 1641 (νC=O), 2926 (ν–CH2–), 2956 (ν–CH3),
3084 (νN–H), and 3290 (νN–H). The corresponding 1H NMR and IR spectra are depicted in
Figures S3 and S4 in the Supplemental Material.

2.4. Synthesis of N,N-Bis(2-ethylhexyl)acetamide (BisAA)

BisAA was synthesized by modifying the procedure of Simon et al. [21–25]. Acetyl
chloride (48.8 g, 0.62 mol) was mixed with chloroform (CHCl3, 50 mL) in an ice–water
bath, and the solution was carefully added to a solution of di(2-ethylhexyl)amine (50.0 g,
0.21 mol) and Et3N (126 g, 1.24 mol) in CHCl3 (150 mL) using a dropping funnel. The
reacting solution was stirred (150 rpm) and heated to reflux for 12 h and the reaction was
monitored using TLC. The resulting solution was purified in the same manner as described
above. The product was obtained as a yellow oil (50.7 g, 86.4% yield) after filtration and
evaporation. The compound was characterized using 1H NMR and IR spectroscopies:
TLC (SiO2; chloroform/methanol = 9:1): Rf = 0.54; 1H NMR (400 MHz, CDCl3, TMS): δ
0.84–0.92 (12H, m, –CH(CH2)3–CH3 and –CHCH2–CH3), δ 1.26 (16H, m, –CH(CH2)3–CH3
and –CHCH2–CH3), δ 2.09 (3H, s, –NH–CO–CH3), δ 3.13 (2H, t, –NH–CH2–CH–), and
δ 3.27 (2H, m, –CH(CH2)3–CH3); IR (ATR, SeZn, cm−1) 1647 (νC=O), 2927 (ν–CH2–), and
2959 (ν–CH3). The corresponding 1H NMR and IR spectra are depicted in Figures S5 and S6
in the Supplemental Material.

2.5. Synthesis of 1-Butyl-3-(2-ethylhexyl)urea (MonoBU)

MonoBU was synthesized according to a published procedure [17,18,21,26] with
several minor modifications [34]. The compound was characterized using 1H NMR and
IR spectroscopies: TLC (SiO2; chloroform/methanol = 9:1): Rf = 0.64; 1H NMR (400 MHz,
CDCl3, TMS): δ 0.90 (9H, m, –CH2–CH3), δ 1.27 (10H, m, –CH(CH2)(CH2)3–CH3 and –
(CH2)2–CH3), δ 1.46 (3H, q, –CH(CH2)–CH3), δ 3.08 (2H, t, –NH–CH2–CH–), δ 3.16 (2H, q,
–NH–CH2–(CH2)2–CH3), δ 4.91 (1H, br, –NH–CH2–CH–), and δ 4.97 (1H, br, –NH–CH2–
(CH2)2–CH3); IR (ATR, SeZn, cm−1) 1570 (δN–H), 1629 (νC=O), 2927 (ν–CH2–), 2958 (ν–CH3),
and 3344 (νN–H).

2.6. Metal Ion Extraction Procedure

The extraction experiments were performed using the batch method. All experiments
for extracting metal ions were conducted in a metal ion coexistent system. For the aqueous
phase with lower metal ion concentration, metal ion solutions were prepared by dissolv-
ing each metal chloride salt (HAuCl4·6H2O, H2PtCl6·6H2O, PdCl2, RhCl3·3H2O, IrCl3,
FeCl3·6H2O, CuCl2·2H2O, NiCl2·6H2O, CoCl2·6H2O, ZnCl2, PbCl2) in varying HCl con-
centrations to obtain a concentration of 0.1 × 10−3 M. For SSRs, the aqueous phase of 2.0 M
HCl solution containing 0.274 M (53.4 g/L) Pt(IV), 8.24 × 10−3 M (1.58 g/L) Ir(III), 0.115 M
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(11.8 g/L) Rh(III), and 0.268 M (17.0 g/L) Cu(II) was prepared by adding H2PtCl6·6H2O
(14.2 g), IrCl3 (0.246 g), RhCl3·3H2O (3.03 g), CuCl2·2H2O (4.57 g), and concentrated HCl
(17.9 mL) to a 100 mL volumetric flask and diluting with distilled water. The organic phase
was prepared by dissolving the extractant in chloroform or a mixed solvent consisting of
n-dodecane and 2-ethylhexanol to achieve a concentration of 0.1 M. Note that chloroform
should not be used for practical processes due to its harmful property. However, chloro-
form was partly employed as a diluent for preliminary validation of extraction behavior by
comparing with previous results. Equal volumes of both phases were shaken horizontally
at 30 ◦C and 150 rpm for 3 h. A temperature-controlled water bath was used to maintain the
temperature during phase equilibration. After phase separation, the metal concentration
in the aqueous phase was measured using inductively coupled plasma-atomic emission
spectrometry (ICP-AES) (ICPS-8100, Shimadzu Co., Kyoto, Japan). Notably, the presence
or absence of the third phase was visually confirmed. Further, 5.0 M HCl, 5.0 M nitric
acid (HNO3), water, 0.1 M ammonia (NH3), or 0.1 M sodium hydroxide (NaOH) aqueous
solutions were used to strip the extracted Pt(IV) from the organic phase. The extraction
and stripping percentages (%Extraction and %Stripping) of the metal ions were calculated
using the following equations:

%Extraction = {([Metal ion]i − [Metal ion]e)/[Metal ion]i} × 100 (1)

%Stripping = {[Metal ion]s/([Metal ion]i − [Metal ion]e) × 100 (2)

where the subscripts i, e, and s denote the initial, equilibrium, stripping conditions, respec-
tively. Notably, when the third phase is formed, %Extraction refers to the percentage of
metal ions removed from the aqueous phase, rather than the percentage of metal ions in
the organic phase. Measurements of %Extraction and %Stripping were repeated three times,
with standard errors of less than 5%.

3. Results and Discussion
3.1. Extraction from Lower Metal Concentration
Effect of HCl Concentration

The extraction behavior of the four extractants synthesized in this study for pre-
cious and base metals was investigated under lower metal concentration conditions.
Figure 2 shows the effect of HCl concentration on the extraction percentage of metal ions by
MonoAA, MonoOA, MonoBU, and BisAA. For comparison, the extraction results of PGM
and base metal ions by MonoBU reported very recently are also shown in Figure 2c [34].

Au(III) was extracted almost quantitatively in all HCl concentrations by all extractants.
In general, Au(III) is easily extracted by ketone and ether extractants in the hydromet-
allurgical separation process [7,35]. Therefore, we believe that these extractants, which
are secondary amides, urea, and tertiary amides with carbonyl oxygen atoms, can easily
extract Au(III).

At HCl concentration of 0.01–1.0 M, the order of extraction ability of Pt(IV) was
MonoAA >> MonoOA > MonoBU >> BisAA, whereas the order at HCl concentrations
of 1.0–10 M was MonoAA > MonoOA ≈ MonoBU > BisAA. Interestingly, in the lower
HCl concentration, Pt(IV) was hardly extracted by BisAA. However, Pt(IV) was extracted
by MonoAA, MonoOA, and MonoBU in the lower HCl concentration, and the extraction
behavior of Pt(IV) by MonoOA, MonoBU, and BisAA changes around 1.0 M HCl concen-
tration. Further, there is no significant difference in the acidic conditions in which the
carbonyl oxygen atoms of secondary amide, urea, and tertiary amide groups are proto-
nated [36,37]. These carbonyl oxygen atoms are protonated at HCl concentrations above
about 2.0 M [15,38,39]. In other words, in the extraction of Pt(IV) at low HCl concentra-
tion, these extractants are considered incapable of anion exchange reactions via coulombic
interactions associated with the protonation of carbonyl oxygen atoms. Taken together,
Pt(IV) is extracted only via hydrogen bonding interaction to [PtCl6]2− by N–H moieties of
secondary amide and urea groups in the extraction of Pt(IV) from low HCl concentration
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by MonoAA, MonoOA, and MonoBU. Whereas, Pt(IV) is considered to be extracted by
anion exchange reaction via coulombic interaction with protonation of carbonyl oxygen
atoms in the extraction of Pt(IV) from high HCl concentration.
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Figure 2. Effect of HCl concentration on the extraction percentage of metal ions by (a) MonoAA,
(b) MonoOA, (c) MonoBU, and (d) BisAA. [Extractant]org,i = 1.0 M in chloroform, [Pt(IV), Pd(II), Rh(III),
Ir(III), Fe(III), Cu(II), Ni(II), Co(II), Zn(II), Pb(II)]aq,i = 0.1× 10−3 M each, [HCl]aq,i = 0.01–10 M.

For Pd(II) extraction by MonoAA, Pd(II) was almost quantitatively extracted in all
HCl concentrations, whereas the Pd(II) extraction behavior by MonoOA, MonoBU, and
BisAA exhibited a similar trend with minor differences in extraction ability. Concretely,
the extraction percentage decreased with increasing HCl concentration at 0.01–1.0 M, and
it increased with increasing HCl concentration at higher regions. Given that Pd(II) is a
relatively ligand-exchangeable ion among the PGMs, the extraction behavior at low HCl
concentration is probably due to chloride ions suppressing the typical ligand exchange
reaction [5,7]. Additionally, at high HCl concentrations, the extraction percentage increased
with increasing HCl concentration because of the anion exchange reaction via coulombic
interaction associated with the protonation of the extractant [5,7]. Further, Rh(III) and Ir(III)
were hardly extracted in any extraction system, except that the extraction percentages of
Rh(III) and Ir(III) by MonoBU were 16% and 31%, respectively, at HCl concentrations of
3.0–5.0 M.

For base metals, Fe(III), Cu(II), Co(II), and Zn(II) were hardly extracted at HCl concen-
tration of 0.01–1.0 M, whereas at HCl concentration of 1.0–10 M, the extraction percentage
increased with increasing HCl concentration. This phenomenon is due not only to the pro-
tonation of the extractant but also to the presence of these metal ions as anionic species such
as [FeCl4]−, [CuCl4]2−, [CoCl4]2−, and [ZnCl4]2− at high HCl concentrations [16,40,41].
Additionally, it is considered that Ni(II) and Pb(II) were hardly extracted because they do
not form anionic species with chloride ions [42,43].
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3.2. Extraction from SSRs
3.2.1. Effect of Shaking Time

In this section, we investigated the selective extraction of Pt(IV) from SSRs containing
high concentrations of metal ions. Figure 3 shows the effect of shaking time on the extraction
and stripping percentages of Pt(IV) by MonoAA, MonoOA, and MonoBU. For Pt(IV)
extraction, the %Extraction of Pt(IV) reached the equilibrium in about 3 h for all extractants
and remained constant for more than 20 h. For stripping, the %Stripping of Pt(IV) reached
the equilibrium in 3–6 h for all extractants. These results suggest that the extractants
synthesized in this study are capable of extracting and stripping Pt(IV) relatively quickly.
Based on this result, the shaking time of subsequent extraction and stripping experiments
was set to 3 h.
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Figure 3. Effect of shaking time on the (a) extraction and (b) stripping percentages of Pt(IV)
by MonoAA, MonoOA, and MonoBU. [Extractant]org,i = 1.0 M in n-dodecane/2-ethylhexanol
(80 vol%/20 vol%), [Pt(IV)]aq,i = 0.243 M, [Ir(III)]aq,i = 4.92 × 10−3 M, [Rh(III)]aq,i = 0.117 M,
[Cu(II)]aq,i = 0.291 M, [HCl]aq,i = 2.0 M.

3.2.2. Pt(IV) Separation from SSRs

The extraction and separation ability of Pt(IV) from SSRs by the four extractants
synthesized in this study was investigated. Briefly, 2.0 M HCl solutions containing ap-
proximately 0.274 M (53.4 g/L), 8.24 × 10−3 M (1.58 g/L), 0.115 M (11.8 g/L), and 0.268 M
(17.0 g/L) of Pt(IV), Ir(III), Rh(III), and Cu(II) were employed as SSRs. For comparison,
TOA, TBP, DBC, and MIBK were used as conventional commercial extractants. Figure 4
shows the extraction percentage of Pt(IV), Ir(III), Rh(III), and Cu(II) from the SSRs by these
eight extractants.

In terms of the extraction ability of Pt(IV), the following order was observed: TOA >
MonoBU ≈MonoAA > MonoOA > TBP, DBC, MIBK, BisAA. This difference in extraction
ability is thought to be due to differences in the extraction mechanism. TOA, a tertiary
amine, is readily protonated under acidic conditions and extracts Pt(IV) through an an-
ion exchange reaction with [PtCl6]2− via coulombic interaction [5,7–9]. Meanwhile, the
carbonyl oxygen atoms of secondary amide and urea groups are protonated only under
relatively high acidic conditions [15,36–39]. Additionally, the results of Figure 2 and previ-
ous studies [32] suggest that the Pt(IV) extraction using MonoAA, MonoOA, and MonoBU
also involves hydrogen bonding, which is a relatively weak interaction. Thus, MonoAA,
MonoOA, and MonoBU were considered to have lower extraction ability of Pt(IV) than
TOA. BisAA, TBP, DBC, and MIBK hardly extracted Pt(IV) from the SSRs, and this result
agrees with Figure 2 and previous reports [5,7–9,35,44].
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(b) MonoOA, (c) MonoBU, (d) BisAA, (e) TOA, (f) TBP, (g) DBC, (h) MIBK. [Extractant]org,i = 1.0 M
in n-dodecane/2-ethylhexanol (80 vol%/20 vol%), [Pt(IV)]aq,i = 0.270 M, [Ir(III)]aq,i = 9.40 × 10−3 M,
[Rh(III)]aq,i = 0.109 M, [Cu(II)]aq,i = 0.248 M, [HCl]aq,i = 2.0 M.

For Pt(IV) selectivity, MonoAA, MonoOA, and MonoBU revealed higher selectiv-
ity than other extractants. Transition metal ions including PGMs form anionic chloro-
species due to strong interactions with Cl− [5,7]. However, Cu(II) forms anion complexes
such as [CuCl4]2− only under extreme conditions, such as chloride ion concentrations of
6.0 M or higher [40,42]. Accordingly, Pt(IV), Ir(III), Rh(III), and Cu(II) exist as [PtCl6]2−,
[IrCl5(H2O)]2−, [IrCl6]3−, [RhCl5(H2O)]2−, [RhCl6]3−, and Cu2+, respectively, in 2.0 M Cl−

solution [5,7,40,42]. Moreover, the tendency of the chloro-anionic species to form ion pairs
with cationic ligands is [MCl6]2− >> [MCl6]3− > [MCl5(H2O)]2−, where M denotes the
respective metal ions [5,7]. This order is based on the charge density of the chloro-anionic
species, i.e., lower negatively charged species will preferentially form ion pairs with a
positively charged species compared with higher negatively charged species. Considering
these factors, it is probable that the high Pt(IV) selectivity is due to the relatively weak
extraction ability of MonoAA, MonoOA, and MonoBU, as well as the presence of Ir(III)
and Rh(III) as more inert species. Therefore, the almost zero extraction percentage of
Ir(III), Rh(III), and Cu(II) by MonoAA, MonoOA, and MonoBU is considered a significant
advantage in the actual hydrometallurgical separation process.

3.2.3. Effect of Diluent Composition of the Organic Phase

For stable operation of the actual hydrometallurgical separation process, not only
high extraction efficiency but also the absence of a third phase is required [45–48]. In
this section, we investigated the effect of the mixing ratio of the diluents n-dodecane and
2-ethylhexanol on the extraction of Pt(IV). Figure 5 shows the extraction percentages of
Pt(IV) using MonoAA, MonoOA, and MonoBU in various n-dodecane/2-ethylhexanol
ratios. The addition of 2-ethylhexanol suppressed the formation of the third phase in
all extraction systems. When the ratio of 2-ethylhexanol in the diluent was increased,
the extraction percentage of Pt(IV) decreased from 55% to 32% for MonoAA. Further,
the addition of more than 30 vol% 2-ethylhexanol suppressed the formation of the third
phase. Regarding MonoOA, when more than 20 vol% of 2-ethylhexanol was added, the
extraction percentage of Pt(IV) remained almost constant at about 25%, and no third phase
was formed. In the case of MonoBU, more than 50 vol% 2-ethylhexanol was required to
suppress the third phase formation. The addition of slightly polar higher alcohols such
as 2-ethylhexanol, which increased the solubility of the extracted complex in the organic
phase, may have suppressed the third phase formation [45–48].
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Figure 5. Effect of composition of the organic phase diluent on the extraction percentage
of Pt(IV) by MonoAA, MonoOA, and MonoBU. [Extractant]org,i = 1.0 M in n-dodecane/2-
ethylhexanol (100 vol%/0 vol%–40 vol%/60 vol%), [Pt(IV)]aq,i = 0.292 M, [Ir(III)]aq,i = 9.64 × 10−3

M, [Rh(III)]aq,i = 0.116 M, [Cu(II)]aq,i = 0.262 M, [HCl]aq,i = 2.0 M.

3.2.4. Effect of Phase Ratio of the Organic and Aqueous Phases

Figure 6 shows the effect of the phase ratio of organic to aqueous phases on the
extraction of Pt(IV) by MonoAA, MonoOA, and MonoBU. In all extraction systems, the
extraction percentage of Pt(IV) increased with the phase ratio of the organic phase. In the
MonoAA and MonoBU systems, the third phase was formed in all volume ratios of the
diluent, whereas in the MonoOA system, no third phase was formed. This is thought to
be due to MonoOA’s longer alkyl chains than other extractants, which results in higher
solubility MonoOA and Pt(IV) extracted complexes in the organic phase.
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Figure 6. Effect of phase ratio between organic and aqueous phases on the extraction percentage of
Pt(IV) by MonoAA, MonoOA, and MonoBU. [Extractant]org,i = 1.0 M in n-dodecane/2-ethylhexanol
(80 vol%/20 vol%), [Pt(IV)]aq,i = 0.281 M, [Ir(III)]aq,i = 9.64 × 10−3 M, [Rh(III)]aq,i = 0.116 M,
[Cu(II)]aq,i = 0.262 M, [HCl]aq,i = 2.0 M, Vorg:Vaq = 2:8 − 8:2.
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3.2.5. Effect of Pt(IV) Concentration

We studied the effects of initial Pt(IV) and extractant concentrations on Pt(IV) extrac-
tion to confirm the conditions for the third phase formation in the extraction of Pt(IV).
Figure 7 shows a plot of the equilibrium Pt(IV) concentration in the organic phase against
the initial Pt(IV) concentration in the aqueous phase. Here, n-dodecane/2-ethylhexanol
(80 vol%/20 vol%) was used as a diluent.
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n-dodecane/2-ethylhexanol (80 vol%/20 vol%), [Pt(IV)]aq,i = 0.001–0.274 M, [HCl]aq,i = 2.0 M.

A common observation across all extraction systems is that the Pt(IV) concentration
in the organic phase increases with the initial Pt(IV) and the extractant concentrations.
Figure 7a shows that the third phase was in the MonoAA system when the initial Pt(IV)
and extractant concentrations were above 0.05 and 0.40 M, respectively. Further, no third
phase was formed under any conditions in the MonoOA system (Figure 7b). This could be
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due to MonoOA’s long alkyl chains improving the solubility of the extracted complex in
the diluent, which agrees well with the trend in Figure 6. Moreover, Figure 7c shows that
the third phase was formed in the MonoBU system when the initial Pt(IV) and extractant
concentrations were above 0.10 and 0.20 M, respectively. The order of Pt(IV) extraction
capacity is MonoAA > MonoBU > MonoOA; however, MonoOA has the advantage of being
less likely to form the third phase, which is vital for the stability of the separation process.

3.3. Stripping Test
3.3.1. Stripping of Pt(IV)

A stripping experiment from the Pt(IV) loaded organic phase was conducted. Table 1
lists the stripping percentage of Pt(IV) from the Pt(IV) loaded organic phase using MonoAA,
MonoOA, and MonoBU. In this study, 5.0 M HCl and 5.0 M HNO3 were used as acidic
stripping reagents, water as a neutral stripping reagent, and 0.1 M NH3 solution and 0.1 M
NaOH solution as stripping reagents.

Table 1. Stripping percentage of Pt(IV) from Pt(IV) loaded organic phase by MonoAA,
MonoOA, and MonoBU. [Extractant]org,i = 1.0 M in n-dodecane/2-ethylhexanol (80 vol%/20 vol%),
[Pt(IV)]aq,i = 0.256 M, [Ir(III)]aq,i = 9.54 × 10−3 M, [Rh(III)]aq,i = 0.112 M, [Cu(II)]aq,i = 0.270 M,
[HCl]aq,i = 2.0 M. %Extraction of Ir(III), Rh(III), and Cu(II) were 0% in any extraction systems.

Stripping Reagent
%Stripping of Pt(IV) (%)

MonoAA 1 MonoOA 2 MonoBU 3

5.0 M HCl 13.8 9.3 4.5
5.0 M HNO3 53.4 81.3 73.7

Water 59.3 74.8 68.1
0.1 M NH3 60.0 78.8 70.2

0.1 M NaOH 60.4 69.6 64.3
1 %Extraction of Pt(IV) by MonoAA is 42.7%. 2 %Extraction of Pt(IV) by MonoOA is 22.8%. 3 %Extraction of Pt(IV)
by MonoBU is 61.0%.

For water, the stripping percentages of MonoAA, MonoOA, and MonoBU systems
were 59.3%, 74.8%, and 68.1%, respectively. The stripping of PGM ions requires a highly
concentrated acidic or basic aqueous solution and a sulfur-containing reagent such as
thiourea [35]. Although the stripping percentage is not quantitative, the fact that Pt(IV)
can be stripped using only water is a major advantage of these extraction systems from
the perspective of industrial use and reduced environmental impact. Although this is a
hypothetical step that requires further investigation, the stripping of Pt(IV) by water alone
could be due to the deprotonation of the extractants and Pt(IV) extraction via relatively
weak interactions such as hydrogen bonding interactions. The Pt(IV) stripping percentage
was observed in the following order: MonoOA > MonoBU > MonoAA, which was the
reverse of the order of extraction ability in Figures 2 and 4.

For the basic stripping reagents, 0.1 M NH3 and 0.1 M NaOH aqueous solutions, the
stripping percentages of Pt(IV) in MonoAA, MonoOA, and MonoBU systems were about
60%, 70–79%, and 64–70%, respectively. There was no significant difference was observed
between the NH3 and NaOH solutions.

Regarding the acidic stripping reagents, HNO3 was clearly more effective than HCl in
stripping Pt(IV) in all extraction systems. The fact that 5.0 M HCl barely stripped Pt(IV)
corresponds to the result in Figure 2 that Pt(IV) was well extracted from 5.0 M HCl in
all extraction systems. In the case of HNO3 as a stripping reagent, Pt(IV) was possibly
stripped due to the extraction of HNO3 molecules into the organic phase and the change in
Pt(IV) speciation.

3.3.2. Effect of Settling Time of Organic Phase after Pt(IV) Loading

In the actual hydrometallurgical separation process, there are situations where the
stripping process cannot be performed immediately after the forward extraction. Thus, it
is necessary to verify whether stripping can be performed stably even if the organic phase
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containing metal ions has settled for a while after the forward extraction. Figure 8 shows
the effect of settling time of the Pt(IV) loaded organic phase on the stripping percentage of
Pt(IV) using MonoAA. Here, we only examined the MonoAA extraction system, which
has the highest Pt(IV) extraction ability of the three extractants, as a representative. Water
was used as a stripping reagent. Figure 8 also shows that despite the Pt(IV) loaded organic
phase was settled for 300 h, the stripping percentage was 81%. This suggests that the
stripping process can be performed stably at least within 300 h after Pt(IV) extraction.
Note that this %Stripping deviates slightly from the results in Table 1. This may be due to
the difference in the initial concentration of Pt(IV) in each experiment, although a more
detailed study is needed.
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Figure 8. Effect of settling time of the Pt(IV) loaded organic phase on the stripping percentage
of Pt(IV) by MonoAA. [MonoAA]org,i = 1.0 M in n-dodecane/2-ethylhexanol (80 vol%/20 vol%),
[Pt(IV)]aq,i = 0.295 M, [Ir(III)]aq,i = 9.83 × 10−3 M, [Rh(III)]aq,i = 0.119 M, [Cu(II)]aq,i = 0.270 M,
[HCl]aq,i = 2.0 M. Stripping reagent: water.

4. Conclusions

In this study, the extraction and separation of Pt(IV) from SSRs by simple secondary
amides and urea extractants were evaluated to explore the applicability of these extractants
to the actual hydrometallurgical separation process. In the extraction of Pt(IV) from
low HCl concentration by MonoAA, MonoOA, and MonoBU, Pt(IV) was extracted only
via the hydrogen bonding interaction to [PtCl6]2− by N–H moieties of secondary amide
and urea groups. Despite the presence of numerous metal ions, MonoAA, MonoOA,
and MonoBU exhibited high Pt(IV) selectivity in the Pt(IV) extraction from the SSRs,
though their Pt(IV) extraction ability was lower than TOA. MonoAA had the highest Pt(IV)
extraction capacity compared with MonoOA and MonoBU. However, MonoOA had a
lower Pt(IV) extraction capacity but hardly produced the third phase. In all extraction
systems, Pt(IV) was readily stripped from the Pt(IV) loaded organic phase using only water.
We believe that the detailed investigation of the practical application of the secondary
amide and urea extractants developed in this study will help improve the efficiency of the
Pt separation process in the future.
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