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Abstract: The demand for the recovery of valuable metals and the need to understand the impact
of heavy metals in the environment on human and aquatic life has led to the development of
new methods for the extraction, recovery, and analysis of metal ions. With special emphasis on
environmentally friendly approaches, efforts have been made to consider strategies that minimize
the use of organic solvents, apply micromethodology, limit waste, reduce costs, are safe, and utilize
benign or reusable materials. This review discusses recent developments in liquid- and solid-phase
extraction techniques. Liquid-based methods include advances in the application of aqueous two-
and three-phase systems, liquid membranes, and cloud point extraction. Recent progress in exploiting
new sorbent materials for solid-phase extraction (SPE), solid-phase microextraction (SPME), and bulk
extractions will also be discussed.

Keywords: metal extraction; liquid–liquid extraction; solid-phase extraction; solid-phase
microextraction; green extraction methods

1. Introduction

Metals are ubiquitous in nature serving as essential elements for human health and critical
materials for modern industrialization and urbanization. While some metals such as iron are necessary
for human health, many metals are toxic, and can cause physical problems such as diarrhea, nausea,
asthma, kidney malfunction, different cancers, and even death [1]. Arsenic, cadmium, chromium,
mercury, and lead are commonly known as heavy metals—or metalloids in the case of arsenic—and
have the greatest toxicity. The maximum limits in drinking water for these metal ions according to the
World Health Organization (WHO) are 10, 3, 50, 6, and 10 µg L−1, respectively [2]. The harmful effect
of arsenic can mostly affect skin, respiratory, and cardiovascular systems. Elevated risk of skin and
lung cancers has been reported among people who were exposed to arsenic from working in mining
and smelting areas where inorganic arsenic was inhaled [3]. Cadmium and lead are harmful for the
nervous system. Mercury used in electrical devices, dental fillings, Hg vapor lamps, solders, and X-ray
tubes has a strong attraction to biological tissues and is carcinogenic, mutagenic, and teratogenic [4].
The Flint water crisis in 2014 affected about 100,000 people when lead from aging pipes leached into the
water supply and contaminated the drinking water. This poignant example illustrates the importance
of careful monitoring of heavy metals (HMs) in water systems and investigating new technologies to
extract and remove them [5,6].
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Other metals such as cobalt, copper, iron, and zinc have higher threshold limits. The maximum
limit for copper in drinking water is 2 mg L−1 according to the WHO [2]. No guideline values are
provided for iron and zinc in drinking water, however, high concentrations of these elements may still
cause adverse health effects or, at a minimum, an unacceptable taste for consumers [2]. The recovery,
removal, and recycling of valuable metals, including gold, platinum, and rare earth elements, from
natural and secondary sources such as industrial wastes is also important for their economic, strategic,
and national security value. These critical elements have important applications in metallurgy and the
biomedical and electronics industries [7–12].

Several methods have been used for extraction and removal of metals from different sources of
water, including microfiltration [13], chemical precipitation [14], coagulation and flocculation [15],
electrochemical removal [16], liquid–liquid extraction [17,18], osmosis [19], crystallization and
distillation [20], photocatalysis [21], and adsorption. In this review, we focus on several techniques for
extraction, determination, and removal of metals, including heavy and valuable metals, from water
samples. In particular, extraction methods that aim to provide environmentally friendly, simpler and
faster techniques are discussed. Approaches include recent advances in primarily liquid–liquid and
solid-phase extraction. Comparison of their advantages and disadvantages will be made to illustrate
efforts to develop more environmentally friendly methods.

2. Liquid-Based Extraction

Numerous liquid-based techniques like liquid–liquid extraction (LLE) [9,22–24], chemical
precipitation [14,25], and cloud point extraction [26] have been utilized for extraction of metal ions
from aqueous media. Among the listed methods, LLE is based on analyte partitioning between two
immiscible phases. Conventional LLE is widely used for separations and preconcentration, including
extraction and recovery of metal species from aqueous media by the addition of organic solvents [24].
This technique has significant advantages. These include rapid extraction kinetics, the ability to choose
selective solvents, amenability to large-scale separation, and easy and flexible implementation. In spite
of these advantages, traditional LLE has several drawbacks, including the extensive use of volatile and
flammable organic solvents, which are potential health and environmental hazards [27]. Moreover,
from the economic point of view, LLE is quite expensive because of the cost of organic extractants and
their disposal [28]. These drawbacks can be circumvented by embracing new methods that provide
simple, low-cost, fast, sensitive, and accurate analyses in a more environmentally friendly manner.
Various advancements in liquid-based extraction for metal ions, such as aqueous biphasic and triphasic
extraction, cloud point extraction, and liquid membrane extraction, are discussed herein.

2.1. Aqueous Biphasic Systems

Aqueous biphasic systems (ABS, Figure 1) forms when two immiscible aqueous-based solutions
are mixed together at a certain temperature [29]. ABS have gained more attention for metal extraction
since 1984 when Zvarova and co-workers successfully extracted copper, zinc, cobalt, iron, indium,
and molybdenum using a polyethylene glycol (PEG) 2000–ammonium sulfate–water system in the
presence of ammonium thiocyanate and sulfuric acid [30]. Because organic solvents are not required in
ABS, it has several advantages over traditional solvent extraction. ABS are less toxic, more economical,
biocompatible, and have a reduced environmental risk [31]. Furthermore, numerous inorganic anions
can be used as water-soluble extractants resulting in metal ion partitioning between two immiscible
aqueous phases, which reduces dehydration effects [32].

ABS can be formed by various mechanisms and thus are tunable to the desired extraction. Biphasic
systems composed of polymer–polymer [33], polymer–salt [34], salt–salt [35], ionic liquid–salt [36], and
surfactant-based systems [37] have been reported. In addition to these, other phase-forming elements
are amino acids, alcohols, and carbohydrates. In ABS, factors governing the metal ion extraction
include molecular weight and polymer type [38], Gibbs free energy of hydration [32], medium pH [39],
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presence and absence of an extracting agent [32,40], and temperature [41]. Examples of metal ion
extractions using different ABS are given in Table 1.Separations 2019, 6, x FOR PEER REVIEW 3 of 26 
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Figure 1. Schematic representations of a two- versus three-phase system for metal ion extraction.

Table 1. Aqueous biphasic systems for metal ion extraction.

Targeted Metal(s) ABS Composition Extraction Agent Detection Ref.

Surfactant–Salt

Zn2+ Triton X-100 a, MgSO4 PAN n UV–Vis [42]

Mo6+, W6+ Triton X-100, (NH4)2SO4 None ICP–AES r [43,44]

Polymer–Salt

Hg2+, Zn2+, Co2+ PEG 6000 b, Na2CO3 None AAS s [45]

Mn2+, Fe3+, Co2+, Ni2+,
Cu2+, Zn2+, Cd2+, Li+

PEG 4000, Na2SO4 None AAS [46]

Fe3+, Co2+, Ni2+, Cu2+,
Zn2+, Cd2+ L35 c, Na2SO4

1N2N o, SCN−,
I− AAS [47]

Cd2+, Ni2+ L35, LiSO4 KI, TTL p AAS [48]

Zn2+, Cd2+, Hg2+, Pb2+,
Bi3+

PEG 1550, Na2SO4, NaNO3,
(NH4)2SO4

NaX, X = I−, Cl−,
Br−, SCN− FTIR t [49]

Co2+, Fe3+, Ni2+ PEO d 1500, (NH4)2SO4, H2O KSCN FAAS u [50]

Hg2+ PEG 5000, Na2SO4
NaX, X = I−, Cl−,

Br−

Packard
Cobra II
Auto-
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Table 1. Cont.

Targeted Metal(s) ABS Composition Extraction Agent Detection Ref.

Salt–Salt

Cd2+ TBAB f, (NH4)2SO4 None AAS [55]

Ionic Liquid–Salt

Ni2+, Co2+ (P44414) g(Cl), NaCl None NR [56]

Co2+, Fe3+, Nd3+, Sm3+ Cyphos IL 101 h, NaCl None ICP–OES,
TXRF w [57,58]

Sc3+ (P444C1COOH)Cl i, NaCl None TXRF [59]

Au+ 1-alkyl-3-methylimidazolium
bromide, K2HPO4

None AAS [60]

Co2+ (HMIM)(BF4) j, NaCl None ICP–OES [61]

Pr3+ (A336)(NO3) k, NaNO3 None UV–Vis [62]

Nd3+ (P4444) l(NO3), NaCl None ICP–MS [63]

Miscellaneous

Au3+ (C6mim)(C12SO3) m, PEG 6000 None UV–Vis [64]
a octylphenolpolyethoxylene, b polyethylene glycol (average molecular mass 6000), c (ethylene oxide)11
(propylene oxide)16 (ethylene oxide)11, d poly(ethylene oxide), e (ethylene oxide)13-(propylene oxide)30-(ethylene
oxide)13, f tetrabutylammonium bromide, g tributyl(tetradecyl)phosphonium, h tri(hexyl)tetradecylphosphonium
chloride, i tri-n-butyl(carboxymethyl)phosphonium chloride, j 1-hexyl-3-methylimidazolium tetrafluoroborate,
k tricaprylmethylammonium nitrate, l tetrabutylphosphonate, m 1-hexyl-3-methylimidazole dodecyl sulfonate,
n 1-(2-pyridylazo)-2-naphthol, o 1-nitroso-2-naphthol, p tie-line length, q ammonium pyrrolidine dithiocarbamate,
r inductively coupled plasma atomic emission spectrometry, s atomic absorption spectrophotometry, t fourier
transform infrared spectrophotometry, u flame atomic absorption spectrophotometry, v inductively coupled plasma
optical emission spectrometry, w total reflection X-ray fluorescence.

It is important to note that to extract a single target metal in each extraction step with a biphasic
system, the extraction process for a specific metal from a mixture of metal ions must be highly selective,
resulting in a potentially lengthy and costly method. A well-designed three-liquid-phase extraction
system may overcome this disadvantage by selective separation and extraction of two or more targeted
metals during a single extraction step.

2.2. Three-Liquid-Phase Extraction

Three-liquid-phase extraction (TLP, Figure 1) has been used for the isolation of organic
macromolecules such as cellulose, enzymes, proteins, and metals [65,66]. This approach is based on
the use of three immiscible liquid phases composed of different organic solvents, polymers, inorganic
salts, water, or ionic liquids [67,68]. As the number of non-miscible phases is increased from two
(biphasic) to three (triphasic), the steps required for separation decrease. Therefore, three metal cations
can be separated simultaneously in a single step as shown in Figure 1. For example, in the case of a
biphasic system, a mixture of five metals may require four steps for the separation, whereas for TLP,
two steps may be sufficient. Different approaches have been considered to design a TLP system for
metal extraction. These include one aqueous and two organic phases [69], one organic and two aqueous
phases [70], and ionic liquid-based systems [71]. One recent study showed an improved extraction
efficiency for Co2+ with a TLP system when directly compared to an ionic liquid ABS approach [61].
However, in TLP, the challenges associated with the use of organic phases are reintroduced. Examples
of metal ion extraction using different TLP systems are tabulated in Table 2.
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Table 2. TLP systems for metal ion extraction.

TLP
Phases

TLP Component Metal Extracted
Ref.

Top Middle Bottom Top Middle Bottom

1 Organic 2 Aqueous

TRPO a PEG-2000 (NH4)2SO4, H2O Ti4+ Fe3+ Mg2+ [72]

S201 b EOPO j Na2SO4, H2O Pd2+ Pt4+ Rh3+ [73,74]

D2EHPA c PEG (NH4)2SO4, H2O Cr3+ Cr6+ None [75]

Cyanex272 d PEG (NH4)2SO4, H2O Yb3+ Eu3+ La3+ [76]

Cyanex272 PEG 2000 (NH4)2SO4, H2O Yb3+, Eu3+ Fe3+, Si4+ La3+, Al3+ [77]

PC-88A e PEG 2000 (NH4)2SO4, H2O Eu3+ Al3+, Si4+, Fe3+ La3+, Yb3+ [78]

Xylene,
(D2EHPA) PEG (NH4)2SO4, H2O Mn2+ Co2+ Ni2+ [79]

N1923 f PEG (NH4)2SO4, H2O V5+ Cr6+ Al3+ [80]

2 Organic 1 Aqueous

S201
(Sugaring

out)
CH3CN

glucose, H2O Pd2+ Pt4+ Rh3+ [81]

S201
(Salting

out)
CH3CN

NaCl, H2O Pd2+ Pt4+ Rh3+ [69]

TLP Systems with Ionic Liquids

H2O (HMIM)
(BF4) k NaCl None Co2+ None [61]

TOPO g H2O (Bmim) (PF6) l
Mn2+,
Zn2+,

Cd2+, Pb2+
None Cu2+, Ni2+ [71]

S201 H2O (C4mim) (PF6) l Pd2+ Rh3+ Pt4+ [82]

TBP h,
(P66614)
(Tf2N) i

H2O (Hbet) (Tf2N) m Sn2+ Sc3+ Y3+ [66]

a trialkylphosphine oxide, b diisoamyl sulfide/nonane, c di(2-ethylhexyl)phosphoric acid,
d bis(2,4,4-trimethylpentyl)phosphinic acid, e 2-ethylhexylphosphoric acid mono(2-ethylhexyl)ester,
f primary amine, g tri-n-octylphosphine oxide, h tri-n-butyl phosphate, i trihexyl(tetradecyl)phosphonium
bis(trifluoromethylsulfonyl)imide, j polyethylene oxide-polypropylene oxide, k 1-hexyl-3-methylimidazolium
tetrafluoroborate, l 1-butyl-3-methylimidazolium hexafluorophosphate, m betainium
bis(trifluoromethylsulfonyl) imide.

2.3. Cloud Point Extraction (CPE)

The cloud point is the point where a solution mixture turns cloudy due to diminished solubility of
one component after changes to experimental conditions such as pressure, temperature, and inclusion of
additives [83]. For example, this clouding process can result in the formation of two distinct phases
of nonionic and zwitterionic surfactants in which one is a surfactant-rich phase and the other has a
concentration close to the critical micelle concentration [84]. The surfactant-rich phase obtained at
the cloud phase condition functions to extract and preconcentrate various inorganics [85]. This phase
extracts metal cations and is dispersed in the aqueous phase formed after phase separation. Detection of
the cloud point occurs by various techniques (e.g., light scattering or particle counting, turbidimetry,
refractometry, thermo-optical methods, and viscometry) [86]. CPE shows great promise as a more
environmentally friendly method for heavy metal extractions [87]. Kazi et al. have studied extraction
of Al3+ by the cloud point technique where 8-hydroxyquinone was added to coordinate Al3+ while
the surfactant octylphenoxypolyethoxyethanol (Triton X-114) was added to extract and entrap the
complex [88]. Similarly, Zhao et al. studied the extraction of Cd2+, Co2+, Ni2+, Pb2+, Zn2+, and Cu2+

using a dual-CPE technique [89]. The main advantage of CPE over other techniques is the use of water
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instead of organic solvents [90]. CPE is also easy to manipulate, is fast, requires minimal expense,
and offers high analyte recovery [85,91].

2.4. Liquid Membrane Extraction

Membrane-based extraction is a non-equilibrium process that has been developed as an important
green strategy for recovery of rare earth elements [92]. Different types of liquid membranes (LM)
have been reported, such as bulk liquid membrane (BLM) [93], emulsion liquid membrane (ELM) [94],
supported liquid membrane (SLM) [95], and hollow fiber-supported liquid membrane (HFSLM) [96].
Their advantages and disadvantages are summarized in Table 3. Various metal ions from common
metals (copper, nickel, and cobalt) [97] and valuable metals (platinum, gold) [98,99] to radioactive
species (uranium) [100] have been extracted using LM techniques. As noted in Table 3, there are several
concerns regarding membrane stability when organic solvents are used.

Table 3. Liquid membrane systems for metal ion extraction.

Type of LM Overview Advantages Disadvantages Ref.

SLM

Hydrophobic membrane
impregnated with an

organic solvent is squeezed
between an aqueous feed

and stripping solution

Simplicity of
operation

Low operating cost

Emulsion formation of liquid
membrane phase in water

Instability
[95]

HFSLM

Hollow fiber is used as
microporous hydrophobic

membrane and impregnated
with LM phase

High interfacial
area-to-volume

ratio
Lower transport rate than SLM [96]

ELM

Water/organic/water
(W/O/W) or

organic/water/organic
(O/W/O) with a thin middle

LM phase

High transfer rates

Continuous operation is difficult
to achieve as settling stage is

performed after extraction. Long
contact of emulsions with water in

feed stream results in swelling
and rupture due to the difference
in osmotic pressure, shear forces,
and static pressure between the

feed and stripping phase

[101]

BLM
An aqueous feed and

stripping phase separated by
bulk organic LM phase

High transfer rate Less interfacial area-to-volume
ratio results in low fluxes [93]

2.5. Summary

In summary, LLE methods often require several extractions for complete recovery of targeted
metals. Thus, LLE is often replaced by solid-phase extraction (SPE) methods to achieve higher efficiency
and recovery. SPE is advantageous because consumption of organic solvent can be minimized [102].
Additionally, errors from inaccurately measured extraction volumes, especially when multiple extraction
steps are required with LLE, are minimized with SPE as it does not require phase separation [103].

3. Solid-Phase Extraction

Solid-phase extraction (SPE, Figure 2) is one of the most popular sample pretreatment and
separation techniques because of its simplicity, low cost, high preconcentration factors, selectivity,
and versatility. Furthermore, the availability of a wide variety of sorbent materials and the ability to
use only minimal amounts, or in some cases, no organic solvents, makes SPE a very environmentally
friendly technique [102,104,105]. Most of the benefits of SPE methods are governed by the physical
and chemical nature of the sorbent [104,106]. Recent development and applications of a number of
new sorbent materials for metal extraction, such as nanosorbent materials, polymers, metal oxides,
magnetic materials, metal organic frameworks (MOFs), and bioadsorbents, are discussed herein.
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Figure 2. Schematic representation of solid-phase extraction (SPE), solid-phase microextraction (SPME,
direct immersion only), and dispersive solid-phase extraction (D-SPE).

3.1. Nanosorbent Materials

Nanosorbent materials such as carbon nanotubes (CNTs) [107], graphene oxide (GO), silica [108],
chitosan [109], and activated carbon [110,111] are particularly useful due to their large surface areas
compared to their particle volume. Thus, they are excellent candidates as sorbent materials for
metals since the high surface area provides a greater number of active sites leading to enhanced
extraction efficiency. Recently, Gouda et al. developed a sorbent material based on multiwalled carbon
nanotubes impregnated with 2-(2-benzothiazolylazo)orcinal (BTAO) for preconcentration of cadmium,
copper, nickel, lead, and zinc from food and water samples prior to determination by flame atomic
absorption [112]. Similarly, carbon nanotubes impregnated with tartrazine [113], polyaniline [114], and
di-(2-ethyl hexyl phosphoric acid) [115] have been utilized as sorbent materials for preconcentration,
separation, and determination of metals. Moreover, Awual et al. synthesized ligand-impregnated
conjugate nanomaterials for the extraction of mercury from aqueous solution [116]. Metal oxides
such as Al2O3 [117], TiO2 [118], and SiO2 [119] have been used for metal extraction due to their
physical stability, cost-effectiveness, and high surface area [118]. Other examples are shown in Table 4.
The utilization of nanosorbent materials is attributed to their high surface area, ease of modification,
and nonspecific adsorption with metals [120,121]. However, limitations include low selectivity and,
in some cases, low stability and limited reusability of the material.



Separations 2020, 7, 4 8 of 27

Table 4. Nanomaterial-based solid sorbents.

Sorbent Extraction
Method Target Metal(s) Reusability SC f (mg g−1) Ref.

Tyre-based activated
carbon SPE-FAAS d As5+, Cd2+, Cr3+, Cu2+, Fe3+,

Mn2+, Ni2+, Pb2+, Zn2+ NR NR [122]

Dowex 50W-x8 &
Chelex-100 SPE Cd2+, Co2+, Cr3+, Cu2+, Fe3+,

Ni2+, Pb2+, Zn2+
Stable up to 150
elution cycles NR [123]

ZnFe2O4 nanotubes
(ZFONTs) DMSPE e Co2+, Ni2+, Mn2+, Cd2+ NR

Co2+-30.09
Ni2+-28.4
Mn2+-35.4
Cd2+-27.9

[124]

Agarose-g-PMMA a DMSPE Cd2+, Ni2+, Cu2+, Zn2+ NR

Cd2+-31.8
Ni2+-42.5
Cu2+-48.3
Zn2+-34.3

[125]

Activated carbon DSPE Cu2+ Stable up to 6
cycles 1.6 [126]

MWCNTs b DMSPE Cr6+ NR NR [127]

GO-MWCNTs-DETA c SPE Cr3+, Fe3+, Pb2+, Mn2+ NR

Cr3+-5.4
Fe3+-13.8
Pb2+-6.6
Mn2+-9.5

[128]

a poly(methyl methacrylate) grafted agarose, b multiwalled carbon nanotubes, c diethylenetriamine, d flame atomic
absorption spectrometry, e dispersive magnetic SPE, f sorption capacity, NR: not reported.

3.2. Polymer-Based Materials

Some of the limitations found with nanosorbent materials have been addressed by employing
specially designed sorbent materials based on chelating resins [129–132], polymers with chelating
units [133,134], ion imprinted polymers [135–138], and polymeric ionic liquids [135,139,140].

Polymeric chelating materials, unlike the inorganic nanosorbents, have the advantage of tunability
in functionalization using unique chelating groups to obtain enhanced selectivity and extraction
efficiencies for metals. Recently, Nunes et al. developed a greener SPE approach for the extraction of
Zn and Ni by employing nylon-6 nanofibers modified with di-(2-ethylhexyl) phosphoric acid [141].
The experimental results suggested that these polymeric nanofibers were cost-effective because of
their reusability even after ten cycles of extraction in addition to being ecofriendly due to the absence
of organic solvents. The same polymeric material was also used for SPE of indium from LCD
screens [142]. Furthermore, polymeric materials based on ionic liquids also were utilized as effective
sorbent materials for extraction of metals. For example, a polymeric ionic liquid containing 3-(1-ethyl
imidazolium-3-yl)propyl-methacrylamido bromide and ethylene dimethacrylate was specifically
developed by Zhang et al. for extraction of antimony employing a stir cake sorptive extraction
method [143]. Table 5 summarizes several additional examples of polymer sorbents including
ion-imprinted polymer (IIP) materials for SPE of metals.
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Table 5. Polymer-based sorbent materials for metal ion extraction.

Sorbent Material Extraction
Method Target Metal(s) Flow Rate Extraction

Time Ref.

Copolymer
StrataTM-X resin On-line SPE Cd2+, Pb2+,

Cu2+, Cr6+ NR 1.5 [144]

mGO/SiO2@coPPy-Th a MSPE b Cd2+, Pb2+,
Cu2+, Cr3+, Zn2+ NR 6.5 min [145]

Thallium ion-imprinted
polymer SPE c Tl3+ NR 30 min [146]

Copolymer of
4-Vinylpyridine and

Ni-Dithizone
SPE Ni2+ 0.2 mL min−1 NR [147]

(EGDMA-MAH/Ni) d

imprinted polymer
SPE Ni2+ 0.5 mL min−1 NR [148]

Double imprinted
chitosan-succinate

polymer
SPE Cu2+ NR NR [149]

Dual imprinted
polymers of Cd SPE Cd2+ 3.0 mL min−1 20 min [150]

Poly(GMA e-co-EDMA f)-IDA g SPE Cu2+, Pb2+, Cd2+ 10 µL s−1 NR [151]

Nylon 6-DEHPA h SPE Zn2+, Ni2+ NR 7.5 min [141]
a SiO2-coated magnetic graphene oxide modified with polypyrrole–polythiophene, b magnetic solid-phase extraction,
c solid-phase extraction, d ethyleneglycoldimethacrylate-methacryloylhistidinedihydrate nickel(II), e glycidyl
methacrylate, f ethylene dimethacrylate, g iminodiacetate, h di-(2-ethyl)phosphoric acid.

3.3. Metal–Organic Frameworks

Metal–organic frameworks (MOFs) consist of metal ions and organic linkers that are strongly
bonded together. These materials have been used as effective sorbents in various applications due to
their highly porous structure and the ability to be synthesized in various shapes and sizes [152,153].
Recently, Tadjarodi et al. designed a magnetic nanocomposite sorbent from HKUST-1 MOF combined
with Fe3O4@4-(5)-imidazoledithiocarboxylic acid (Fe3O4@DTIM) for SPE of Hg2+ in canned tuna and
fish samples [154]. The sorbent selectivity towards Hg2+ was due to the presence of sulfur atoms in
DTIM. Also, the magnetic Fe3O4 nanoparticles facilitated separation from samples by simply applying
an external magnetic field while the MOF prevented aggregation of Fe3O4 nanoparticles by acting
as spacers and a support matrix with the MOF cavities providing increased surface area to enhance
sorption capacity. Similarly, Esmaeilzadeh developed a MOF with iron-based magnetic nanoparticles
decorated with tetraethyl orthosilicate to create a silica layer on the surface [155]. The nanoparticles
were subsequently functionalized with morin (2-(2,4-dihyroxyphenyl)-3,5,7-trihydroxychromen-4-one)
as a chelating agent to develop a MIL-101(Fe)/Fe3O4@morin nanocomposite for the selective extraction
and speciation of V4+ and V5+. In this case, the silica layer provided stability for the Fe3O4 nanoparticles
in acidic conditions as well as allowed for further functionalization. MIL-101(Fe) also prevented
aggregation of the nanoparticles by acting as a spacer and support. In addition, Nasir et al. developed
a two dimensional leaf shaped zeolite imidazolate frame work (2D ZIF-L) for arsenite adsorption [156].
Table 6 shows recently reported MOFs as effective sorbents for the SPE of metals.
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Table 6. MOF sorbent materials for metal extraction.

Sorbent Material Extraction
Method Target Metal(s) Reusability SC f (mg g−1) Ref.

UiO-66 a -NH2 SPE Cd2+, Cr3+, Pb2+, Hg2+ NR

Cd2+-49
Cr3+-117
Pb2+-232
Hg2+-769

[157]

KNiFC b

Fe3O4/KNiFC
MSPE Cs+ 5 153 and 109 [158]

Fe3O4@ZIF-8 c SPE As5+ NR 0.035–0.036 [159]

ZIF-8@cellulose SPE Cr6+ NR NR [160]

FJI-H12 d SPE Hg2+ NR 440 [161]

Fe3O4/IRMOF-3 e MSPE Cu2+ 10 2.4 [162]

UiO-66-OH SPE Th4+ 25 47.5 [163]
a zirconium-based, b potassium nickel hexacyanoferrate, c zeolitic imidazolate framework-8, d Co(II) and
2,4,6-tri(1-imidazolyl)-1,3,5-triazine, e iso-reticular MOFs, f sorption capacity.

3.4. Magnetic-Based Materials

In the process of developing more environmentally friendly methods, incorporation of magnetic
materials such as iron oxide nanoparticles into sorbent composites has increased in recent years.
Magnetic materials are utilized to readily extract target metal ions from complex matrices followed by
sorbent separation from samples by an external magnetic field. Following desorption of the metals,
the sorbent can be recovered and effectively recycled. Magnetic nanoparticles have been combined
with carbon-based [164], ionic liquid [165,166], MOF [167], and polymer [168] materials for magnetic
SPE of metals. Several such examples are given in Tables 4–6, while other unique recent studies using
magnetic-based materials are described below and in Table 7.

Shirani et al. developed a magnetic sorbent based on an ionic liquid linked to magnetic multiwalled
carbon nanotubes for simultaneous separation and determination of cadmium and arsenic in food
samples using electrothermal atomic absorption spectrometry [169]. Habila et al. synthesized a sorbent
material based on Fe3O4@SiO2@TiO2, which shows unique magnetic, photocatalytic and acid resistant
properties, and was used for the preconcentration of copper, zinc, cadmium, and lead prior to ICP–MS
analysis [170]. The advantage of this sorbent material was it not only allowed extraction of toxic
heavy metals from complex matrices, but also assisted the simultaneous degradation of the organic
matrix to aid preconcentration. Additionally, Molaei et al. utilized a copolymer based on polypyrrole
and polythiophene (PPy–PTh) layered on the surface of SiO2-coated magnetic graphene oxide for the
extraction of trace amounts of copper, lead, chromium, zinc, and cadmium from water and agricultural
samples [145].
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Table 7. Magnetic-based sorbent materials for metal ion extraction.

Sorbent Material Extraction
Method Target Metal(s) WS f pH SC g (mg g−1) Ref.

CEMNPs a MSPE Cu2+, Co2+, Cd2+ 9.0
Cu2+-3.21
Co2+-1.23
Cd2+-1.77

[171]

Co-IDA b MSPE Cu2+ 7.5 NR [172]

M-PhCP c MSPE Cd2+, Pb2+ 6.0 NR [173]

Fe3O4@MOF-235(Fe)-OSO3H MSPE Cd2+ 3.0 NR [167]

(Fe3O4-ethylenediamine)/
MIL-101(Fe) MSPE Cd2+, Pb2+, Zn2+, Cr3+ 6.1

Cd2+-155
Pb2+-198
Zn2+-164
Cr3+-173

[174]

Fe3O4@TAR d MSPE Cd2+, Pb2+, Ni2+ 6.2 185–210 [175]

MOF Fe3O4-Pyridine MSPE Cd2+, Pb2+ 6.3 186–198 [176]

SH-Fe3O4/Cu3(BTC)2
e MSPE Pb2+ 6.0 198 [177]

a carbon-encapsulated magnetic nanoparticles, b magnetic cobalt nanoparticles functionalized with iminodiacetic
acid, c magnetic phosphorous-containing polymer, d thiazolylazo resorcinol, e mercapto groups modified with
benzene tricarboxylic acid, f working solution pH, g sorption capacity.

3.5. Ion Exchange

Ion exchange is another technique that can be used for the removal of metals, though it depends
on the solution composition [178]. Moreover, other factors like the capacity and selectivity of sorbent
material, pH, temperature, and solution salinity also play important roles in the ion exchange
process [179]. Recently Murray et al. studied the removal of Pb2+, Cu2+, Zn2+, and Ni2+ from
natural water with polymeric submicron ion exchange resins [180]. Similarly, Vergili et al. found
good extraction properties with a weak acid cation resin for the sorption of Pb2+ from industrial
wastewater [181].

3.6. Ligand Binding

Simple coordination chemistry, where a ligand with affinity for a metal binds and forms a complex,
is a useful method to selectively isolate a metal from aqueous solution. There are numerous organic
chelating agents for heavy and precious metal extraction. The overall challenge is achieving selectivity
for a single metal or class of metals. Depending on the strength of binding, recovery of the isolated
metal ion can also be difficult. Recent studies show dithiocarbamate ligands as one of the most
useful materials to coordinate and extract transition metals from aqueous solution [182]. Because of
the presence of various hybridized states of nitrogen and sulfur and the tendency to share electrons
between the nitrogen and sulfur with metal ions, the removal of heavy metals by these ligands has
been demonstrated [183–186]. They also are known to form colored metal complexes, which makes
detection and analysis relatively easy [187]. Table 8 provides examples of ion exchange and ligand
binding techniques for metal extraction.
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Table 8. Ion exchange and ligand binding techniques for metal ion extraction.

Techniques Substance Used SC h Target Metal(s) Ref.

Ion Exchange
Membrane

Cellulose nanofiber modified
with PAA a and PGMA b 160 mg g−1 Cd2+ [188]

Chitisan/PVA c/Zeolite nanofiber NR Cr6+, Fe3+, Ni2+ [189]

PAN d/GO e/Fe3O4 nanofiber 799.4 mg g−1 of Pb2+,
911.9 mg g−1 of Cr6+ Pb2+, Cr6+ [190]

Ligand Binding

PMHS f-g-PyPz g

PMHS-g-PyPz(OEt)2

0.24 mmol (Co2+) and
1.48 mmol (Cu2+) g−1

of polymer

Cu2+, Cd2+, Cr3+,
Ni2+, Co2+ [191]

N,N’-dialkyl-N,N’-diaryl-1,10-
phenanthroline-2,9-

dicarboxamides
NR Lanthanides [192]

N,N’-dimethyl-1,4-piperazines NR
Zn2+, Cu2+,

Mn2+, Li+, Ni2+,
Mg2+

[193]

a poly(acrylic acid), b poly(glycidylmethacrylate), c polyvinyl alcohol, d polyacrylonitrile, e graphene oxide,
f poly(methylhydrosiloxane), g pyridine–pyrazole, h sorption capacity.

3.7. Solid-Phase Microextraction

Although SPE has advantages over LLE, more progress is needed in the development of more
ecofriendly and cost-effective approaches to further reduce the amount of organic solvents and sorbent
material, as well as to minimize cost, analysis time, and disposal of waste chemicals. Such considerations
have led to the development of greener alternatives such as SPME (Figure 2), which was developed
and introduced by Pawliszyn in 1990 [194]. SPME is a fiber-based version of SPE that has benefits
over other extraction techniques because the sample and solvent amounts are reduced, liquid, solid
and gas samples can be analyzed with higher sensitivity and cost-effectiveness, and the use of organic
solvents is minimized. Briefly, a fiber-based material is used as the sorbent to extract molecules by
direct immersion of the fiber into the sample solution (Figure 2) or into the headspace above the
solution. Once analytes partition into the sorbent, the fiber is removed for desorption and analysis.
Direct coupling to analytical instrumentation is then possible to achieve simultaneous preconcentration
and determination of target species, thus reducing the analysis time [195–199].

There are limited reports on the use of SPME for metal ion detection and analysis using HPLC and
GC [200,201]. For SPME–HPLC, determination of metal ions is limited to commercial adsorbents [200].
Derivatization is required to obtain a hydrophobic organometallic compound to achieve adsorption
onto the fibers and desorption after injection into a SPME–HPLC chamber. Difficulties with slow
analyte diffusion in HPLC complicate the analysis of metals. One notable example of SPME–HPLC
was reported by Kaur et al., in which a complex of thiophenaldehyde-3-thiosemicarbazone with cobalt,
nickel, copper, and palladium was followed by UV detection [202]. SPME coupled to GC is limited to
volatile species, which also often requires derivatization prior to detection [203]. Apart from the need
for derivatization, there are other challenges including fiber-to-fiber variation, carry over problems,
relatively high cost, reusability and recycling of the coating material, instrumental compatibility and,
most importantly, delicate fibers or fragile coatings [152,199,204].

A recent goal is the desire to use SPME for the direct extraction and analysis of metal ions without
the need for derivatization or complicated procedures. Rahmi et al. developed a novel SPME approach
for trace metal analysis by modifying the inner wall of a syringe filter tip with a monolithic chelating
moiety [205]. Twenty-two elements, including titanium, iron, cobalt, nickel, copper, gallium, cadmium,
tin, and rare earth elements, were extracted prior to ICP–MS analysis with extraction efficiencies higher
than 80%. Rohanifar et al. developed a versatile, easily tunable, cost-effective, greener approach for
SPME of heavy metals from natural waters [133]. In this study, pencil lead was used as a substrate as an
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alternative to a commercially available SPME fiber or a metal wire, which significantly reduced the cost.
The pencil lead was coated by electropolymerization with a sorbent composite containing polypyrrole,
carbon nanotubes, and different metal chelating ligands. The resultant fiber was then used for direct
immersion SPME of heavy metals followed by determination by ICP–MS (Figure 3). The chelating
ligand was trapped inside the polymer matrix, which effectively captured the metal from the solution.
Metals were therefore preconcentrated onto the fiber and then released in an analysis solution by
treatment with acid. A composite containing polypyrrole/carbon nanotubes/1,10-phenanthroline
demonstrated exceptional extraction efficiencies for silver, cadmium, cobalt, iron, nickel, lead, and zinc
in several sample matrices. The accuracy of the method was validated by the analysis of a certified
reference standard. Analyses were accomplished in a minimum amount of aqueous solution and were
thus very environmentally friendly.

Separations 2019, 6, x FOR PEER REVIEW 12 of 26 

material, instrumental compatibility and, most importantly, delicate fibers or fragile coatings 
[152,199,204]. 

A recent goal is the desire to use SPME for the direct extraction and analysis of metal ions 
without the need for derivatization or complicated procedures. Rahmi et al. developed a novel SPME 
approach for trace metal analysis by modifying the inner wall of a syringe filter tip with a monolithic 
chelating moiety [205]. Twenty-two elements, including titanium, iron, cobalt, nickel, copper, 
gallium, cadmium, tin, and rare earth elements, were extracted prior to ICP–MS analysis with 
extraction efficiencies higher than 80%. Rohanifar et al. developed a versatile, easily tunable, cost-
effective, greener approach for SPME of heavy metals from natural waters [133]. In this study, pencil 
lead was used as a substrate as an alternative to a commercially available SPME fiber or a metal wire, 
which significantly reduced the cost. The pencil lead was coated by electropolymerization with a 
sorbent composite containing polypyrrole, carbon nanotubes, and different metal chelating ligands. 
The resultant fiber was then used for direct immersion SPME of heavy metals followed by 
determination by ICP–MS (Figure 3). The chelating ligand was trapped inside the polymer matrix, 
which effectively captured the metal from the solution. Metals were therefore preconcentrated onto 
the fiber and then released in an analysis solution by treatment with acid. A composite containing 
polypyrrole/carbon nanotubes/1,10-phenanthroline demonstrated exceptional extraction efficiencies 
for silver, cadmium, cobalt, iron, nickel, lead, and zinc in several sample matrices. The accuracy of 
the method was validated by the analysis of a certified reference standard. Analyses were 
accomplished in a minimum amount of aqueous solution and were thus very environmentally 
friendly. 

 
Figure 3. Schematic representation of the creation of an SPME fiber by electropolymerization and its 
application for metal extraction. Reprinted with permission from [133]. 

3.8. Dispersive Solid-Phase Extraction 

Dispersive solid-phase extraction (D-SPE, Figure 2) is another variation of solid-phase extraction 
where a micron-sized sorbent is dispersed in the sample solution. This approach eliminates the need 
to optimize the flow rate and potential backpressure issues with a packed SPE cartridge, especially 
with newer nano-based materials. Enhanced contact between the analytes and sorbent results in very 
efficient extractions [206]. New sorbents for D-SPE for metals are beginning to be reported that utilize 
materials that effectively and selectively capture metal ions by chelation. Sitko et al. described the 
synthesis of a graphene oxide sorbent modified with (3-mercaptopropyl)-trimethoxysilane for 
determination of Co2+, Ni2+, Cu2+ As3+, Cd2+, and Pb2+ by total reflection X-ray fluorescence [207]. 
Preconcentration and metal capture is quite straightforward, while the analysis step is solvent free. 
Similarly, dithiocarbamate functionalized Al(OH)3–polyacrylamide was prepared and characterized 
for extraction of Cu2+ and Pb2+ [208]. As with SPME, the goal for D-SPE applications is to enhance 
selectivity for metal analysis with new selective sorbent materials. Recently, pyrrole was derivatized 
with carbon disulfide and chemically polymerized to obtain an air stable, water-insoluble, chelating 
polymer for extraction of soft metal ions [209]. Application of this new sorbent for D-SPE of Co2+, Ni2+, 
Cu2+, Zn2+, Cd2+, and Pb2+ demonstrated excellent removal and recovery of these ions. The chelating 

Figure 3. Schematic representation of the creation of an SPME fiber by electropolymerization and its
application for metal extraction. Reprinted with permission from [133].

3.8. Dispersive Solid-Phase Extraction

Dispersive solid-phase extraction (D-SPE, Figure 2) is another variation of solid-phase extraction
where a micron-sized sorbent is dispersed in the sample solution. This approach eliminates the need to
optimize the flow rate and potential backpressure issues with a packed SPE cartridge, especially with
newer nano-based materials. Enhanced contact between the analytes and sorbent results in very efficient
extractions [206]. New sorbents for D-SPE for metals are beginning to be reported that utilize materials
that effectively and selectively capture metal ions by chelation. Sitko et al. described the synthesis of a
graphene oxide sorbent modified with (3-mercaptopropyl)-trimethoxysilane for determination of Co2+,
Ni2+, Cu2+ As3+, Cd2+, and Pb2+ by total reflection X-ray fluorescence [207]. Preconcentration and
metal capture is quite straightforward, while the analysis step is solvent free. Similarly, dithiocarbamate
functionalized Al(OH)3–polyacrylamide was prepared and characterized for extraction of Cu2+ and
Pb2+ [208]. As with SPME, the goal for D-SPE applications is to enhance selectivity for metal analysis
with new selective sorbent materials. Recently, pyrrole was derivatized with carbon disulfide and
chemically polymerized to obtain an air stable, water-insoluble, chelating polymer for extraction of
soft metal ions [209]. Application of this new sorbent for D-SPE of Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and
Pb2+ demonstrated excellent removal and recovery of these ions. The chelating polymer is reversible,
releasing the captured metals after acid treatment for preconcentration prior to analysis by ICP–MS.
D-SPE is also amenable to magnetic sorbent particles as demonstrated by the references in Table 4.
Therefore, D-SPE shows tremendous promise for developing simple environmentally friendly methods
to extract metals.
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4. Bulk Sorbent Methods

4.1. Chemical Precipitation

Wastewater is a common medium that regularly is contaminated with heavy metal ions. To ensure
safe re-entry into the environment, treated water must contain metal concentrations below an accepted
level called the maximum contaminant level (MCL) for each metal ion [210,211]. Chemical precipitation
is a useful approach to remove large amounts of heavy metals from inorganic waste materials and
prevent contamination of the environment [211]. This technique removes ionic metal components after
adding counter-ions to reduce their solubility in aqueous solution [212]. Dissolved metals are turned
into insoluble components by a precipitating agent under favorable pH conditions [212]. Much research
on chemical precipitation for metal extraction has been conducted because of the low cost and ease of
implementation for large volumes of wastewater. However, disadvantages such as the inability to
maintain pH for optimum precipitation, high volume of sludge production [213], and low selectivity of
metal extraction [214] limits widespread use. The treatment method should not produce toxic chemical
sludge such that disposal remains ecofriendly and cost-effective [215]. Several examples on the use of
precipitating agents to extract various metals have been reported [216–219].

4.2. Biosorbent Extraction

Biosorbent extraction is particularly important for the removal of heavy metals from industrial
effluents as this process utilizes readily available and inexpensive dead biomass compared to
conventional sorbents [220]. Aquatic organisms like yeast, algae, and bacteria adsorb dissolved
heavy metals and even radioactive elements found in their surroundings [221]. Dead fungal material,
for example, does not result in increased toxicity with the extracted metal or adverse operating
conditions. Furthermore, no nutrients are needed for dead mass and relatively simple non-destructive
treatments are used for the recovery of bound metals, which are often in their anionic forms [220,222].
Natural biosorbents can be valuable low-cost alternatives for metal removal and cleanup, especially
for developing countries with limited financial resources. In addition, recent review articles have
discussed progress related to the development of ecofriendly phytoremediation and phytoextraction
approaches for the removal of metals from contaminated environmental sites [223–225].

Kratochvil et al. studied the removal of molybdate (MoO4
2−) with chitosan beads for up to

700 mg g−1 of molybdate [220]. Similarly, removal of Cr6+ by peat moss [226] and corncobs [227]
was achieved with excellent results. Marine green algae, due to presence of different proteins, lipids,
or polysaccharides on the cell wall surface, show good metal binding strength [228]. Hence, for effective
removal of heavy metals even at low levels, biosorbents are considered as an emerging technology [229].
However, despite the availability of large quantities of biomass, selection of the most suitable type of
biomass is still a challenge. Slight variations in biomass properties can result in considerably different
affinities for various metals, which also offers an opportunity to alter biomass properties to design
new biosorbent materials. For example, Mallakpour et al. developed a new hydrogel nanocomposite
biosorbent by embedding calcium carbonate nanoparticles into tragacanth gum for the removal of Pb2+

ions from water samples [230]. Similarly, pine (Pinus sylvestris) sawdust was modified with thiourea
groups and utilized for the extraction of precious metals from industrial solutions [231]. Table 9 shows
additional examples of recently reported natural biosorbent materials for extraction of metals.
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Table 9. Biosorbent materials for metal ion extraction.

Biosorbent SC a Target Metal(s) Ref.

Rice husk, palm leaf, water
hyacinth NR Cu2+, Co2+, Fe3+ [232]

Rhizopus arrhizus 180 mg g−1 U6+, Th4+ [233]

Ascophyllum and Sargassum 30% of dry weight of
biomass Pb2+, Cd2+ [234]

Tobacco dust 39.6, 36.0, 29.6, 25.1,
and 24.5 mg g−1

Pb2+, Cu2+, Cd2+, Zn2+,
Ni2+ [235]

Sargassum filipendula NR Ag+, Cd2+, Cr3+, Ni2+,
Zn2+ [236]

Chlorella vulgaris 161.41 mg g−1 of Cr4+

and 169 mg g−1 of Pb2+ Cr6+, Pb2+ [237,238]

Saccharomyces cerevisiae and
Rhizopus arrhizus

Ranges from 31 to 180 mg
g−1 for different metals Cu2+, Zn2+, Cd2+, U6+ [239]

Alcaligenes sp. 66.7 mg g−1 Pb2+ [240]

Olive mill Varies with pH and other
conditions

Hg2+, Pb2+, Cu2+, Zn2+,
Cd2+ [241]

Parachlorella NR Y3+, La3+, Sm3+, Dy3+,
Pr3+, Nd3+, Gd3+ [242]

a sorption capacity.

5. Conclusions

Recovery of metals often requires extraction from complicated matrices in large quantities, while
metal analysis is routinely sought at the trace level. In either case, strategies that are considered greener
and minimize their impact on the environment drive development of emerging methods for metal
extraction and analysis, many of which are described in this review. Much of the evolution of metal
extraction and sample preparation has benefitted from the development and use of new materials.
Aqueous two- and three-phase systems reduce the amount of organic solvents needed in LLE and
include the use of ionic liquids, which offer the advantageous properties of low flammability and
volatility, excellent solvating ability, and high thermal stability. Solid-phase extraction further reduces
the need for organic solvents and utilizes novel materials based on adsorption, biosorption, ligand
binding, and ion exchange. Extension of SPE into the micro-regime shows exciting promise for effective
and selective SPME of metals. Initially, limited by the derivatization of metal ions to generate volatile or
hydrophobic organometallic species for gas and liquid chromatographic analysis, new SPME coatings
and materials take advantage of classical coordination chemistry to permit direct analysis of metal
ions. Development of unique coordination type polymers, magnetic materials, and thin-film coatings
for SPE and SPME shows great promise for highly selective and ecofriendly extraction methods for the
recovery of valuable metals and for efficient sample preparation and preconcentration of a range of
metals from complex matrices.
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