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Abstract: Nicotiana tabacum L. (NTL) is an important agricultural and economical crop. Its maturity is
one of the key factors affecting its quality. Traditionally, maturity is discriminated visually by humans,
which is subjective and empirical. In this study, we concentrated on detecting as many compounds
as possible in NTL leaves from different maturity grades using ultra-performance liquid chromatog-
raphy ion trap time-of-flight mass spectrometry (UPLC-IT-TOF/MS). Then, the low-dimensional
embedding of LC-MS dataset by t-distributed stochastic neighbor embedding (t-SNE) clearly showed
the separation of the leaves from different maturity grades. The discriminant models between differ-
ent maturity grades were established using orthogonal partial least squares discriminant analysis
(OPLS-DA). The quality metrics of the models are R2Y = 0.939 and Q2 = 0.742 (unripe and ripe),
R2Y = 0.900 and Q2 = 0.847 (overripe and ripe), and R2Y = 0.972 and Q2 = 0.930 (overripe and
unripe). The differential metabolites were screened by their variable importance in projection (VIP)
and p-Values. The existing tandem mass spectrometry library of plant metabolites, the user-defined
library of structures, and MS-FINDER were combined to identify these metabolites. A total of
49 compounds were identified, including 12 amines, 14 lipids, 10 phenols, and 13 others. The results
can be used to discriminate the maturity grades of the leaves and ensure their quality.

Keywords: UPLC-IT-TOF/MS; Nicotiana tabacum L.; maturity grades; classification; identification

1. Introduction

Nicotiana tabacum L. (NTL) is a Solanaceae plant with important economic significance.
Maturity of the NTL leaves is the primary factor for grading, which is an important index
to measure the quality [1]. If the maturity grade of the leaves can be determined accurately
and the right time for harvesting can be chosen precisely, the field loss rate and curing loss
rate of the leaves can be reduced significantly. Studies have indicated that the ripe leaves
have fully developed leaves, loose tissue structure, coordinated chemical components,
and rich aroma substances [2]. At present, the maturity grade of the leaves generally was
distinguished visually by the experts, which is highly subjective and empirical. Hence, it is
important and necessary to study the differences in metabolites of the leaves from different
maturity grades.

Metabolomics is playing an important role in the study of the metabolic process to
reveal the essence of life’s activities [3]. Metabolomics mainly studies small molecular
metabolites (molecular weight < 1000) produced by various metabolic pathways. So far,
several methods have been established for untargeted metabolomic analysis of plant ex-
tracts, including gas chromatography coupled to mass spectrometry (GC-MS) [4], capillary
electrophoresis mass spectrometry (CE-MS) [5], and liquid chromatography mass spectrom-
etry (LC-MS) [6]. GC-MS is suitable for the analysis of thermally stable volatile compounds,
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which were involved in primary metabolism [7]. CE-MS is suitable for separation of polar
compounds and charged compounds [8]. LC-MS is a versatile tool for metabolite profiling
of plants owing to its effective separation and sensitive detection abilities, and it was used
to analyze many semi-polar compounds, including secondary metabolites such as alka-
loids, phenolic acids, flavonoids, glucosinolates, ployamines, and their derivatives [7–12].
A detailed protocol for large-scale untargeted metabolomic analysis of plant using LC-MS
had been proposed [7]. There were also studies on the application of metabolomics in
NTL [13–15]. The metabolic profiles of the NTL leaves from different geographic sources
were systematically studied [16]. Some differential metabolites related to the planting area
and climatic factors were screened out [17,18].

Simultaneous separation and detection of metabolites using LC-MS will generate
complex datasets, which requires preprocessing of the data before statistical analysis for
multiple samples. To preprocess the metabolomic dataset effectively, several preprocessing
tools had been developed for LC-MS, such as MetAlign [19], MZmine [20], and XCMS [21].
All these tools are freely available including their source code [22]. MetAlign is a powerful
tool for preprocessing of LC-MS experimental data, including automatic format conversion,
baseline correction, peak detection, and alignment of up to 1000 data files [19]. MZmine
supports several stages of data preprocessing, including spectral filtering, peak detection,
alignment, and normalization [20,23]. XCMS is the most common preprocessing tool
in the metabolomics. It combines peak detection and retention time alignment, groups
the peaks, and generates the peak table for further statistical analysis [21,24]. With the
peak table, the samples can be visualized and classified. t-distributed stochastic neighbor
embedding (t-SNE) is a nonlinear dimensionality reduction method, which can embed
the high-dimensional data into two or three dimensions for visualization. Compared
with principal component analysis (PCA) [25], t-SNE is a more advanced and effective
method [26]. The classification between samples is based on the existence of some differ-
ential metabolites, so it is necessary to build the discriminant models using the machine
learning methods and find these differential metabolites. Orthogonal partial least squares
discriminant analysis (OPLS-DA) extends the supervised partial least squares discrimi-
nant analysis (PLS-DA) by integrating the orthogonal signal correction [27]. Compared
with PLS-DA, OPLS-DA can separate informative variation from orthogonal variation to
improve the interpretability of models [28]. The differential metabolites can be screened
through the variable importance in projection (VIP) of the OPLS-DA model. At present,
the identification of metabolites is mainly through the search of several spectral databases,
including METLIN [29], LIPID MAPS [30], and MassBank [31]. However, the identification
of the metabolites in plant is still challenging because of the large number of unknown
metabolites. The annotation of a large number of unknown metabolites is considered to be
one of the most difficult problems in metabolomics [32].

In this study, we have developed a method to analyze and identify the metabolites in
flue-cured NTL leaves. The schematic diagram of this method was depicted in Scheme 1.
Metabolomic analysis was performed on the leaves from three different maturity grades
using UPLC-IT-TOF/MS. Rich chemical information in the leaves were extracted from
an LC-MS dataset by data preprocessing and statistical analysis methods. In order to
achieve the relatively accurate identification, we built the user-defined structure library
and took advantage of MS-FINDER to identify differential metabolites. The results of the
identification of differential metabolites can be used to distinguish the maturity stages
of leaves and ensure their quality. In addition, the self-built library can be used for the
identification of Solanaceae metabolites in the future.
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Scheme 1. Schematic diagram of untargeted metabolomic analysis of Nicotiana tabacum L. (NTL) 
leaves based on liquid chromatography mass spectrometry (LC-MS). The untargeted metabolomic 
analysis based on LC-MS are mainly divided into the following six parts: extraction of metabolites 
of NTL leaves of different maturity grades, LC-MS analysis of the extracted metabolites, data 
preprocessing of LC-MS raw data, dimensionality reduction and visualization based on peak 
table, classification of samples with different maturity grades based on peak table, and 
identification of different metabolites. 

2. Materials and Methods 
2.1. Materials and Reagents 

Forty-five samples from different maturity grades were provided by Yunnan 
Academy of Tobacco Agricultural Sciences (Kunming, China). These NTL leaves were 
picked and waved in the conventional harvest period for middle leaves in the local area, 
to ensure the equilibrium and consistency of NTL leaves maturity and quality with 
moderate density. These NTL leaves were flue-cured in a local bulk curing barn. The flue-
curing was performed by the most common curing mode in the region (Figure 1). 
Additionally, 100 to 120 NTL leaves were weaved in each rod, and a total of three layers 
were set; in each layer, there were 150 to170 rods. 

  

Scheme 1. Schematic diagram of untargeted metabolomic analysis of Nicotiana tabacum L. (NTL)
leaves based on liquid chromatography mass spectrometry (LC-MS). The untargeted metabolomic
analysis based on LC-MS are mainly divided into the following six parts: extraction of metabolites
of NTL leaves of different maturity grades, LC-MS analysis of the extracted metabolites, data pre-
processing of LC-MS raw data, dimensionality reduction and visualization based on peak table,
classification of samples with different maturity grades based on peak table, and identification of
different metabolites.

2. Materials and Methods
2.1. Materials and Reagents

Forty-five samples from different maturity grades were provided by Yunnan Academy
of Tobacco Agricultural Sciences (Kunming, China). These NTL leaves were picked and
waved in the conventional harvest period for middle leaves in the local area, to ensure the
equilibrium and consistency of NTL leaves maturity and quality with moderate density.
These NTL leaves were flue-cured in a local bulk curing barn. The flue-curing was per-
formed by the most common curing mode in the region (Figure 1). Additionally, 100 to
120 NTL leaves were weaved in each rod, and a total of three layers were set; in each layer,
there were 150 to170 rods.

Cured NTL leaves were used for metabolic profiling analyses, including 15 unripe
samples, 15 ripe samples, and 15 overripe samples. The detailed information of NTL leaves
of different maturity stages is shown in Table 1.
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Table 1. The detailed information of Nicotiana tabacum L. (NTL) samples.

Maturity Grade Producing Area Variety Growth Period HARVEST PERIOD Number of Samples

Unripe sample Yunnan, China K326 April to August, 2020 Transplanted for
70 days 15

Ripe sample Yunnan, China K326 April to August, 2020 Transplanted for
80 days 15

Overripe sample Yunnan, China K326 April to August, 2020 Transplanted for
90 days 15

Acetonitrile (ACN) (HPLC gradient grade, ≥99.9%), methanol (MeOH) (HPLC gradi-
ent grade, ≥99.9%), and formic acid (FA) (HPLC gradient grade, ≥98%) were purchased
from Merck (Darmstadt, Germany). Purified water was purchased from Wahaha Company
(Guangzhou, China).

2.2. Sample Preparation

The NTL leaves were ground to powder and filtered through a 40-mesh sieve. A total
of 100 milligrams powdered sample was transferred to a 2 mL Eppendorf tube, and then
1 mL of aqueous methanol solution was added to the tube. Samples were vortexed for 20 s,
sonicated for 30 min, and centrifuged at 4 ◦C for 10 min at 16,000 g. After centrifugation,
the supernatant was obtained and passed through a syringe filter (0.22 µm pore size). Then,
the solvent was evaporated under a stream of N2 gas at room temperature. The dried
sample was resolved in 300 µL extraction solvent before LC-MS analysis.

In addition, quality control (QC) samples were prepared by mixing equal amounts of
all the analyzed samples and were added at the beginning of the sequence to equilibrate
the system and every nine samples to further monitor the stability of the analysis [16].

2.3. LC-MS Analysis

The sample was analyzed with a LC-30AD UPLC system (Shimadzu, Tokyo, Japan)
coupled with an IT-TOF MS (Shimadzu, Tokyo, Japan). The LC-MS system was controlled
by the LCMS solution 3.70 software (Shimadzu, Tokyo, Japan).

The injection volume was 2 µL, and the column temperature was set to 40 ◦C.
The ultra-performance liquid chromatography column was ACQUITY UPLC BEH C18
(100 nm × 2.1 mm, 1.7 µm, Waters Corporation, Milford, MA, USA). The mobile phase was
constituted by acetonitrile acidified with 0.1% formic acid (eluent A) and water acidified
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with 0.1% formic acid (eluent B). The gradient elution program was at a constant flow rate
of 0.3 mL/min of 95–90% B over 0.01–10.0 min, 90–80% B over 10.0–20.0 min, 80–65% B over
20.0–30.0 min, held constant at 65–58% B over 30.0–33.0 min, 58–50% B over 33.0–35.0 min,
50–20% B over 35.0–40.0 min, and a final wash at 20–0% B over 40.0–48.0 min. The total
elution time was 48 min.

The mass spectrometer was operated within the m/z range of 50–1000 for MS1 and
automatic multiple stage fragmentation scan modes for MS/MS spectra. The CDL tempera-
ture was set to 200 ◦C, and the heating block temperature was set to 200 ◦C, the nebulizing
gas (N2) flow rate was 1.5 L/min, the drying gas (N2) pressure was set to 100 kPa, ion trap
pressure was set to 1.8 × 10−5 kPa, and the ion accumulation time was 60.0 ms. Detector
voltage was set at 1.62 kV. RP vacuum degree was set to 85.0–92.0 Pa, IT vacuum degree
was set to 1.8 × 10−2 Pa, TOF vacuum degree was set to 1.3 × 10−4 Pa. Collision energy
was set at 50%.

2.4. Data Preprocessing

Raw data were exported in mzData format by LCMS Solution-Browser (Shimadzu,
Tokyo, Japan). Prior to preprocessing, the exported data were converted to mzML files,
and centroided using OpenMS [33]. Then, the mzML files were read into R terminal
(version = 4.0.2) using the MSnbase package (version = 2.15.8), and the LC-MS data were
preprocessed using xcms package (version = 3.11.3) [21]. The preprocessing consisted of
chromatographic peak detection, peak alignment, and correspondence between different
samples. A list of metabolic features with mass, retention time, and abundance were
obtained. The alignment results followed the “80% rule” [34]. Replacement of the missing
value and data normalization were performed by Metaboanalyst R (version = 2.0.2) [35],
and peak table with label and category were exported for further analysis.

2.5. Machine Learning Models of Maturity Grades

Peak table were further processed by SIMCA-P (version 14.1, Umetrics AB, Umea,
Sweden) for multivariate data analysis [36]. PCA was employed to reduce dimensionality
and evaluate data quality. The t-SNE was employed to visualize the leaves from different
maturity grades. A detailed description of the t-SNE method is described in Method S1.
The OPLS-DA models were built to predict the maturity grades of the leaves. The detail of
the OPLS-DA method is described in Method S2. The differential features were screened
out by variable importance in projection (VIP) values of >1. Meanwhile, variables with
significant differences (Probability, p < 0.05) of t-test were selected between different
grades. The p value is the probability. When p < 0.05, it indicates a significant difference.
Hierarchical cluster analysis (HCA) was performed on differential metabolites of different
maturity grades by the heatmap package in R (version = 4.0.2) programming language.

2.6. Identification of Metabolites

The features were selected as potential differential features based on the values of
VIP > 1.0 and p < 0.05. Since the coverage of metabolites for MS/MS library was not
comprehensive enough, the searching results of the library were not accurate and often
required further verification. The same plant family or closely related families had chemical
substances of the same or similar structures. Based on the articles on metabolomic studies
of Solanaceae plants [1,9,15–17,37–56], the user-defined library of plant metabolites was
established. MS-FINDER was used as the identification tool of metabolites. Tandem mass
spectra of differential metabolites were stored in MSP format. Then, it was imported
into MS-FINDER [57] for identification. The existing library of plant metabolites and the
user-defined library were combined together to identify these differential metabolites.
The details of MS-FINDER software are described in Method S3. The detailed information
of the user-defined library is listed in Table S5.

In this study, the differential metabolites were identified by a procedure consisting of
three stages (Figure 2). At the first stage, metabolites were identified by comparing MS/MS
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information of features with in silico MS/MS spectrum predicted from the molecular
structures in the user-defined library. At the second stage, MS/MS information of features
was matched with that of predicted/reported fragments from some local databases in
MS-FINDER, for example the PlantCyc, LIPID MAPS, and KNApSAcK. At the third stage,
metabolites were putatively identified by comparing the accurate m/z value of the feature
with the metabolites in METLIN for features, and the candidate with the lowest difference
in parts per million was selected.
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Figure 2. Flow chart of identification of differential metabolites in the flue-cured NTL leaves from three different maturity
grades. At the first stage, metabolites were identified by searching the self-built library of Solanaceae plants (NTL, Tomato,
Potato, Eggplant). At the second stage, metabolites are identified by searching the metabolomic libraries (KNApSAcK,
LipidMAPS, PlantCyc, NANPDB) of plants in MS-FINDER and matching their spectra. At the third stage, metabolites are
putatively identified by searching in METLIN, which stored a large number of small molecule metabolites.
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3. Results
3.1. Development of the Analytical Method
3.1.1. Extraction Solvent Optimization

The extraction procedure is important for the detection of small metabolites in the
NTL leaves. Single solvent is difficult to extract different metabolites. Methanol solution
is an effective solvent system to extract metabolites for large-scale plant metabolomic
studies [7,58]. In this study, the ratio of methanol/water were optimized for extraction ex-
periments, and six different solvent ratios (5:5, 6:4, 7:3, 8:2, 9:1, 10:0, v/v) were studied. Here,
the peak number and area were treated as the criteria to evaluate the extraction efficiency.
One can see from Figure 3A,B that methanol/water (8:2, v/v) has the best efficiency.
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3.1.2. Extraction Time Selection

Ultrasound can increase the swelling index, which is the absorption of water by
plant during the ultrasonic treatment. Compared with mechanical stirring, the extraction
efficiency under ultrasonic treatment is much higher. In some cases, increased swelling of
the plant tissue can damage the cell wall, thereby facilitating the metabolites extraction [59].
Here, five different extraction times (15, 30, 40, 50, 65 min) were studied. The number
and area of peaks were used as the evaluation criteria. It can be seen from Figure 4A,B
that the extraction efficiency of ultrasonic time at 65 min has not changed significantly
compared with 15 min. In order to ensure the extraction quality and reduce random error
in pretreatment [16], 30 min was selected as the appropriate extraction time.
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3.1.3. Investigation of UPLC/IT-TOF MS Parameters

There are many types of metabolites in flue-cured NTL leaves, so the choice of chro-
matographic column is crucial for the separation of these metabolites. The ACQUITY
UPLC BEH C18 column had high reliability to retain molecules with good repeatability.
The trifunctionally bonded BEH particle gave the wide usable pH range (pH 1–12), ultra-
low column bleed and excellent separation. In addition, the optimized mass spectrometry
parameters made the analysis in a highly sensitive state. Because the positive ion mode
had detected more features than the negative ion mode, the positive ion mode was selected
to analyze the leaves from different maturity grades. Base peak chromatograms (BPC) of
metabolites extracted from three typical leaves from different maturity grades were shown
in the Figure 5A–C, respectively. As can be seen from the Figure 5, the relative areas of
some peaks are significantly different.
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3.2. Validation of the Analytical Method

In order to ensure the repeatability, accuracy, and precision of the extraction results,
it was necessary to evaluate the analysis method. As shown in Figure 6, the reproducibility
of the extraction method, instrument stability, intraday precision and interday precision
were verified.
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Figure 6. Investigation of method repeatability, instrument stability, intraday precision, and interday
precision in different relative standard deviation (RSD) ranges. The histogram represents a percentage
of feature number with corresponding range of RSD. The lines represent percentage of peak area
with corresponding range of RSD.

To determine whether the repeatability of this extraction method is acceptable, six par-
allel QC samples were prepared according to Section 2. After LC-MS analysis and data
preprocessing, a table of metabolites with retention time, m/z, and abundance was obtained.
Then, the relative standard deviation (RSD) of each feature in six QC samples was calcu-
lated, and the number and area of features in different RSD ranges (0–10, 10–20, 20–30,
>30%) were counted. Almost 89% features had an RSD within 20%, which accounted for
90% of the total peak area. Therefore, the preparation method of this sample had good
repeatability.

Instrument precision was also an important parameter that needed to be investigated.
Similarly, the samples were prepared according to the method in Section 2, and six consec-
utive LC-MS analyses on the same QC sample were performed. Peak number and area of
features were computed in different RSD (0–10, 10–20, 20–30, >30%) ranges. Nearly 95%
of metabolic features had an RSD < 20%, which accounted for 95% of the total peak area.
The results showed that the instrument has excellent stability.

In order to investigate the intraday precision, six duplicated QC samples were ana-
lyzed at (2, 4, 6, 8, 10, 12 h) of the day, and the peak numbers and peak areas of metabolic
features were counted in different RSD (0–10, 10–20, 20–30, >30%) ranges. As shown in
Figure 6, there were 94% of the metabolic features within 20% of RSD, which accounted
for approximately 94% of the total of the peak area. In order to investigate the interday
precision, six QC samples were analyzed over 4 days, and the peak numbers and peak
areas of metabolic features were computed in different RSD (0–10, 10–20, 20–30, >30%)
ranges. It can be seen from Figure 6 that 88% of the metabolic features within 20% of RSD,
accounting for about 91% of the total peak area. It showed that the method has a good
intraday and interday precision.

3.3. Classification of the Leaves from Different Maturity Grades

The reliability of the acquired data should be evaluated before further statistical
analysis. In this study, the QC samples were inserted in the analysis sequence to monitor
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the data quality according to Section 2. The first principal component of 11 QC samples
was illustrated in Figure 7. The results showed that the acquired data are stable during
operation, and further statistical analysis can be performed to build discriminant models
and screen the differential metabolites.
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Figure 7. Scatter plot of the first principal component of eleven QC samples (triangles). This analysis
showed that the standard deviation of QC samples was within ±2 SD, indicating that the results was
reliable.

The t-SNE converts high-dimensional data into low-dimensional embedding (two-
dimensional or three-dimensional) by minimizing the Kullback–Leibler divergence be-
tween their joint probabilities. It was superior to existing technologies and produced
significantly better visualization [26]. So, t-SNE was used to reduce dimensionality and
visualize flue-cured NTL leaves from different maturity grades. In Figure 8, the two-
dimensional maps of t-SNE showed that these samples were obviously separated into three
groups according to their maturity grades.
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They were clustered into three groups according their maturity degrees. This indicated that the
maturity grades were closely related to their own metabolites.

To further investigate the differences between the flue-cured NTL leaves from different
maturity grades, the OPLS-DA models were established. OPLS-DA is an effective and
interpretable discriminant method because of the elimination of information unrelated
to maturity grades. First, the OPLS-DA model between the unripe and ripe samples
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was established, and its score plot and the result of the permutation test are shown in
Figure 9A. The samples of two maturity grades were clearly separated along the PC1 axis.
Results (R2Y = 0.939, Q2 = 0.742) showed that the model is accurate and reliable. To avoid
over-fitting the OPLS-DA model, 200-times permutation testing was applied. The results
of permutation test in Figure 9B showed that the model was reliable. The VIP > 1 and
p < 0.05 were chosen as the criteria to screen out differential features. In this way, thirteen
metabolites were found as the differential features between the unripe and ripe leaves,
and the detailed information of these differential features is listed in Table S1.
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OPLS-DA model between unripe and ripe samples; (B) the permutations plot for OPLS-DA model between unripe and
ripe samples, R2 = (0.0, 0.771), Q2 = (0.0, −0.598); (C) score plot of OPLS-DA between overripe and ripe samples; (D) the
permutations plot of OPLS-DA model between overripe and ripe samples, R2 = (0.0, 0.411), Q2 = (0.0, −0.589); (E) score plot
of OPLS-DA model between overripe and unripe samples; (F) the permutations plot of OPLS-DA model between overripe
and unripe samples, R2 = (0.0, 0.618), Q2 = (0.0, −0.781) of overripe and unripe samples. All blue Q2-values to the left are
lower than the original points to the right, and the blue regression line of the Q2-points intersect the vertical axis below zero.
This indicates that these models are not over-fitting.
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Similarly, OPLS-DA and t-test were performed on overripe and ripe samples. The OPLS-
DA score of overripe and ripe samples were plotted in Figure 9C, and samples of these two
maturity grades can be clearly distinguished. Results (R2Y = 0.9, Q2 = 0.847) showed that
the model is effective and reliable. The model was also assessed by a 200-times permutation
test, and one can observe from Figure 9D that there is no over-fitting risk. Finally, according
to VIP > 1 and p < 0.05, thirteen differential metabolites were found between the overripe
and ripe samples, and the detailed information of these differential features were shown in
Table S2.

Finally, the OPLS-DA model between the overripe and unripe samples was established.
The score plot is shown in Figure 9E, samples from these two maturity grades can be clearly
distinguished. Results (R2Y = 0.972, Q2 = 0.93) showed that the model is highly reliable and
accurate. The OPLS-DA was also assessed by a 200-times permutation test, and there is no
over-fitting risk from Figure 9F. Since there were more differential features detected in this
model compared to the previous ones, it was difficult to conduct subsequent qualitative
analysis. Therefore, a stricter criterion (VIP > 1.5 and p < 0.01) was set, and twenty-nine
differential features were obtained. The detailed information of these differential features
is listed in Table S3.

In order to analyze the changes in differential metabolites, heat maps (Figure 10A–C)
were used to display the relative distribution of each metabolite in each maturity grade.
It can be seen from these figures that the leaves from three different maturity grades were
well clustered. It meant that the results of the analysis are credible.
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Figure 10. Results of hierarchical cluster analysis (HCA) of the flue-cured NTL leaves from different
maturity grades. (A) HCA of differential metabolites between overripe and ripe leaves; (B) HCA of
differential metabolites between unripe and ripe leaves; (C) HCA of differential metabolites between
unripe and overripe leaves.



Separations 2021, 8, 9 14 of 19

3.4. Identification of Metabolites from Different Maturity Grades

It can be seen from the above sections that forty-nine differential features were
screened out by the OPLS-DA and t-test. One of them is common among three differ-
ent maturity grades. Four of them were common differential metabolites in two OPLS-DA
models. The MSP file of each metabolite was imported into MS-FINDER and searched
in the user-defined library. Six metabolites were identified by the MS-FINDER and user-
defined library. Afterwards, the libraries of plant metabolites in MS-FINDER were searched,
and in silico MS/MS fragments were matched. Twenty-six differential metabolites were
annotated. Eight metabolites were putative annotated by searching the METLIN database.
In addition, nine metabolites had not been annotated because of the limited number of
molecules in spectral or structural libraries.

4. Discussions

According to the VIP value and the p-value, forty-nine significantly differential metabo-
lites were found between overripe, unripe, and ripe samples (Table S4). The differential
metabolites mainly include amines, lipids, and phenols.

Nitrogen-containing compounds in flue-cured NTL leaves include protein, alkaloids,
etc. Nitrogen-containing compounds not only affect the characteristics of leaves and de-
termine economic output, but also have an important impact on the quality of leaves [60].
Alkaloids are a class of secondary metabolites that contain nitrogen. Among these alkaloids,
nicotine is the most important compound, accounting for more than 95% of the total alka-
loids, followed by nor-nicotine, etc. In the identification of differential metabolites of flue-
cured leaves from different maturity grades, N-Octanoylnornicotine, Nicotine-1′-N-oxide
(NNO), and 1-Methyl-9H-pyrido [3,4-b]indole (Harman) were detected (Figure 11A–C).
Nicotine is synthesized in the roots of multiple Nicotiana species and transports to the
aerial part of the plant followed by its demethylation to nornicotine [61]. The content of
Nicotine-1′-N-oxide in the leaves decreased with the increase in maturity, while the content
of N-Octanoylnornicotine increased with the maturity of leaves. Nicotine-1′-N-oxide is
an oxidation product of nicotine. Nornicotine was produced by enzymatic degradation
of nicotine during senescence and conditioning of leaves. Therefore, the content of N-
Octanoylnornicotine of overripe leaves increased significantly. Harman is a naturally
occurring beta-carboline alkaloid and only a small amount exists in leaves. The content of
Harman tended to stabilize as the leaves matured.
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Phenolic compounds have a variety of physiological functions, and almost all exist
in the vacuole in the form of glycosides and esters [62]. The glycosides identified were
mainly flavonoids (Figure 12A,B), such as Quercetin 3-rutinoside 7-galactoside, Kaempferol
3-rutinoside-4′-glucoside, etc. Flavonoids are widely found in plants and are the secondary
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metabolites of plants [63]. Most of them are combined with sugars to form glycosides
or carbon sugar groups in plants. Flavonoids include the glycosides of kaempferol and
quercetin. The content of Quercetin 3-rutinoside 7-galactoside and Kaempferol 3-rutinoside-
4′-glucoside both increased with the maturity of the leaves and basically reached a balance
when the leaves were at moderate maturity. Generally, when the content of phenols reaches
the maximum, it is the suitable harvest period. However, different parts of a leaf, different
amounts of growth regulator substances, baking conditions, and mineral nutrients will
cause different levels of phenolic substances. Therefore, it is difficult to determine the most
suitable harvest period based on phenolic compounds solely.
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Lipids include phospholipids, glycolipids, and cholesterol and cholesterol esters.
Among the identified differential lipids, most of them are diacylglycerol (DG), ceramide
(Cer), phosphatidylcholine (PC), and phosphatidylethanolamine (PE). Phospholipids are
the main components of biological membranes. As shown in Figure 12C,D, the content
of Cer(d18:0/14:0) increased significantly when the leaves were over mature, and the
content of DG(20:5(5Z,8Z,11Z,14Z)/14:0/0:0) decreased as the leaves matured. As the
leaves matured, the glandular hair secretion increased continuously, and the content of
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lipid compounds also increased. However, lipids are also affected by the NTL plant’s
own metabolism during the maturation process. The modulation, fermentation, and aging
process of the leaves will also affect the changes in the chemical compositions. Therefore,
it is not accurate and robust enough to judge the maturity of the leaves with only the
lipid content.

5. Conclusions

In this study, we have developed a method to extract the metabolites from flue-cured
NTL leaves, which has good repeatability and precision. The metabolites of samples
from three different maturity grades were analyzed and compared by UPLC-IT-TOF/MS.
The OPLS-DA models were built to classify the leaves with good accuracy. Differential
metabolites related to three different maturity grades were identified by the user-defined
structure library, the existing plant metabolites library, and MS-FINDER software. Forty-
nine differential metabolites of the leaves were putatively identified, including amines,
phenols, and lipids. These results indicated that UPLC-IT-TOF/MS-based metabolomics
can be useful to discriminate the leaves from different maturity grades, and the user-
defined structural library and computational tool have the potential to identify the un-
known metabolites.
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and ripe leaves, Table S2: Table of p-values and VIP values of 13 different metabolites selected
between overripe leaves and ripe leaves, Table S3: Table of p-values and VIP values of 29 different
metabolites selected between overripe leaves and unripe leaves, Table S4: The full list of identified
compounds of flue-cured NTL leaves from different maturity grades (unripe, ripe, and overripe),
Table S5: Table of detailed information about the structural formula library of plant metabolites that
we built.
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