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Abstract: Computational models for determining the strength of fire debris evidence based on
likelihood ratios (LR) were developed and validated against data sets derived from different
distributions of ASTM E1618-14 designated ignitable liquid class and substrate pyrolysis contributions
using in-silico generated data. The models all perform well in cross validation against the distributions
used to generate the model. However, a model generated based on data that does not contain
representatives from all of the ASTM E1618-14 classes does not perform well in validation with data
sets that contain representatives from the missing classes. A quadratic discriminant model based on
a balanced data set (ignitable liquid versus substrate pyrolysis), with a uniform distribution of the
ASTM E1618-14 classes, performed well (receiver operating characteristic area under the curve of
0.836) when tested against laboratory-developed casework-relevant samples of known ground truth.

Keywords: fire debris analysis; likelihood ratios; evidentiary value; receiver operating characteristic
(ROC) analysis

1. Introduction

Current practice in fire debris analysis within the United States results in reporting a categorical
statement with the possibility of additional qualifying statements, as prescribed by the standard
method ASTM E1618-14 [1]. These categorical statements result from subjective thresholds for
rendering a judgement on the presence or absence of ignitable liquid residue in a sample.
Previous research has led to the development of machine learning approaches and the direct calculation
of likelihood ratios (LR) for observing the evidence (i.e., the total ion spectrum from a fire debris
sample) under the competing hypothesis that a sample contains or does not contain ignitable liquid
residue [2–7]. These calculations provide an easy and objective method for evaluating the evidentiary
value of a fire debris sample, thereby obviating the need for making subjective categorical statements.
Application of the approaches and results presented in this paper to other forensic problems is possible
where training data is available for the relevant population under consideration.

When developing a method for calculating likelihood ratios, it is important to address the question
of what constitutes a relevant population. This is important in both classification and identification
problems [8,9]. In both problem types, the choice of a relevant population influences the calculation of
the multivariate means as well as the variance and covariance used to calculate the likelihood ratios.
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Equation (1) presents a one-level model (single measurement for each sample) for the calculation of
likelihood ratios with the assumption of multivariate normal between-object distributions.

LR =
|C1 |−1/2exp

{
− 1

2 (y− x1)
T(C1)

−1(y− x1)
}

|C2|−1/2exp
{
− 1

2 (y− x2)
T(C2)

−1(y− x2)
} (1)

In Equation (1),
∣∣Cg
∣∣ and

(
Cg
)−1 (g = 1, 2) are the determinant and inverse of the covariance matrix

estimated for class g using an available database. In this work, the two classes are samples containing
ignitable liquid residue and samples that do not contain ignitable liquid residue, designated IL and
SUB respectively. The term y in Equation (1) is the feature vector for the single measurement of the
sample for which the LR is being calculated and xg (g = 1, 2) is the mean feature vector for the database
samples from class g [8,9].

Alternatively, the likelihood ratio can be calculated from Equation (2), which is a one-level model
based on the assumption of multivariate between-object Gaussian kernel density distributions [8,9].
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∣∣h2
1C1

∣∣−1/2 1
m1

∑m1
i=1 exp

{
− 1

2 (y− x1i)
T(h2

1C1
)−1

(y− x1i)
}

∣∣h2
2C2
∣∣−1/2 1

m2
∑m2

i=1 exp
{
− 1

2 (y− x2i)
T(h2

2C2
)−1

(y− x2i)
} (2)

The determinant and inverse of the covariance matrix,
∣∣Cg
∣∣ and

(
Cg
)−1 (g = 1, 2) are estimated

for each class g, given an estimate of the relevant population. The term y is the feature vector for the
single measurement of the sample for which the LR is being calculated and xgi (g = 1, 2) is the mean
feature vectors for the database samples from class g. Equation (2) includes the optimal bandwidth
parameter hg (g = 1, 2) for the kernel functions used for each class. Calculation of the bandwidth is
by Equation (3), where mg is the number of samples of class g in the respective database and p is the
number of variables in each p-variate feature vector. The kernel density estimate is more appropriate
when the population distribution of the data is not normal [8,9].

hg =

(
4

mg(2p + 1 )

) 1
p+4

(3)

In a previous report [3], several chemometric methods were evaluated for calculating the
evidentiary value of a fire debris sample. Support vector machine (SVM), linear and quadratic
discriminant analysis (LDA and QDA, respectively) and k-nearest neighbors (kNN) were evaluated
by cross validation on computationally generated training data and by assessing an independent set
of data taken from large-scale test burns. The results showed that SVM and QDA performed better
in cross validation than LDA and kNN, based on the area under the receiver operating characteristic
(ROC) curves (abbreviated as AUC). The AUCs for SVM, QDA, LDA and kNN were 0.99, 0.98, 0.87 and
0.91 respectively. The equal error rates (EER) for the four methods had the reverse ordering relative
to the AUC values (i.e., EERSVM < EERQDA < EERLDA < EERkNN). The LR produced from the SVM
and LDA cross-validation results were better calibrated than the LR produced by QDA and kNN.
In that work [3], calibration was not performed on the LR values following cross validation of each
chemometric method. Testing the chemometric methods against the large-scale burn validation data
gave AUC values of 0.83, 0.92 and 0.84 for SVM, QDA and kNN methods, respectively. The AUC for
SVM, QDA and kNN showed the largest decreases while the LDA AUC (0.87) showed no change.
The interpretation of these results was that the computational method was producing training data that
possibly was not representative of the large-scale burn data, resulting in poor validation performance
of the chemometric models. An alternative explanation may reside in the different approaches used to
assign the ground truth for the computationally generated data and the large-scale burn data.
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In previous work [3], the computationally generated data was specified to have a ground
truth IL class membership if the sample was generated by including ignitable liquid in the range
of 0.01–1.0 fractional contribution to the total ion spectrum. Computationally generated samples
assigned membership in the ground truth SUB class did not contain any ignitable liquid contribution.
Class assignment (IL or SUB) was made for the large-scale burn samples by an “informed analyst” [3],
who knew the identity and chromatographic characteristics of the ignitable liquid used in the burn.
The analyst assigned the class based on the presence or absence of a recognizable pattern from
the ignitable liquid used in the burn. While this approach may seem reliable, it is nonetheless
different from the method used to assign the ground truth to the computationally generated samples.
In the work presented here, class assignments for the large-scale burn samples are not considered
as “ground truths” for the purpose of evaluating model performance. Instead, the known ground
truth of the computationally generated data and an independent data set from 16 known ground
truth samples are used to evaluate model performance. The LLR, or log10 (LR), of the large-scale
burn data are calculated based on an optimal model derived from computationally generated data.
This approach is more representative of casework, wherein the evidentiary value of a sample is sought
without knowing the ground truth. This approach also affords the opportunity to assess the calculated
evidentiary value for samples where the identity of the ignitable liquids and the sampling locations
were known relative to the ignitable liquid pour.

2. Materials and Methods

The calculations in this work are based on a set of data that is computationally generated by mixing
data from a database of ignitable liquids and data from a substrates database. The computationally
generated data is intended to model fire debris data; however, unlike real fire debris data, the ground
truth (presence or absence of ignitable liquid residue) is known for the computationally generated data.
The relative amounts of ignitable liquids from each of the different ASTM E1618-14 defined classes,
and the relative amount of substrate-only containing samples, are controlled in the computational
mixing to generate data sets that represent different population distributions of ignitable liquid classes
and substrates. The computational mixing process has been described in detail in previous publications
and is summarized here for the benefit of the reader [2,3].

This work utilized 122 substrate pyrolysis samples from the Substrate Database [10],
and 111 substrate pyrolysis samples that were not included in the previously computed fire debris
models [3], bringing the total number of substrate samples to 233. The ignitable liquid samples
used in the models included 445 unweathered and 243 weathered records from the Ignitable Liquids
Reference Collection and Database (ILRC) [11], as previously reported [3]. The LR calculation is limited
to Equation (1), where the covariance matrix for samples containing ignitable liquid are treated as
different (QDA) or the same (LDA) as the covariance matrix for samples that do not contain ignitable
liquid. In previous work [3], the LR calculated by Equation (1) were not calibrated following cross
validation. In the results reported here, the LR values are calibrated by isotonic regression, also known
as the pooled adjacent violators method [12].

Samples designated “IL” were prepared by mixing the total ion spectrum (TIS) from a single
ignitable liquid with the TIS of a random number (1 to 5) of substrates [13]. The TIS corresponds to
the base-peak normalized electron ionization mass spectrum averaged across the chromatographic
profile. The computational mixing has previously been described in detail [2–5]. A brief review of the
computational mixing is given here.

2.1. Computational Fire Debris Data Preparation

Each of the j (j = 1–10,000) simulated fire debris TIS were prepared by mixing a random number i
(i = 1–5) of TISSUB,i from substrate pyrolysis samples with a single TISIL,j ignitable liquid. Each TISSUB,i
is multiplied by a fractional contribution ψi, where ∑

i
ψi = 1. The proportion φj of the summed
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TISSUB,i substrate contributions and the
(
1− φj

)
TISIL,j contribution from the IL contribution were

multiplied by a vector nj to add a maximum of 10% normally distributed noise to each component of
TISj. Each computationally generated TISj was normalized by dividing each nominal mass-to-charge
ratio (m/z) intensity by the maximum value, as shown in Equation (5). This is the same process that
was followed in previous work [2,3].

TISj =

[(
1− φj

)
TISIL,j + φj

≤5

∑
i=1

ψiTISSUB,i

]
nj (4)

TISj,N =
TISj

max
(
TISj

) (5)

Model data sets were prepared by controlling the proportion of each ignitable liquid class
incorporated into each model (i.e., the fraction of the total number of TIS corresponding to each class).
The standard method ASTM E1618-14 defines eight different classes of ignitable liquid [1]. These classes
include the aromatic solvents (AR), gasoline (GAS), isoparaffinic solvents (ISO), naphthenic paraffinic
solvents (NP), normal alkanes (NA), petroleum distillates (PD), oxygenates (OXY) and miscellaneous
(MISC). Pyrolyzed substrates (SUB) are included as an additional class in this study. The model
distribution data sets used for training and cross validation were prepared as described in the previous
paragraph by a stratified random draw with replacement from each class of IL and SUB in accordance
with the population distributions shown in Table 1. For example, a data set of 10,000 TIS corresponding
to population A would contain 5000 samples comprised of a mixture of substrates (containing no
IL) and 5000 samples, each containing a single IL from one of the IL classes mixed with up to five
pyrolyzed substrate samples. Each IL class was represented in 630 TIS.

Table 1. Population distributions used to create model distribution data sets in this study: (A) Uniform
across samples containing ignitable liquid residue (IL) classes and balanced total IL and samples
that do not contain ignitable liquid residue (SUB) contributions. (B) Uniform across IL classes and
unbalanced total IL and SUB contributions. (C) Distribution of IL classes in the Ignitable Liquids
Reference Collection, and Substrates databases. (D) Distribution of IL classes and SUB from large
scale burns previously reported in [7]. (E) Distribution of IL classes and SUB determinations from
70,000 cases over 10 years, as previously reported in [7]. (F) Balanced IL and SUB with only gasoline
contributing to the distribution of IL classes.

Classes A B C D E F

Aromatic solvents (AR) 0.063 0.094 0.042 0.044 0.005 0.000
Gasoline (GAS) 0.063 0.094 0.041 0.281 0.330 0.500

Isoparaffinic solvents (ISO) 0.063 0.094 0.062 0.054 0.003 0.000
Miscellaneous (MISC) 0.063 0.094 0.164 0.000 0.058 0.000

Naphthenic paraffinic solvents (NP) 0.063 0.094 0.030 0.034 0.002 0.000
Normal alkanes (NA) 0.063 0.094 0.028 0.039 0.003 0.000

Oxygenates (OXY) 0.063 0.094 0.123 0.034 0.012 0.000
Petroleum distillates (PD) 0.063 0.094 0.295 0.118 0.062 0.000

Pyrolyzed substrates (SUB) 0.500 0.250 0.215 0.394 0.525 0.500

The pairwise similarities (Si,j) between distributions i and j are shown in Table 2 and calculated
based on Equation (6), where di,j is the Euclidean distance between distributions i and j, with the
squared difference in fractional contributions fi,k and f j,k summed over the k = 1–9 classes shown in
Table 1.

Si,j =
1(

1 + di,j
) (6)



Separations 2018, 5, 44 5 of 14

di,j =

√√√√ 9

∑
k=1

(
fi,k − f j,k

)2
(7)

Table 2. Similarity between distributions calculated from Equations (6) and (7), and the fractional
contributions in Table 1.

A B C D E

B 0.790
C 0.719 0.800
D 0.793 0.780 0.717
E 0.771 0.706 0.661 0.846
F 0.681 0.650 0.604 0.777 0.838

2.2. Model Development and Cross Validation

The models used in this work are based on Equation (1), which requires calculation of the
covariance matrices (C1 and C2) and the mean feature vectors (x1 and x2) for the IL (class 1) and SUB
(class 2) samples from each data set based on the population distributions in Table 1. The feature
vectors were comprised of the principal components scores calculated from the total ion spectra for
each sample in a computational data set (sets A–F corresponding to the distributions in Table 1).
Principal components analysis with mean centering of the data was used to remove collinearity among
the ion intensities of different mass-to-charge (m/z) ratio in the total ion spectra. Dimension reduction
was achieved by retaining a number of principal component scores required to account for 90% of
the variance in the data. The values (C1, C2, x1 and x2) allow direct calculation of the likelihood ratio,
using Equation (1), for a new sample with feature vector y, without optimization of any adjustable
parameters. The feature vector y for a new sample is comprised of the scores obtained by projecting
the total ion spectrum for the sample into the principal component space defined by the population.

Models developed for each distribution in Table 1 were cross validated by a 10-fold stratified
approach. For each fold in the cross validation, the validation data was removed (10% of
ground truth IL and 10% of ground truth SUB) and dimension reduction was performed on
the remaining data (90% of the data set) by principal components analysis with mean centering.
Retained principal components and associated scores accounted for 90% of the variance in the data,
typically corresponding to roughly 30 factors. Two approaches were taken to calculate the covariance
matrices required for Equation (1), resulting in two quantitatively different models. In one case,
the covariance matrices (C1 and C2) were calculated separately for the ground truth IL and SUB
samples from the training data. In the other case, the covariance matrices for the IL and SUB samples
were assumed equal and the pooled covariance matrix was calculated. The former approach is
equivalent to QDA and the latter is equivalent to LDA [3]. Equation (1) was used to calculate the
likelihood ratios for the model data (90% of the data set) under both assumptions. The LR values were
transformed to LLR, which were calibrated by isotonic regression using the pooled adjacent violators
method as implemented in the R isotone package [12,14]. The calibrated LLR values were used to
correct the LLR values predicted for the cross-validation data (10% of ground truth IL and 10% of
ground truth SUB), as described in Section 2.3.

2.3. Model Testing Across Data Distributions

Following model development and calibration, 10% stratified (IL and SUB) test data samples were
drawn from each data set A–F. Each test data set was projected into the principal component space
described in the previous paragraph and likelihood ratios were calculated from the resulting scores.
The likelihood ratios calculated by Equation (1) made use of the mean vectors and covariance matrices
generated during model development. Likelihood ratios were transformed to LLRs and calibrated
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based on the isotonic regression from cross-validation likelihood ratios, as discussed in the previous
paragraph. The calibrated LLR values from each test data set and their associated ground truth class
membership (IL or SUB) allowed for the generation of ROC curves and recording the AUC for each
curve. The sequence of model development, cross validation, calibration and testing was repeated
10 times for each distribution in Table 1. The modeling and testing process is diagramed in Figure 1.Separations 2018, 5, x FOR PEER REVIEW  6 of 14 
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Figure 1. Diagram showing the model construction and testing steps.

2.4. Model Testing Against Known Ground Truth-Simulated Casework Samples

The QDA model based on Distribution A, Table 1, was used to evaluate 16 samples with known
ground-truth class membership (IL or SUB), which were developed in the laboratory to simulate
casework-relevant samples. Solutions of ignitable liquids and substrate materials were prepared
separately in CS2 and then combined. Four ignitable liquids were evaporated 75% by volume.
Ten microliters of the evaporated ignitable liquid was diluted with 500 µL of CS2. Volatile pyrolysis
products from eight substrate materials, burned individually for 2 min utilizing the modified
destructive distillation method, were extracted onto carbon by heating each sample at 66 ◦C for
16 h. The carbon strips were each extracted into 500 µL of CS2. Samples classified as containing no
ignitable liquid (SUB) consisted of the eight burned substrate materials by themselves. The other
eight fire debris samples, designated IL, contained an ignitable liquid with the pyrolysis products
from one of the eight substrate materials. These samples were prepared by mixing a portion of the
diluted ignitable liquids with the extract of the substrate material. Table 3 provides a description of the
samples. Each sample was evaluated using the optimal distribution of the QDA model.

Table 3. Composition on known ground truth simulated casework samples. The IL SRN corresponds
to the sample record number in the Ignitable Liquids Reference Collection and Database (ILRC) [11].

Sample (Ground Truth) Ignitable Liquid SRN/Class Substrate Material Description IL:SUB Ratio

A (SUB) none olefin carpet and padding 0
B (IL) 120/isoparaffinic leather jacket 3.5
C (IL) 259/gasoline vinyl flooring 1

D (SUB) none milk jug and duct tape 0
E (IL) 46/MPD roofing shingle 1.76

F (SUB) none vinyl flooring 0
G (SUB) none polyester carpet 0
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Table 3. Cont.

Sample (Ground Truth) Ignitable Liquid SRN/Class Substrate Material Description IL:SUB Ratio

H (IL) 120/isoparaffinic polyester carpet 0.25
I (IL) 73/aromatic olefin carpet and padding 0.25

J (SUB) none laminate flooring and
newspaper 0

K (IL) 73/aromatic polyester carpet and padding 1
L (SUB) none polyester carpet and padding 0
M (SUB) none leather jacket 0

N (IL) 259/gasoline milk jug and duct tape 0.25

O (IL) 46/MPD laminate flooring and
newspaper 1

P (SUB) none roofing shingle 0

3. Results

Cross Validation Testing Across Distributions

Each cross validated and calibrated model based on distributions in Table 1 was tested with
10 stratified random draws of 1000 test samples from each data set, as described above. Table 4 lists the
means and standard deviations for the ROC AUC from each model using each test data set. The results
in the upper portion of Table 4 are based on the assumption of different covariance structures for the
IL and SUB samples (i.e., the QDA equivalent). The results in the lower half of Table 4 are based on the
assumption of equal covariance for IL and SUB and reflect the calculation from Equation (1) using the
pooled covariance matrix for IL and SUB (i.e., the LDA equivalent).

Table 4. Area under the receiver operating characteristic curve (ROC AUC) means and standard
deviations from each model distribution (rows, labeled A–F) using each test data set (columns,
labeled A–F). The upper portion of the Table gives results based on the assumption of different
covariance structures for the IL and SUB samples (i.e., the quadratic discriminant analysis (QDA)
equivalent). Results in the lower half of the Table are based on the assumption of equal covariance for
IL and SUB and reflect the calculation from Equation (1) using the pooled covariance matrix for IL and
SUB (i.e., the linear discriminant analysis (LDA) equivalent).

Testing Distributions in Columns

Model A B C D E F

IL and SUB Independent Covariance Matrices (QDA)

A 0.975 ± 0.005 0.975 ± 0.004 0.972 ± 0.004 0.976 ± 0.003 0.975 ± 0.004 0.978 ± 0.004
B 0.927 ± 0.008 0.941 ± 0.005 0.923 ± 0.008 0.937 ± 0.006 0.935 ± 0.006 0.942 ± 0.008
C 0.921 ± 0.007 0.929 ± 0.007 0.928 ± 0.007 0.929 ± 0.006 0.928 ± 0.007 0.930 ± 0.009
D 0.954 ± 0.006 0.956 ± 0.005 0.949 ± 0.004 0.974 ± 0.003 0.965 ± 0.006 0.976 ± 0.003
E 0.969 ± 0.008 0.969 ± 0.004 0.966 ± 0.003 0.977 ± 0.004 0.982 ± 0.003 0.984 ± 0.003
F 0.923 ± 0.012 0.921 ± 0.009 0.924 ± 0.007 0.951 ± 0.008 0.962 ± 0.006 0.985 ± 0.003

Pooled Covariance Matrix for IL and SUB (LDA)

A 0.878 ± 0.008 0.876 ± 0.011 0.875 ± 0.011 0.884 ± 0.008 0.879 ± 0.012 0.882 ± 0.010
B 0.873 ± 0.008 0.877 ± 0.012 0.870 ± 0.014 0.879 ± 0.007 0.878 ± 0.010 0.881 ± 0.010
C 0.865 ± 0.008 0.866 ± 0.013 0.875 ± 0.014 0.868 ± 0.008 0.865 ± 0.011 0.863 ± 0.012
D 0.864 ± 0.010 0.859 ± 0.009 0.853 ± 0.013 0.898 ± 0.008 0.889 ± 0.013 0.913 ± 0.011
E 0.855 ± 0.010 0.852 ± 0.011 0.858 ± 0.014 0.892 ± 0.010 0.910 ± 0.012 0.928 ± 0.009
F 0.665 ± 0.021 0.664 ± 0.015 0.691 ± 0.016 0.777 ± 0.017 0.864 ± 0.013 0.943 ± 0.011

The procedure and results for model development with distribution A and testing with
distributions A–F are depicted in Figure 2. Similarly, the procedure and results for model development
with F and testing with distributions A–F are depicted in Figure 3. The left side of the figures depicts
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the modeling of fire debris TIS based on the distributions from Table 1. The width of the arrows and
the bar charts depict the relative contributions to the model by each ASTM ignitable liquid class and
substrate pyrolysis. The single ROC curves demonstrate the cross validation performance of the LDA
and QDA models. The plots showing multiple ROC curves demonstrate the range of performance
observed when testing the cross validated models with simulated fire debris based on all of the
distributions in Table 1.Separations 2018, 5, x FOR PEER REVIEW  8 of 14 
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Figures 4 and 5 show plots that reveal more information regarding the performance of the QDA
and LDA models, respectively, based on distribution A from Table 1. Both figures show (a) the ROC
plot with LLR cutoff points labeled, (b) the Tippett plot, (c) the detection error trade-off (DET) plot and
(d) the empirical cross-entropy (ECE) plot [9].Separations 2018, 5, x FOR PEER REVIEW  9 of 14 
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Figure 4. Plots showing the performance of a model based on distribution A from Table 1 and the
assumption of different covariance matrices for the IL and SUB classes (i.e., QDA model) using
Equation (1). Plots include: (a) the ROC plot with LLR cutoff points labeled, (b) the Tippett plot, (c) the
detection error trade-off (DET) plot and (d) the empirical cross-entropy (ECE) plot.
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4. Discussion

4.1. Cross-Validation Testing Across Distributions

Based on the data in Table 4, it is observed that the AUC values for the QDA model are generally
higher than the results for the LDA model equivalent. All QDA ROC AUC values exceed 0.9,
whereas the LDA ROC AUC values are as low as 0.66, but generally larger than 0.85. The AUC
is equal to the probability that a randomly chosen IL sample will have a higher LLR score than a
randomly chosen sample from the SUB ground truth class. The AUC results in Table 4 demonstrate a
better discrimination between IL and SUB samples by the QDA model. The QDA model produces a
hyperquadric decision boundary and the cross-validated performance of the QDA model exceeds that
of the LDA model, which produces a generalized hyperplane decision boundary.

Models based on distributions A–E demonstrate consistent performance across all testing
distributions. Distribution F contains only SUB and IL samples comprised of GAS + SUB mixtures,
and models based on distribution F show poorer performance when tested against the other
distributions. The performance (AUC) appears to suffer when the testing distributions contain ignitable
liquid classes not represented in the model. Models based on distributions A–C and E are comprised
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of representatives from all ignitable liquid classes, although the contributions varied across the IL
classes. Distribution D contains contributions at fractions greater than 0.0005 for all classes except MISC.
The overall AUC is highest and most consistent for the model based on distribution A, which contained
equal amounts of IL and SUB ground truth samples and an equal number of samples from each IL class.
These observations hold true for both the QDA and LDA models. Interestingly, model A performance
appears stable within the variation represented by the distributions A–F. The same is not true with
regard to the performance of the model based on distribution F and the AUC does not track with the
similarities of distribution F with distributions A–E, see Table 2.

The effect of training distribution on model performance is also seen in Figures 2 and 3.
Figure 2 demonstrates that when a model is based on a distribution that contains all IL classes
(i.e., distribution A), the model will perform well across all other distributions, even those that do
not contain representatives from each IL class. The high AUC for the cross validated LDA and QDA
models based on distribution A are an indication of good discrimination by the models. When the LDA
and QDA models are tested on distributions A–F, the AUC for each of the test ROC curves is high and
very similar to the cross validation curve. The same cannot be said for the performance of the model
based on distribution F, which does not contain representatives from all IL classes, see Figure 3. In this
case, the LDA and QDA models also work well in cross validation; however, there is a significant
change in the discriminating power (lower AUC) when the testing distribution contains IL from classes
that were not in the model based on distribution F. When calculating the likelihood ratio based on
Equation (1) or Equation (2), the covariance matrix calculated from the TIS in the training dataset must
account for variance and covariance observed in the test data.

4.2. Model Comparisons

In previous work [3], the authors compared (without calibration) the two models examined in
this work and found that discrimination of cross validation samples was superior for the QDA model;
however, the QDA model was poorly calibrated. In this work, calibration of the LLR values was
introduced into the model. In addition, more SUB samples were included in the calculated mixtures
and the overall number of mixed samples was increased from 6400 to 10,000. Evidence for better
discrimination by the QDA model can be seen in the higher ROC AUC (Figures 4a and 5a) and the
smaller equal error rate (EER) (Figures 4c and 5c). The EER and AUC are related, such that as the
ROC AUC decreases, the EER will increase. A smaller EER, and higher AUC, indicates a better
discriminating model.

Good discrimination by a model is necessary but not sufficient for forensic applications [9].
The amount of misleading evidence relative to a LLR = 0, (i.e., percent of ground truth IL samples
with LLR < 0 and ground truth SUB samples with LLR > 0) can be visualized by the Tippett plot [9].
Comparison of Figures 4b and 5b demonstrates the smaller amount of misleading cross-validation
evidence for the QDA model, based on a boundary corresponding to a LLR = 0. If a model was biased
toward either HIL or HSUB, this would be reflected in an asymmetry of the misleading evidence about
the LLR = 0 line, which is not the case here. There is also a relationship between the ROC AUC and
the amount of misleading evidence. As the ROC AUC decreases, the extent of misleading evidence
increases. This follows directly from the fact that the AUC is the probability that a randomly selected
ground truth IL sample will have a higher LLR (score) than a ground truth SUB sample. Bias in the
model can only be observed in the ROC plots in Figures 4 and 5 by labeling the LLR values on the
ROC curve. In ROC space, the point at which the diagonal line from (0, 1) to (1, 0) intersects the ROC
curve can be used to determine the EER (see above), and if the point of intersect is not at a LLR = 0,
the model shows bias. In Figure 3a, the LDA model shows some bias.

Calibration cannot be visualized directly from the Tippet, DET or ROC plots. The combined model
performance properties of discrimination and calibration constitute the accuracy of the method and can
be visualized by examining the empirical cross-entropy (ECE) plots. The ECE plots, Figures 4d and 5d,
each contain three curves. The solid curve reflects the ECE (y axis) of the cross validation LR values
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calculated for a range of prior odds. The empirical cross entropy is given by Equation (8) [9],
where P(HX |I), NX and O(HX |I) (X = IL or SUB) are the prior probabilities, number of ground
truth samples and the prior odds in favor of HX. In Equation (8), the prior probabilities and the
prior odds have been written with the inclusion of I in the conditional. This term, I, accounts for
additional information in the case under consideration. Equation (8) is a “strictly proper scoring rule”,
as described by Zadora and coauthors [9].

ECE = P(HIL |I)
NIL

∑i: HIL is true log2

(
1 + 1

LRi×O(HIL|I)

)
+ P(HSUB|I)

NSUB
∑

j: HSUB is true
log2

(
1 + LRj ×O(HSUB|I)

) (8)

The dashed curve is the ECE of the cross validation LR values following calibration by isotonic
regression using the pooled adjacent violators (PAV) algorithm [12]. The ECE of the PAV-calibrated LR
values represent maximum discrimination by the model. Lower ECE values of the dashed curve in the
ECE plot reflect a more highly discriminating model. The dotted curve represents the ECE of the LR
values of a neutral reference, which always produces a LR value equal to one. When the solid and
dashed curves in the ECE plot lie close to each other, the model is well calibrated.

The ECE plots in Figures 4d and 5d show that both the QDA and LDA models are well calibrated.
The LDA model was well calibrated in the previous work [3], and adding an independent calibration
step has not visibly improved or detracted from the model’s performance. On the other hand, the QDA
model was not well calibrated in the previous report [3]; however, the addition of an independent
calibration step in this work has greatly improved the calibration, as reflected in Figure 4d. The ECE
plot in Figure 4d also demonstrates higher discriminating power for the QDA model.

The data presented in Table 2 and Figures 2 and 3 demonstrate consistently superior performance
of the QDA model acting on the cross-validation data. The cross validation makes use of
computationally-generated known ground truth data; however, due to the method by which the
model data was prepared, there is no guarantee that it is truly representative of fire debris data. In the
following section, the performance of the QDA model is examined for known ground truth data that is
representative of casework samples.

4.3. Testing the Quadratic Discriminant Analysis (QDA) Model on Known Ground Truth-Simulated
Casework Samples

Casework-relevant samples with known ground truth were prepared as described in Section 2.4
and analyzed by the same gas chromatography-mass spectrometry (GC-MS) methods used for the
analysis of database IL and SUB samples. The TIS resulting from GC-MS analysis of the known ground
truth samples were evaluated by the QDA model based on distribution A, Table 1. The resulting
LLR values for each sample are given in Table 5, along with the supported hypothesis, and the
level of support, as reflected by the verbal scale reported by Evett et al. [15]. The column labeled
“Misleading Evidence” in Table 5 indicates whether the sample would constitute misleading evidence
based on a threshold LLR of 0. The model indicated only limited support for the incorrect class (IL) for
two of the misleading samples, A and P. On the other hand, the model provided moderate support for
the absence of IL residue in sample B. Sample B was comprised of an isoparaffinic liquid mixed with
pyrolysis products from a leather jacket. The IL (Exxon Isopar C, ILRC SRN 120) is a light isoparaffinic
comprised mainly of 2,2,4-trimethylpentane and lesser amounts of other isomers of trimethylpentane
and dimethylhexanes. This light isoparaffinic solvent does not produce a chromatographic pattern
typically associated with a higher average molecular weight isoparaffinic solvent.
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Table 5. Results from testing the QDA model from Distribution A, Table 1, on 16 known ground truth
simulated casework samples.

Sample Ground Truth LLR Hypothesis Supported Level of Support Misleading Evidence IL:SUB Ratio

A SUB 0.292 HIL Limited Yes 0
B IL −1.037 HSUB Moderate Yes 3.5
C IL 2.577 HIL Moderately Strong No 1
D SUB −0.508 HSUB Limited No 0
E IL 2.095 HIL Moderately Strong No 1.76
F SUB −0.508 HSUB Limited No 0
G SUB 0.000 HSUB Limited No 0
H IL 0.249 HIL Limited No 0.25
I IL 20.000 HIL Very Strong No 0.25
J SUB −0.508 HSUB Limited No 0
K IL 20.000 HIL Very Strong No 1
L SUB −0.348 HSUB Limited No 0
M SUB −1.037 HSUB Moderate No 0
N IL 2.577 HIL Moderately Strong No 0.25
O IL 0.292 HIL Limited No 1
P SUB 0.292 HIL Limited Yes 0

From the data in Table 5, we can assess the performance of the model based on the
Wilcoxon-Mann-Whitney U-statistic. The ROC AUC is equal to the Mann-Whitney U value divided
by the product of the number of ground truth IL and SUB samples, i.e., AUC = U/(NIL × NSUB).
An AUC of 0.836 is calculated from the data in Table 5.

5. Conclusions

This work demonstrates the importance of selecting a relevant population that is representative
of all ASTM E1618-14 IL classes typically observed in casework when building an LDA or QDA
model for sample classification. It is also shown that an additional step, in which the LLR values are
calibrated, can improve model performance [3]. Independent validation with known ground truth
samples that are casework-relevant is important for models that are based on fire debris samples
that are generated in-silico. Building models based on a large sampling of known ground truth
samples that are casework-relevant is, perhaps, a better approach; however, in fire debris analysis it is
challenging to collect a substantial number of known ground truth samples. Certainly the experimental
generation of 10,000 known ground truth samples that were casework-relevant would be a challenge.
Current research in the author’s laboratory is directed towards the experimental generation of a
much larger number of known ground truth samples that can be used to validate models based on
in-silico-generated data.
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