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Abstract: Comprehensive two-dimensional gas chromatography mass spectrometry (GC×GC-MS)
is a powerful tool for the analysis of complex mixtures, and it is ideally suited to discovery studies
where the entire sample is potentially of interest. Unfortunately, when unit mass resolution mass
spectrometers are used, many detected compounds have spectra that do not match well with
libraries. This could be due to the compound not being in the library, or the compound having a
weak/nonexistent molecular ion cluster. While high-speed, high-resolution mass spectrometers,
or ion sources with softer ionization than 70 eV electron impact (EI) may help with some of this,
many GC×GC systems presently in use employ low-resolution mass spectrometers and 70 eV EI
ionization. Scripting tools that apply filters to GC×GC-TOFMS data based on logical operations
applied to spectral and/or retention data have been used previously for environmental and petroleum
samples. This approach rapidly filters GC×GC-TOFMS peak tables (or raw data) and is available
in software from multiple vendors. In this work, we present a series of scripts that have been
developed to rapidly classify major groups of compounds that are of relevance to metabolomics
studies including: fatty acid methyl esters, free fatty acids, aldehydes, alcohols, ketones, amino acids,
and carbohydrates.

Keywords: comprehensive two-dimensional gas chromatography-mass spectrometry (GC×GC-MS);
scripting; metabolomics; data analysis; data visualization

1. Introduction

Most of the GC-based metabolomics applications combine GC with MS detection to
help with the identification of unknown analytes. Metabolomics samples typically exhibit
high complexity due to their diverse chemical content that is present at wide concentration
ranges. In non-target studies, accurate identification of metabolites at low concentrations
can be complicated by coelutions and/or peak distortion due to closely/coeluting highly
abundant metabolites [1,2]. Low-concentration analytes can also be easily obscured due to
noise in the spectrum that can hinder the qualitative identification of peaks based on mass
spectral library matching. Meanwhile, overloaded peaks from high-concentration species
may lead to inaccurate identification arising from detector saturation and distortion of
mass spectra [3].

As a platform, comprehensive two-dimensional gas chromatography time-of-flight
mass spectrometry (GC×GC-TOFMS) is an excellent tool for non-target metabolomics.
The higher and more effective use of peak capacity when compared to one-dimensional
GC methods, results in improved signal-to-noise ratios due to increased signal (focus-
ing/band compression at modulator) and decreased noise (separation of analytes from
primary column bleed and coeluting analytes). Consequently, spectra are cleaner, allowing
improved compound identification. When compared to LC-MS methods, matrix effects are
less in GC-MS, and the technique offers a broad dynamic range [4]. Additionally, GC×GC
techniques provide chromatograms with an inherently ordered structure, which is useful
for the identification of unknown compounds. Moreover, this technique is advantageous
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through the possibility of “seeing everything”; the TOFMS allows the capture of complete
mass spectra at every point [5]. Due to the above benefits, this instrument is seeing in-
creasingly frequent use for non-target metabolomics studies of biofluids (e.g., urine, blood,
sweat), breath, plant extracts, etc. [2,6–11].

However, the amount of data generated from such comprehensive techniques is
massive and nearly impossible to handle manually [2,5,12,13]. GC(×GC)-MS systems
often use electron impact ionization (EI), which generates highly reproducible fragmen-
tation patterns in both m/z values and the relative abundances of the corresponding ions.
This facilitates the construction of databases of searchable mass spectral libraries. When a
chromatogram is processed with an MS library database, the final peak table contains a
list of tentatively identified analytes with the library match similarity factors. However,
despite the use of such databases, a manual review of thousands of peaks in a sample can
be a tedious task. Each entry in the peak table must be verified by comparing the retention
index and the MS library for a higher assurance of compound identification. Unfortu-
nately, in many studies with unit mass resolution mass spectrometers, many (sometimes
most) detected compounds have spectra that do not match well with libraries. While the
advancement made in GC×GC-MS systems with high-speed, high-resolution accurate
mass spectrometers, or ion sources with softer ionization than 70 eV electron impact may
resolve some of the challenges, there are many GC×GC systems presently in use that rely
on low-resolution mass spectrometers. With the process of manually examining the peak
table, compounds with low spectral match quality can be evaluated along with library
retention indices to obtain the final list of provisional identifications. The issue is that
when analytes are searched against a library, it is possible to have multiple compounds
with the same library hit for structurally similar compounds. It is also common that a
detected analyte is not registered in the mass spectral library database. This is especially
true for trimethylsilyl (TMS) derivatives of compounds, generated with a gold standard
derivatization method for metabolomics samples [14]. Consequently, peak tables suffer
from incorrect/ambiguous name assignments [15] and these tentative names must be
verified through a manual process by knowledgeable personnel capable of interpreting the
mass spectral and elution data. With a complex sample, where the list of analytes can reach
several thousands of peaks, this manual process is a significant burden. The complexity of
data analysis, rather than the usual culprits of sample preparation or instrumental time,
serves as the major bottleneck in GC×GC-TOFMS analysis.

In order to speed up and simplify data analysis, script-based filtering of peaks is a
promising tool. Scripting involves programming a series of logic rules based on mass
spectrometric and/or retention properties for target compounds to determine whether
the compound belongs to a specific class [16–18]. The extensive and reproducible frag-
mentation patterns from EI are advantageous for creating mass spectral filtering scripts.
The scripts work as a data reduction filter by enabling the classification of chromato-
graphic peaks based on distinguishable features in mass spectral information. Scripting
tools that apply filters to GC×GC-TOFMS data were initially used for environmental
and petroleum samples. Numerous scripts have been published to aid with, for example,
the identification of halogenated species [17,19–22]. It was evident that the scripting tool
greatly assists with an automated and rapid classification of the compounds in GC×GC
chromatograms [16,17,23–26]. The speed and convenience of data analysis afforded by
scripting contributed to the more widespread use of GC×GC in the environmental and
petroleum fields.

When developing scripts, finding the molecular ion is beneficial, as the subsequent
expected neutral losses can be deduced from the molecular ion peak. The primary reason
why scripts could be developed and used widely for environmental studies is due to the
convenience in locating the molecular ion for the major compound classes of interest, such
as halogenated species and aromatic compounds. Investigation of the molecular ion was
performed as the fundamental step in many of the previously reported scripts for envi-
ronmental samples [16,17,27]. Writing scripts becomes more challenging for compounds
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that generate a weak (or no) molecular ion, as a molecular ion usually forms the basis for
scripting rules. TMS derivatives generally produce weak or undetectable molecular ion
peaks due to the fast elimination of the substituent radical from the silicon of the molecular
ion [28,29]. In addition, for TMS derivatized compounds, the trimethylsilyl moiety (m/z 73)
is, if not the base peak, a major ion common to all TMS derivatives.

This manuscript presents a suite of scripts developed for GC×GC-TOFMS metabolomics
data with the aim of rapid screening of complex biological samples, which typically contain
thousands of compounds, comprised of diverse compound classes. In this work, the scripts
were developed using the scripting feature in ChromaTOF® (v.4.72; LECO), one of the
most used commercial software packages in the GC×GC-TOFMS community. However,
the scripts presented herein should be equally applicable to data from other GC×GC-
MS systems, possibly with minor adjustments to the abundance thresholds in the logical
decision trees. The greatest advantage of the scripts presented herein is their reliance solely
on mass spectral information (i.e., retention information is not considered). This makes
the scripts versatile and applicable to any GC×GC-TOFMS data (likely well-resolved
GC-TOFMS data also), regardless of the conditions used in the analytical run. The scripts
were applied to standard mixtures of four different major classes of metabolites (amino
acids, fatty acids, fatty acid methyl esters, and carbohydrates) at different concentrations.
After validating the performance of classifying scripts with standards at low and high
concentrations, the automated filtering scripts were applied to various derivatized and non-
derivatized biosamples to evaluate their performance. To the best of our knowledge, this
represents the first collection of automated filtering scripts for handling GC×GC-TOFMS
data in metabolomics applications.

2. Materials and Methods
2.1. Chemicals and Materials
2.1.1. Derivatization Materials

HPLC grade methanol, HPLC grade toluene, and 99.9% pyridine were purchased from
Millipore-Sigma Canada. Toluene was dried over anhydrous sodium sulfate (Millipore-
Sigma Canada). Methoxyamine hydrochloride (Millipore-Sigma, Canada) solution was pre-
pared in pyridine at a concentration of 20 mg/mL. Ampoules of N-methyl-N-(trimethylsilyl)
trifluoroacetamide + 1% trichloromethylsilane (MSTFA + 1% TMCS), were purchased from
Fisher Scientific Canada and opened immediately prior to use. Safe-Lock amber centrifuge
tubes were purchased from Eppendorf Canada Ltd., while 2-mL glass GC vials, GC vials
with integral 300 µL inserts, and GC vial caps (PTFE-faced silicon) were purchased from
Chromatographic Specialities Inc. (Canada).

2.1.2. Standard Mixtures

To test the performance of the developed scripts at various concentrations (from
LOD level to overload-the-column high), a mixture of amino acid standard mixture
(AAS18-10 mL analytical standard, Millipore-Sigma Canada), fatty acid standard mix-
ture (Nu-Check, MN, USA), fatty acid methyl esters standard mixture (SUPELCO 37
Component FAME Mix, Millipore-Sigma Canada), and a carbohydrates standard mix-
ture (Carbohydrates kit, Millipore-Sigma Canada) were mixed at 18 different concen-
trations. The compounds of the standard mixture used in the experiment are listed in
Supplementary Materials Table S1. The details of how the mixtures were prepared are
also included in Supplementary Materials. A total of 108 compounds are in the mix-
ture of standards, including 17 amino acids, 44 fatty acids, 37 fatty acid methyl esters,
and 10 carbohydrates.

2.2. Sample Preparation

The performance of the scripts was evaluated using previously acquired data from a
variety of sample types, including urine, plasma, algae, feces, and sweat [30,31].
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2.2.1. Derivatization

Urine, plasma, algae samples, and standard mixtures were prepared by a typical
two-step derivatization process of methoximation, followed by subsequent trimethylsily-
lation [32]. The details of sample preparation are included in Supplementary Materials.
In brief, the sample was extracted with an organic solvent and dried under nitrogen. To the
dried residue, 50 µL of 20 mg/mL methoxyamine hydrochloride in pyridine were added
for methoximation and incubated at 60 ◦C for 2 h. Subsequently, 100 µL of MSTFA were
added and incubated again at 60 ◦C for 1 h.

2.2.2. SPME (Solid-Phase Microextraction)

The volatiles from feces and sweat samples were extracted using a three-phase SPME
fibre (CAR/DVB/PDMS) with sampling from the headspace [30,33]. Other details are in
the publications presenting the data sets.

2.3. GC×GC-TOFMS Analysis

All GC×GC-TOFMS analyses were performed on a LECO Pegasus 4D system (Leco
Instruments, St. Joseph, MI, USA), with an Agilent Technologies 7890 gas chromatograph
(Palo Alto, CA, USA) equipped with a four-jet dual-stage liquid nitrogen cryogenic modula-
tor. The samples were analyzed with different column combinations and different GC×GC
and MS methods. The two GC×GC-TOFMS conditions used to evaluate the versatility of
scripts in Section 3.2 are summarized in Table 1.

Table 1. GC×GC-TOFMS conditions employed to evaluate the versatility of scripts in Section 3.2.

Condition 1 Condition 2

Primary Column 30 m × 0.25 mm; 0.25 µm
Rtx-5MS (Restek)

30 m × 0.25 mm; 1.00 µm
Rtx-5 (Restek)

Secondary Column 1.7 m × 0.25 mm; 0.20 µm
SLB-IL59 (Supelco)

1.8 m × 0.18 mm; 0.18 µm
Rtx-Wax (Restek)

GC×GC Method

Inlet temperature: 270 ◦C
Carrier gas: helium, constant flow of 2 mL/min

70 ◦C (5 min), ramp at 9.7 ◦C/min to 280 ◦C (15 min)
2◦ oven: 10 ◦C offset to the GC oven

Modulator: 10 ◦C off
set to the 2◦ oven

Transfer line: 270 ◦C
Modulation: 2.0 s (0.4 hot, 0.6 cold)

Inlet temperature: 250 ◦C
Carrier gas: helium, constant flow of 1.44 mL/min

80 ◦C (4 min), ramp at 3.5 ◦C/min to 230 ◦C (10 min)
2◦ oven: 5 ◦C offset to the GC oven

Modulator: 15 ◦C offset to the 2◦ oven
Transfer line: 250 ◦C

Modulation: 2.5 s (0.6 hot, 0.65 cold)

MS Method

m/z 25–900
acquisition delay: 300 s

acquisition rate: 200 spectra/second
optimized voltage offset: 200

electron energy: −70 eV
ion source: 200 ◦C

m/z 50–660
acquisition delay: 298 s

acquisition rate: 200 spectra/second
acquisition voltage: 1700
electron energy: −70 eV

ion source: 200 ◦C

Total Analysis Time 41.6 min 56.9 min

2.4. Data Processing and Automated Classification

All GC×GC-TOFMS data were processed using ChromaTOF® (v.4.72) software from
LECO. The baseline offset was set to 0.9, and the expected peak widths throughout the
entire chromatographic run were set to 10 s for the first dimension and 0.15 s for the
second dimension. The data were processed with a peak finding threshold of S/N 30:1.
Peak finding and deconvolution of mass spectra were performed automatically as an
embedded function of ChromaTOF®. All chromatographic peaks were searched against
the NIST MS Search v.2.3 (2017) and Wiley 08 libraries. The scripting option was enabled in
ChromaTOF®, allowing user-written scripts to be applied over the entire chromatographic
space. The scripts were written with Microsoft VBScript language, a Visual Basic dialect.
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2.5. Scripting-Based Classifications and Evaluation

The scripts used mass spectral information without any retention time information
to locate the members of target compounds/classes. The scripts were written as a set
of logical operations, incorporating the knowledge about mass spectral fragmentation
for the class of compounds of interest. In general, the scripts presented in this study
involve the following steps: the expected molecular ion of the family of compounds was
calculated based on the molecular structure, probable neutral losses were subtracted from
the calculated molecular ion, and then other prominent features (e.g., abundance of major
fragments and low intensities for specific regions in the mass spectrum) were evaluated.
For metabolites that are mostly non-halogenated species, isotopic ratios are not as useful as
they are for the halogenated species in environmental studies.

For a homologous series of metabolites, the expected molecular ion was calculated
using the number of carbons in the alkyl chain. For example, for the class of normal
saturated fatty acid methyl esters, the theoretical molecular ion was determined with
Equation (1). From the calculated molecular ion, the subsequent fragment losses, such
as [M-31]+, representing a loss of a methoxy group, as well as [M-43]+ and [M-29]+,
were investigated from a complex rearrangement. The ion at m/z 74 is the McLafferty
rearrangement ion, which is the base peak for FAMEs; this confirms that it is indeed a
methyl ester. For the case of TMS derivatives of saturated fatty acids, the molecular ion
also was calculated, based on the number of carbons in the alkyl chain, with Equation (2).
For TMS derivatives of fatty acids, the molecular ion is generally weak or absent due to its
susceptibility to hydrolysis. Instead, [M-15]+, which represents the loss of a methyl group,
is significantly abundant. In addition, m/z 73 and 75 are common to all TMS derivatives
and usually are considerably abundant.

Expected MW = 14 × Carbon_number + 46 (1)

Expected_MW = 14 × Carbon_number + 104 (2)

In theory, the molecular ion should be the highest m/z aside from its isotopic clus-
ter. To address the limitation of compounds with weak/nonexistent molecular ion peaks,
the strategy of calculating the molecular ion, instead of searching for the appearance of
the molecular ion from the mass spectra, was used. With this approach, the spectra that
have a considerable number of high mass ions bigger than the expected molecular ion
with significant intensities were programmed to be excluded from the classification. With
logical operations, the intensities (ion counts) in the mass channel region above [M+2]+

to the end mass of the mass spectrum were checked if they fall within the set tolerance
for noise (i.e., 1% relative abundance of the base peak). This was done to reduce the
chance of bigger molecules being falsely filtered due to common fragment ions or random
chance. The scripts that were developed for use in this work can be found on GitHub at
https://github.com/seolinnam/Scripts_Metabolomics (accessed on 14 June 2021). As ad-
ditional metabolomics-related scripts are developed, they will be added to this repository.
To evaluate the performance of the scripts, standard mixtures of four different classes of
compounds (amino acids, fatty acids, fatty acids methyl esters, and carbohydrates) were
prepared at various concentrations. Since the scripts rely entirely on the mass spectral in-
formation, the spectral quality is crucial for scripts to work reliably. Various concentrations
of standard mixtures were prepared to test both ends of concentrations: (1) at extremely
high concentrations, where the peaks are overloaded and saturating the detector, could
result in distorted ion ratios, and (2) at very low concentrations, where the signals may
be close to the noise level, consequently boosting the noise in mass spectra, leading to
inaccurate ion ratios and fragmentation patterns. Eighteen mixtures of the standards at
different concentrations were prepared by mixing the four different classes of standard
mixtures at various concentrations. These standard mixtures were derivatized following
the two-step methoximation and trimethylsilylation derivatization procedure.

https://github.com/seolinnam/Scripts_Metabolomics
https://github.com/seolinnam/Scripts_Metabolomics
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3. Results and Discussion

Since GC×GC-TOFMS data provide both chromatographic and mass spectral infor-
mation, scripts can be written using either or a combination of retention and spectral
information. While mass spectral information is independent of the GC×GC-TOFMS
method used, retention information depends on the column combination and the GC×GC
method (temperature programming, flow rate) used for the analysis. Some published
scripts involve retention information in the search algorithms to enhance the accuracy of
the scripts for the compound classes that are challenging to distinguish with the mass spec-
tral information alone. The scripts presented herein were written using only mass spectral
information. This provides a significant advantage because these scripts are independent of
separation parameters and can be applied to any GC or GC×GC-TOFMS chromatograms,
regardless of the column combinations and GC and MS conditions used.

3.1. Evaluation of Scripts

The same data processing method with the in-house written scripts were applied
to all 18 chromatograms using ChromaTOF®. A peak table for each chromatogram was
generated automatically from the software after the data processing was finished. The
family group for the compounds that are classified by the scripts were displayed in the
classification column in the peak table. The peak tables were sorted to prioritize classified
compounds (Table 2 and Table 3). The detailed results of how many compounds in the
standard mixtures at various concentrations were classified for each group are included
in the Supplementary Materials Table S2. Figure 1 shows the classified peaks using the
“bubbles” feature, where the radii of the bubbles correspond to the relative areas of the
represented peaks. Each class of compounds was assigned a different color. It is visually
evident that the scripts struggled to classify peaks more at low concentrations (Figure 1A)
rather than at high concentrations (Figure 1C). Figure 1C showed that while peaks may
have been overloaded, the performance of the scripts was not significantly affected.

Table 2. Fourteen compounds were filtered from the standard mixture prepared at the lowest concentration. 1tR, 2tR

represent primary and secondary retention times, respectively.

Name Classifications 1tR, 2tR (s) Quant S/N Similarity Reverse

d-Mannose, 2,3,4,5,6-pentakis-O-(trimethylsilyl)-,
o-methyloxyme, (1Z)- sugar_5TMS 2375, 1.455 220 747 882

d-Glucose, 2,3,4,5,6-pentakis-O-(trimethylsilyl)-,
o-methyloxyme, (1Z)- sugar_5TMS 2382.5, 1.455 185 680 866

d-Galactose, 2,3,4,5,6-pentakis-O-(trimethylsilyl)-,
o-methyloxyme, (1E)- sugar_5TMS 2392.5, 1.445 381 823 887

Palmitoleic acid 1TMS monoenoicFA_TMS 2775, 1.555 53 529 763

trans-9-Octadecenoic acid, trimethylsilyl ester monoenoicFA_TMS 2912.5, 1.550 497 844 870

9,12-Octadecadienoic acid (Z, Z)-,
trimethylsilyl ester dienoicFA_TMS 2905, 1.570 177 726 852

Myristic acid, TMS derivative SatFA_TMS 2322.5, 1.560 348 789 855

Dodecanoic acid, trimethylsilyl ester SatFA_TMS 1960, 1.585 863 860 912

Trimethyl palmitate SatFA_TMS 2650, 1.545 3103 906 932

Trimethyl stearate SatFA_TMS 2952.5, 1.535 1711 883 917

Trimethylsilyl hexanoate SatFA_TMS 717.5, 1.605 2417 928 949

Heptanoic acid TMS SatFA_TMS 922.5, 1.650 488 811 870

Octanoic acid, trimethylsilyl ester SatFA_TMS 1137.5, 1.650 1037 914 932

Trimethylsilyl nonanoate SatFA_TMS 1352.5, 1.640 3152 897 951
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Table 3. Ninety-five compounds were filtered from the standard mixture prepared at the highest concentration. 1tR, 2tR

represent primary and secondary retention times, respectively.

Name Classifications 1tR, 2tR (s) Quant S/N Similarity Reverse

L-Valine, N-(trimethylsilyl)-, trimethylsilyl ester valine 1022.5, 1.660 27,807 909 915

L-Threonine, 3TMS derivative threonine_3TMS 1400, 1.635 13,900 937 938

D-(+)-Turanose, octakis(trimethylsilyl) ether sugar_8TMS 3470, 1.525 13,774 848 852

D-Lactose, octakis(trimethylsilyl) ether,
methyloxime (isomer 2) sugar_8TMS 3555, 1.585 9779 912 912

Maltose, octakis(trimethylsilyl) ether,
methyloxime (isomer 2) sugar_8TMS 3627.5, 1.600 6295 913 917

d-Glucose, 2,3,4,5,6-pentakis-O-(trimethylsilyl)-,
o-methyloxyme, (1E)- sugar_5TMS 2372.5, 1.485 30,046 930 948

d-Galactose, 2,3,4,5,6-pentakis-O-(trimethylsilyl)-,
o-methyloxyme, (1E)- sugar_5TMS 2380, 1.485 16,393 924 941

d-Glucose, 2,3,4,5,6-pentakis-O-(trimethylsilyl)-,
o-methyloxyme, (1Z)- sugar_5TMS 2400, 1.540 19,742 936 955

d-Galactose, 2,3,4,5,6-pentakis-O-(trimethylsilyl)-,
o-methyloxyme, (1Z)- sugar_5TMS 2420, 1.530 10,441 949 969

D-(-)-Fructose, pentakis(trimethylsilyl) ether,
methyloxime (syn) sugar_5TMS 2367.5, 1.440 30,674 922 922

D-Arabinose, tetrakis(trimethylsilyl) ether,
ethyloxime (isomer 1) sugar_4TMS 1940, 1.480 24,484 916 916

D-Arabinose, tetrakis(trimethylsilyl) ether,
ethyloxime (isomer 2) sugar_4TMS 1957.5, 1.445 42,525 915 915

D-Arabinose, tetrakis(trimethylsilyl) ether,
ethyloxime (isomer 1) sugar_4TMS 1967.5, 1.480 30,778 919 919

D-Arabinose, tetrakis(trimethylsilyl) ether,
ethyloxime (isomer 1) sugar_4TMS 1995, 1.515 56 907 907

Trimethylsilyl
2-[(Trimethylsilyl)amino]-3-[Trimethylsilyl)oxy]

propanoate
serine_3TMS 1332.5, 1.680 68 489 929

Serine, 3TMS derivative serine_3TMS 1345, 1.660 21,854 933 934

Phenylalanine, 2TMS derivative phenylalanine_2TMS 1900, 1.760 9406 923 924

Linolenic acid, trimethylsilyl ester multienoicFA_TMS 2870, 1.605 4904 897 898

à-Linolenic acid, TMS derivative multienoicFA_TMS 2907.5, 1.620 2745 885 886

Arachidonic acid, TMS derivative multienoicFA_TMS 3122.5, 1.605 5790 918 918

Eicosapentaenoic Acid, TMS derivative multienoicFA_TMS 3132.5, 1.610 6779 930 930

Norlinolenicacid TMS multienoicFA_TMS 3155, 1.605 5041 839 856

à-Linolenic acid, trimethylsilyl ester multienoicFA_TMS 3192.5, 1.605 5089 839 897

Arachidonic acid, trimethylsilyl ester multienoicFA_TMS 3365, 1.610 4978 860 907

Doconexent, TMS derivative multienoicFA_TMS 3375, 1.615 3783 914 914

7,10,13,16-Docosatetraenoic acid, (Z)-,
TMS derivative multienoicFA_TMS 3390, 1.620 4778 896 897

Eicosapentaenoic Acid, TMS derivative multienoicFA_TMS 3400, 1.625 4578 876 877

Arachidonic acid, trimethylsilyl ester multienoicFA_TMS 3432.5, 1.595 54 581 769

9-Tetradecenoic acid, (E)-, TMS derivative monoenoicFA_TMS 2297.5, 1.595 9268 932 948
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Table 3. Cont.

Name Classifications 1tR, 2tR (s) Quant S/N Similarity Reverse

13-Methyltetradec-9-enoic acid, TMS derivative monoenoicFA_TMS 2465, 1.605 7970 813 855

cis-9-Hexadecenoic acid, trimethylsilyl ester monoenoicFA_TMS 2612.5, 1.590 11,490 899 900

cis-9-Hexadecenoic acid, trimethylsilyl ester monoenoicFA_TMS 2620, 1.575 12,246 910 910

10-Heptadecenoic acid, (Z)-, TMS derivative monoenoicFA_TMS 2767.5, 1.590 9970 876 877

Trimethylsilyl (9E)-9-octadecenoate monoenoicFA_TMS 2907.5, 1.590 3780 920 937

trans-9-Octadecenoic acid, trimethylsilyl ester monoenoicFA_TMS 2925, 1.570 10,067 912 929

11-Eicosenoic acid, (E)-, TMS derivative monoenoicFA_TMS 3190, 1.585 8552 883 898

13-Docosenoic acid, (Z)-, TMS derivative monoenoicFA_TMS 3452.5, 1.595 7640 891 892

15-Tetracosenoic acid, (Z)-, TMS derivative monoenoicFA_TMS 3695, 1.620 5686 874 876

L-Leucine, N-(trimethylsilyl)-, trimethylsilyl ester leucine_2tms 1147.5, 1.660 18,073 903 905

L-Isoleucine, N-(trimethylsilyl)-,
trimethylsilyl ester isoleucine_2TMS 1197.5, 1.650 22,457 894 916

Glycine, N, N-bis(trimethylsilyl)-,
trimethylsilyl ester glycine_TMS 1225, 1.660 39,151 889 891

Trimethylsilyl (9E,12E)-9,12-octadecadienoate dienoicFA_TMS 2897.5, 1.600 6814 923 947

9,12-Octadecadienoic acid (Z, Z)-,
trimethylsilyl ester dienoicFA_TMS 2912.5, 1.555 4320 923 946

11,14-Eicosadienoic acid, TMS derivative dienoicFA_TMS 3182.5, 1.600 5420 890 908

13,16-Docasadienoic acid, (Z)-, TMS derivative dienoicFA_TMS 3447.5, 1.605 5594 853 854

Silane, (dodecyloxy)trimethyl- alcohol_TMS 1792.5, 1.410 254 823 890

Trimethylsilyl
2-[(trimethylsilyl)amino] propanoate alanine_2TMS 777.5, 1.625 19,604 910 916

Bis (Trimethylsilyl)
2-[(Trimethylsilyl)amino] succinate acidicAA 1687.5, 1.835 16,566 882 914

L-Aspartic acid, 3TMS derivative acidicAA 1690, 1.830 14,313 909 924

L-Glutamic acid, 3TMS derivative acidicAA 1890, 1.855 4361 870 872

Trimethyl stearate SatFA_TMS 2972.5, 1.535 138 648 854

Docosanoic acid, trimethylsilyl ester SatFA_TMS 3517.5, 1.545 80 467 705

Dodecanoic acid, trimethylsilyl ester SatFA_TMS 1957.5, 1.620 31,098 924 959

Tridecanoic acid, TMS derivative SatFA_TMS 2140, 1.600 20,595 920 921

Tetradecanoic acid, trimethylsilyl ester SatFA_TMS 2317.5, 1.590 23,511 921 939

Pentadecanoic acid, TMS derivative SatFA_TMS 2485, 1.580 14,080 921 922

Trimethyl palmitate SatFA_TMS 2645, 1.580 7568 928 963

Heptadecanoic acid, TMS derivative SatFA_TMS 2800, 1.565 21,580 895 920

Trimethyl stearate SatFA_TMS 2947.5, 1.570 9389 917 960

Arachidic acid, TMS derivative SatFA_TMS 3225, 1.565 15,089 857 918

Heneicosanoic acid, TMS derivative SatFA_TMS 3357.5, 1.570 15,982 841 843

Docosanoic acid, trimethylsilyl ester SatFA_TMS 3482.5, 1.580 12,521 868 886

Trimethylsilyl tricosanoate SatFA_TMS 3605, 1.590 13,168 846 861

Trimethylsilyl ester of tetracosanoic acid SatFA_TMS 3722.5, 1.605 16,162 878 914

Trimethylsilyl Hexanoate SatFA_TMS 717.5, 1.625 1416 917 933
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Table 3. Cont.

Name Classifications 1tR, 2tR (s) Quant S/N Similarity Reverse

Heptanoic acid, TMS derivative SatFA_TMS 925, 1.660 446 842 878

Octanoic acid, trimethylsilyl ester SatFA_TMS 1137.5, 1.670 1681 917 927

Nonanoic acid, TMS derivative SatFA_TMS 1352.5, 1.660 4337 889 890

8-Methylnonanoic acid, trimethylsilyl ester SatFA_TMS 1562.5, 1.645 11,862 920 920

Undecanoic acid, TMS derivative SatFA_TMS 1765, 1.625 166 631 778

Methyl ç-linolenate LinearTrienoicFAME 2700, 1.665 2039 906 908

8,11,14-Eicosatrienoic acid, methyl ester, (Z, Z, Z)- LinearTrienoicFAME 3000, 1.660 2076 893 894

Undecanoic acid, methyl ester LinearSaturatedFAME 1715, 1.705 236 653 837

Tridecanoic acid, methyl ester LinearSaturatedFAME 1912.5, 1.685 1516 912 951

Tetradecanoic acid, methyl ester LinearSaturatedFAME 2100, 1.670 11,892 935 938

Pentadecanoic acid, methyl ester LinearSaturatedFAME 2280, 1.655 10,751 925 936

Hexadecanoic acid, methyl ester LinearSaturatedFAME 2452.5, 1.640 35,352 930 930

Heptadecanoic acid, methyl ester LinearSaturatedFAME 2620, 1.630 10,789 911 912

Octadecanoic acid, methyl ester LinearSaturatedFAME 2777.5, 1.620 23,629 916 919

Methyl icosanoate LinearSaturatedFAME 3072.5, 1.615 28,121 924 925

Heneicosanoic acid, methyl ester LinearSaturatedFAME 3212.5, 1.615 14,766 909 912

Docosanoic acid, methyl ester LinearSaturatedFAME 3345, 1.620 18,749 913 916

Octadecanoic acid, methyl ester LinearSaturatedFAME 3475, 1.620 11,248 898 941

Tetracosanoic acid, methyl ester LinearSaturatedFAME 3600, 1.630 19,398 921 940

5,8,11,14-Eicosatetraenoic acid, methyl ester,
(all-Z)- LinearMultienoicFAME 2972.5, 1.655 1965 888 889

Methyl myristoleate LinearMonoenoicFAME 2077.5, 1.695 1179 900 901

9-Octadecenoic acid (Z)-, methyl ester LinearMonoenoicFAME 2260, 1.675 2455 874 880

cis-10-Heptadecenoic acid, methyl ester LinearMonoenoicFAME 2585, 1.655 4075 914 914

9-Octadecenoic acid (Z)-, methyl ester LinearMonoenoicFAME 2735, 1.645 8661 923 925

cis-Methyl 11-eicosenoate LinearMonoenoicFAME 3035, 1.635 4759 893 893

Cyclohexene, 1-butyl- LinearDienoicFAME 712.5, 1.410 198 653 777

Naphthalene, decahydro-2-methyl- LinearDienoicFAME 827.5, 1.445 89 584 807

9,12-Octadecadienoic acid, methyl ester LinearDienoicFAME 2725, 1.660 4463 915 936

9,12-Octadecadienoic acid, methyl ester LinearDienoicFAME 2737.5, 1.615 2531 888 908

cis-11,14-Eicosadienoic acid, methyl ester LinearDienoicFAME 3027.5, 1.645 4466 916 916
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Figure 1. (A) Low concentration; (B) Intermediate concentration; (C) High concentration.

For the low concentration, of 108 compounds in the standard mixture, only 14 com-
pounds (8 saturated fatty acids, 2 monoenoic fatty acids, 1 dienoic fatty acid, and 3 car-
bohydrates) were classified using the scripts. In this work, the term limit of classification
(LOC) is used to describe the lowest concentration where the scripts could correctly classify
the compound. The LOC varied widely for different classes and even for different com-
pounds within the same class due to the differences in the complexity of characteristic mass
spectral features used in developing scripts. Depending on how unique the fragmentation
of the target compound is, scripting can filter out the compounds of interest more or less
effectively using the distinct mass spectral features. As an example, the LOC for a TMS
derivative of arachidic acid was determined to be 85.1 pg on-column. The compound was
detected with a signal-to-noise ratio of 387. The concentration of 85.1 pg on-column was
the first occurrence of the compound that was classified correctly as a TMS derivative of
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a saturated fatty acid. The mass spectral match score for this compound at the lowest
concentration (21.3 pg on column, S/N 64.22) was 464 for similarity and 732 for reverse
(Figure 2B), which was significantly lower than 857 for similarity and 918 for reverse in a
higher concentration (2.13 ng on column, S/N 15089) standard (Figure 2A).
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Low concentrations resulted in low-quality spectra with higher noise, which hindered
the ability of the classifying scripts and resulted in some false negatives. To alleviate this
issue, scripts were refined to eliminate any compound that has more than five prominent
peaks (abundance greater than 1% of the base peak) beyond the [M+2]+ peak. The threshold
for tolerating noise in the higher masses above [M+2]+ was calculated by taking the average
of all the signals of masses above [M+2]+, and four standard deviations above the average
was set as the threshold to discriminate the real signals versus noise. This small alteration
slightly improved the result of classifying scripts at the lower concentrations; however,
it increased the possibility of false-positives due to the increased flexibility for lower
intensity peaks at the higher end of the mass spectrum. Nonetheless, as a proof-of-concept,
testing the scripts on the standard mixtures at various concentrations revealed its fairly
robust performance as an automated, convenient, and rapid screening tool. Once the
scripts are written, the accuracy and leniency of such scripts can be tuned by the user
by adding or removing specific features and adjusting the tolerance levels for ion ratios,
based on need. Furthermore, the addition of retention time information may increase the
accuracy of the scripts further. Since this would significantly sacrifice their versatility, we
leave the inclusion of retention information to the individual laboratory, so that they can
tune the scripts to their needs and their absolute retention times based on the columns and
experimental conditions used in their laboratory.

3.2. Versatility of Scripts

The greatest advantage of the proposed scripts is their flexibility; they can be applied
to any GC×GC-TOFMS chromatograms, regardless of the conditions used. To validate this
benefit, a standard mixture of 37 FAMEs was analyzed using two different GC×GC-TOFMS
conditions. The chromatograms are shown in Figure 3. The chromatogram in Figure 3C
is a FAME extract from algae, which was analyzed using the same conditions as for the
chromatogram in Figure 3B. The chromatograms were processed using the same data
processing method with scripts for FAMEs. Table 4 shows the results for the two conditions
and the algae extracts.
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Table 4. Standard FAMEs results using two different conditions and an algae extract.

FAMEs Condition 1 Condition 2 Algae Extract

Total 34 21 49
Saturated 15 11 18

Monoenoic 10 6 11
Dienoic 2 2 11
Trienoic 4 2 6

Multienoic 3 0 3

With Condition 1, thirty-four FAMEs were identified (Figure 3A). However, methyl
butyrate and methyl hexanoate (short-chain FAMEs) were missed in classification because
they eluted before the solvent delay time under the GC×GC TOFMS conditions that were
used to acquire the chromatogram. One isomer each of C18:2 and C20:2 were not detected,
as the peaks were not well resolved in the region of the chromatogram with other nearby
abundant peaks (Figure 3D). Both cis- and trans- forms of methyl eicosenoate (C20:1) were
detected and classified correctly as monoenoic FAMEs, although the SUPELCO certificate
only mentions the presence of methyl cis-11-eicosenoate (Figure 3D). Twenty-one FAMEs
were identified in Condition 2 correctly from C6 to C18; the last compound to be able to be
eluted with the given GC×GC TOFMS condition was C18 FAME due to the temperature
limitation with an insufficient hold time at the end of the run. The use of the PEG phase in
the second dimension restricted the maximum temperature to 230 ◦C in 1D and 245 ◦C in
2D. Among the detected peaks in the range of C6 to C18 FAMEs, all twenty-one FAMEs
that are in the standard mixture were correctly classified into the corresponding groups.

The scripts applied to algae extracts classified forty-nine FAMEs from 981 peaks in
approximately 10 min of data processing time. All 49 peaks were identified correctly,
despite the evidently overloaded peaks towards the end of the chromatogram (C16 and
C18 FAMEs). Algae extract results showed that the scripting tool allowed rapid screening
and provided a general understanding of the composition of the sample in a short time.
The scripting tool enables quick visualization of the location of members of target classes of
compounds, while simultaneously offering a rough visual estimation of the concentration
of the compounds.

3.3. Filtering of Peak Table by Scripts

After the evaluation of the scripts, they were applied to four different real-world
samples that were prepared with two major sample preparation methods for metabolomics
studies, SPME, and TMS derivatization. Sweat and fecal samples were prepared with
SPME, a method for volatile analysis without derivatization, whereas plasma and urine
were prepared with a two-step methoximation/trimethylsilylation derivatization. The four
different samples were analyzed with different GC×GC-TOFMS conditions, each with dif-
ferent column configurations. All four acquired chromatograms (Figure 4) were processed
with the same scripts, without any special treatment to the data, such as artifact removal
(column bleed), in order to fully assess the power of the scripts. The classes of metabolites
that were used in the scripts were aldehydes, alcohols, ketones, free fatty acids, fatty acid
methyl esters, fatty acid ethyl esters, and isopropyl esters to target for non-derivatized
compounds and trimethylsilyl esters of amino acids, fatty acids, sugars, other organic acids,
and sterols for the TMS derivatives.
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The raw chromatograms of each sample contained thousands of peaks, which make
reviewing the data and getting useful information and interpretation of the data a challenge.
After the scripting filters were applied, the peak tables were reduced from the original
thousands of peaks detected to a few dozen classified compounds, which makes the
manual revision of the data more realistic and convenient. The classified peaks for each
sample were reviewed manually to verify the accuracy of the scripts. In the process of
the manual revision, true-positives (TPs) and false-positives (FPs) for classification were
determined. TPs indicate the compounds that are correctly classified to the corresponding
class, whereas FPs represent the compounds that are incorrectly assigned to the class.
The number of TPs and FPs for each class of compound was counted for the evaluation of
the scripts. To confirm the identity of a peak, the entire mass spectrum of each classified
analyte was examined against a library. The ordered structure in GC×GC also helped
the compound identification by diagnosing the relative position of the compound in
chromatographic space, especially for homologous series of compounds.

Table 5 shows the results of the scripts applied to four different samples. The number
of compounds that were classified correctly into the corresponding class was counted,
and TPs were recorded, with the number of FPs recorded in parenthesis. Overall, the scripts
displayed high accuracy, given that the samples were analyzed with different GC×GC-
TOFMS methods. It is noteworthy that for the samples that were extracted with SPME,
no compounds were classified as TMS derivatives. On the other hand, for derivatized
samples, no compounds were classified as alcohols or free fatty acids, which would have
been trimethylsilylated. Although it is not practical to examine every single peak in a
sample that contains thousands of peaks to assess the occurrence of true negatives and false
negatives, the fact that no compound classified as TMS derivatives for SPME and vice versa
for TMS-derivatized samples, provides a strong indication that the scripts are reliable.

Table 5. Results of sweat, feces, plasma, and urine samples with scripting filters applied.

Sample SPME Derivatization

Sweat Feces Plasma Urine

Total Number of Peaks 3995 1685 5104 11,097

Aldehydes 12 (1) 12 0 0
1◦ alcohols 9 5 (2) 0 0
2◦ alcohols 5 3 0 0

Ketones 15 28 0 0
Free fatty acids 14 12 0 0

FAMEs 5 (1) 0 (1) 3 0
FAEEs 2 1 0 0

Isopropylesters 3 1 0 0
Amino acids (TMS) 0 0 8 18

Free fatty acids (TMS) 0 0 14 (1) 4
Sugars (TMS) 0 0 3 25
Sterol (TMS) 0 0 2 1
Others (TMS) 0 0 0 5

Total Classified Peaks 65 (1) 62 (3) 30 (1) 53

Even with the powerful separation efficiency of GC×GC, coelution is inevitable for
complex biological samples. As an example, in the plasma sample, methionine-2TMS
and aspartic acid-3TMS coeluted almost perfectly in both the first and second dimensions
(Figure 5A). As both are TMS derivatives (i.e., m/z 73 is a common ion in the derivatized
products), it must have been difficult to distinguish them as two different peaks even
with EIC of m/z 73 and would have been easily missed without careful examination of the
data. However, with the scripting tool, they were identified as two distinct compounds,
despite their vast difference in intensities, where methionine-2TMS could be obscured by
aspartic acid-3TMS (Figure 5B).
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3.4. Applying Cached Scripts

There are two ways that scripts can be applied to GC×GC data in ChromaTOF®.
Scripts described so far were used to classify chromatographic peaks that match spe-
cific spectral criteria in a peak table. Another manner in which scripts can be applied in
ChromaTOF® is with so-called cached scripts. The script function with a cached script re-
turns a numeric value, which is cached into a calculated “ion trace” during data processing.
After the data is processed, the cached ion traces are plotted and the responses of only the
target analytes that match the particular spectral criteria are shown.

As an example, cached scripts for TMS esters of saturated fatty acids were applied to
a derivatized standard mixture. The standard mixture contained over 1000 peaks. Figure 6
presents the comparison between TIC and the cached script result. The EIC using mass
channel m/z 73 would not be sufficiently selective in derivatized biological samples since
m/z 73 is a common mass in derivatized products. Using the cached scripts, the TOFMS can
be transformed into a selective detector for spectra with the desired characteristics, and the
surface plot showing only the target analytes allows rapid screening of samples.
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4. Conclusions

Due to the complexity and the amount of data acquired from GC×GC-TOFMS anal-
yses, data handling has been a significant challenge, especially with metabolomics data.
In this work, scripting algorithms for numerous classes of metabolites were written using
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the scripting feature in the LECO ChromaTOF®. To the best of our knowledge, this script-
ing tool represents the first time that automated screening by filtering scripts for handling
GC×GC-TOFMS data in metabolomics applications had been reported. The objective of
filtering scripts was to visualize quickly the members of different classes of metabolites
in samples from thousands of peaks in the GC×GC-TOFMS data and to reduce the size
of peak tables for further manual review. It could be considered as the semi non-targeted
detection of classes of compounds and offered quick visualization of the members of mul-
tiple classes of compounds. The most significant advantage of the developed scripting
algorithms was that they are agnostic to the GC×GC-TOFMS configuration and methods
used. No retention time information was used in the scripts, which made the scripting
approach versatile for many applications. Further updating and modifying of classification
scripts may be needed due to some factors such as the discrepancy of the detector condition
for the instrument, which affects the abundance ratio of ions, etc. However, the developed
scripts are sufficient to provide the basic skeleton of mass spectral information for the
different classes of metabolites, while avoiding over-specifying the filters. Although room
for improvement remains, the presented automated scripting proved to be a useful tool for
the classification and visualization of different classes of compounds.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/separations8060084/s1, Table S1: Compounds included in the standard mixtures, Table S2:
Details of standard mixture preparation µL standard placed in GC vial, Table S3: Number of
compounds in the standard mixtures that were classified for each group.
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