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Abstract: The hydrodistillation (HD) process is used to obtain and fractionate essential oils (EOs). In
this study, we aimed to evaluate, for the first time, the effects of six different HD timeframes (HDTs:
0–2, 2–10, 10–30, 30–60, 60–120, and 120–240 min) on the yield, physical properties, and chemical
profile of Azorean Cryptomeria japonica foliage (Az–CJF) EO. An Az–CJF EO obtained by a typical
HD over 4 h was used as a control sample, yielding 0.82%, w/fresh weight (f.w.), and containing
eighty-nine components, as determined by GC–MS. The EO fraction yield revealed a narrow range
(0.06–0.18%, w/f.w.), with ca. 50% obtained within the first hour. Monoterpene hydrocarbons
dominated in Fr1 and Fr2 (92 and 45%, respectively, mainly α-pinene) while oxygen-containing
sesquiterpenes prevailed in Frs. 3–6 (42–62%, mainly elemol and eudesmol isomers). Furthermore,
Fr2 and Fr3 were the richest in oxygen-containing monoterpenes (9 and 7%, respectively, mainly
bornyl acetate) and in sesquiterpene hydrocarbons (6 and 5%, respectively, mainly δ-cadinene), while
Fr4 and Fr5 had higher amounts of diterpene hydrocarbons (ca. 22% both, mainly phyllocladene) and
Fr6 exhibited the highest oxygen-containing diterpenes content (4%, mainly nezukol). In addition,
regression models were established to predict EO yield, HD rate, and composition (major components)
for a given HDT. As a result of this study, specific EO fractions can now be targeted in Az–CJF EO
by adjusting the HDT. Hence, these findings can help reduce distillation time and, thus, operating
costs associated with the HD process. It can also meet specific market demands due to the differential
composition of the obtained EO fractions. In turn, this contributes to increasing the commercial
potential of C. japonica EO.

Keywords: Azores; Cryptomeria japonica; biomass waste valorisation; hydrodistillation; essential oil
fractionation; high-added value products; GC–MS analysis; regression models

1. Introduction

Cryptomeria japonica (Thunb. ex L. f.) D. Don (Cupressaceae), commonly known as
Japanese cedar or sugi in Japanese, is a coniferous forest tree native to Japan. Due to
its timber quality, including natural decay-resistant properties, C. japonica is extensively
cultivated in plantation forests in Japan, China, Korea and Taiwan, as well as in the Azores
archipelago (Portugal), where this species (called “criptoméria” in Portuguese) covers 60%
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of the total wood-producing forest area. In addition, this beautiful and aromatic evergreen
tree is widely grown as an ornamental tree in other temperate zones, including Britain,
North America, Nepal, and India [1,2]. Thus, a considerable amount of biomass residues is
generated from the wood processing industry and forest management, such as C. japonica
foliage (CJF), a rich source of valuable essential oils (EOs) that can be recovered in an
economical and environmentally sustainable manner without competing for land areas.
However, C. japonica biomass residues (CJBR) remain a relatively underutilized resource,
compared to its potential application in integrated pest management programs or use in
developing natural health and cosmetic-related products, as highlighted in our previous
critical reviews on the phytochemistry and biological properties of the organic extracts [3]
and EOs [4] of C. japonica from different geographical origins.

EOs play a key role in plant protection [5] and have been used therapeutically since
ancient times [6] due to their high effectiveness. Currently, there has been renewed interest
in their usage [7]. Global EO production has increased substantially in the last few decades,
which can be attributed to several key factors, including (i) the wide range of biological
and pharmacological (including neuroprotective) activities exhibited by EOs and, hence, its
extensive use in several industries, namely food, agrochemical, textile, perfumery, cosmetics
and hygiene, traditional medicine, and complementary therapies (such as aromatherapy);
(ii) increasing consumer demand for safe, eco-friendly, and effective natural products;
and (iii) great interest from the scientific community in the discovery of novel drugs or
botanical pesticides from natural resources, such as EOs [4,5,8–12]. Nevertheless, only a
few EOs and their components (EOCs) or derivatives thereof have been approved as drugs.
Thus, the therapeutic potential of EOs is still under scrutiny [13]. Particularly, the fractions
and/or individual EOCs of crude EOs can be valuable sources of antimicrobial agents
for fighting infectious human and animal diseases or in green plant protection and food
preservation [13–18].

An EO is defined by the International Standardization Organization (ISO) as an
odorous product (usually a complex mixture) obtained from raw vegetable material (a plant
or any of its parts) by hydrodistillation (HD), steam distillation (SD) or dry distillation,
or from the epicarp of Citrus fruits by a mechanical process without heating [19,20]. Our
continuous study on CJBR EOs adheres to the ISO definition since it permits a clear
distinction between EOs and EO-like products such as the volatiles isolated by several
innovative green techniques (e.g., supercritical fluid extraction) [13]. It is noteworthy
that the yield and chemical composition of EOs and, consequently, their quality, specific
commercial applications, and price are significantly affected by several factors besides the
plant species, such as the geographical location of the plants, environmental parameters;
the plant part, age, and developmental stage; post-harvest drying and storage, and the
extraction method/protocol used. Previous works on C. japonica EOs have reported the
variability of its chemical composition according to the different geographical origins of
the plants [4]. In addition, our recent research on Azorean C. japonica EO revealed that
their composition and bioactivity are also influenced by the different distillation methods
used [1,21], as well as by the different plant parts analysed [15].

Given this context and considering that the HD process can be used to fractionate
EOs and that increasing the concentration of desirable EOCs will improve the product’s
commercial value, the present comparative study examined, for the first time, the chemical
profile, yield, and physical properties (density and colour) of six different EO fractions
collected during HD of Azorean CJF (Az–CJF) in sequential timeframes (0–2, 2–10, 10–30,
30–60, 60–120 and 120–240 min). In addition, we obtained Az–CJF EO by HD over 4 h to be
used as a control sample. Furthermore, regression models were developed to predict EO
yield, HD rate (HDR), and composition (major EOCs) for a given HD timeframe (HDT).
Overall, the results of this study can help reduce the distillation time and operating costs
associated with the HD process, as well as produce EO fractions with unique composi-
tions with different commercial applications, which increases the value of the C. japonica
EO industry.
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2. Materials and Methods
2.1. Plant Material

Aerial parts of C. japonica at the pollination stage were collected in early March 2023
(winter season) from a tree population located on Lomba da Maia (latitude 37◦48′32.7′′ N,
longitude 25◦20′6.5′′ W, altitude 440 m) in the northeast region of São Miguel Island (Azores
archipelago, Portugal). A voucher specimen (number AZB 4581) was deposited in the
Herbarium AZB—Ruy Telles Palhinha of the University of the Azores. The plant material
cut off from healthy plants was immediately brought to a laboratory at the same university.
Then, the strobili attached to the foliage were removed. The fresh foliage sample was
immediately stored at −20 ◦C until further usage in the HD process. A portion of the fresh
foliage sample was air-dried until a constant weight for moisture content determination,
which was 56% (w/w). Before the HD process, the foliage sample was cut into small pieces
(2–3 cm in length).

2.2. Essential Oil Extraction and Fractionation by Hydrodistillation Method

A fresh CJF sample (300 g) was placed in a 5-L round bottom flask containing 3 L of
tap water and connected to a Clevenger-type apparatus. HD was performed over a period
of 4 h, starting with the first distillate drop. EO fractions were collected in the following
HDTs: 0–2, 2–10, 10–30, 30–60, 60–120, and 120–240 min (Frs. 1–6), captured sequentially
without interrupting the HD process. In addition, a control EO sample was collected
from a non-fractionated HD (0–240 min) for comparison purposes. The collected fractions
and control were dehydrated with anhydrous sodium sulphate, filtered, measured on an
analytical scale, and stored in sealed amber vials at 4 ◦C until further chemical analyses.
Each HD process was performed in triplicate. The EO yield (%) was calculated as the EO
mass (g) per 100 g of fresh weight (f.w.) of CJF and HDR as the EO mass accumulated per
min (EO mg/min).

2.3. Essential Oil Composition Analysis

Gas chromatography–mass spectroscopy (GC–MS) analyses were conducted with a
Shimadzu GCMS–QP2010 Ultra gas chromatograph–mass spectrometer (Shimadzu Corp.,
Tokyo, Japan), using a ZB–5MSPlus (5% phenyl, 95% methyl siloxane) capillary column
(60 m length × 0.25 mm i.d., with a film thickness of 0.25 µm) from Phenomenex Inc.
(Torrance, CA, USA). Helium was the carrier gas at a flow rate of 36.3 cm/s. The EO was
dissolved in methylene chloride (0.1 g/mL), and the injection volume was 0.1 µL at a split
ratio of 24.4:1. The injector and detector temperatures were adjusted to 260 ◦C. The oven
temperature program was set between 50 ◦C and 260 ◦C at 2 ◦C/min and then held at
260 ◦C for 5 min. The transfer line and ion source temperatures were set at 300 ◦C and
260 ◦C, respectively. The MS was operated in electron impact (EI) mode with an ionization
energy of 70 eV and a mass scan range of 40–400 amu with a scan time of 0.3 s. The
C. japonica EOCs’ identity was established using two methods described in Lima et al. [15].
Briefly, one of the methods involved comparing the EOCs retention indices (RI), calculated
as ISO 7609 [22], relative to n-alkane standard indices, whereas the other one compared their
GC–MS spectra to two MS databases: (i) a lab-made library with commercially available
standards and components of reference EOs, and (ii) other libraries (NIST11, Wiley10,
and FFNSC4.0). For quantification, EOCs’ raw percentage was calculated by integrating
total ion current (TIC) chromatogram peaks without correction factors, as in our previous
report [23].

2.4. Statistical Analysis

All determinations were performed in triplicate, and the results are expressed as
means ± standard deviations. The influence of HDTs (0–2, 2–10, 10–30, 30–60, 60–120,
120–240, and 0–240 min) on the following parameters: EO yield, EO HDR, EO density, and
chemical composition was determined by a one-way analysis of variance (ANOVA) test. For
each response variable, the validity of model assumptions was checked by examining resid-
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uals, as described in Montgomery [24]. Since the influence of HDTs was significant (p < 0.05)
for all response variables, Duncan’s multiple range test was conducted at a significance
level of 5% for multiple means comparison and subsequent letter grouping generation.

The relationships between the HDTs (excluding the 0–240 min) and EO yield, the EO
HDR, and the individual concentration of selected EOCs (α-pinene, camphene, sabinene,
myrcene, limonene, terpinen-4-ol, bornyl acetate, δ-cadinene, elemol, germacrene-D-4-ol,
γ-eudesmol, α+β-eudesmol, rosa-5,15-diene, phyllocladene, and nezukol) were adequately
modelled by the Power, exponential decay, logarithmic or linear models shown in Equa-
tions (1)–(4), respectively. Equation (4) represents a linear regression model. The other
three models (Equations (1)–(3)) are nonlinear (NLIN), and their parameters were esti-
mated iteratively using the NLIN Regression Procedure of IBM SPSS Statistics (software
version 28.0.1.0), and the fitted models met all the adequacy requirements of NLIN models
described by Bates and Watts [25].

Y = θ1Xθ2 + ε (1)

Y = Exp
(

θ1 −
θ2

X

)
+ ε (2)

Y = θ1Log(X) + θ2 + ε (3)

Y = β0 + β1X + ε (4)

In the four regression equations, Y is the dependent (response) variable, X is the
independent (HDT, excluding the 0–240 min) variable, and ε is the error term assumed to
have a normal distribution with constant variance. The validity of the normality, constant
variance, and independence assumptions on the error terms was checked by examining
residuals [25].

3. Results and Discussion
3.1. Az–CJF EO Extraction and Fractionation by HD Method

The HD process can be used both to obtain and fractionate EOs. However, to the
best of our knowledge, no studies on using HD to fractionate EOs from C. japonica have
been reported so far. In this study, sequential separation of EOCs during HD of Azorean
C. japonica fresh foliage was performed. Six distinct HDTs were selected based on several
preliminary experiments. To determine whether collecting EO at different HDTs would
generate fractions with varying EO characteristics, we compared the resulting EO fractions
with control EO (Figure 1).
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(a) with fractionation at specific timeframes and (b) without fractionation.

3.2. Yield, Hydrodistillation Rate (HDR), Density, and Colour of the Az–CJF EO and Its Fractions

Table 1 presents the yield, HDR, density, and colour of the Az–CJF control EO and
fractions collected at different HDTs.
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Table 1. Yield, hydrodistillation rate (HDR), density, and colour of the fractions and control from
Azorean Cryptomeria japonica foliage essential oil obtained by hydrodistillation.

HDTs
(min)

Essential Oil

Samples Yield
(%, w/f.w.)

HDR
(mg/min)

Density
(g/cm3) Colour

0–2 Fr1 0.139 ± 0.031 c 208.5 ± 47.2 a 0.847 ± 0.013 b incolour
2–10 Fr2 0.061 ± 0.014 e 22.8 ± 5.1 b 0.878 ± 0.014 ab pale yellow
10–30 Fr3 0.074 ± 0.008 de 11.1 ± 1.2 c 0.888 ± 0.025 a yellowish
30–60 Fr4 0.090 ± 0.012 d 9.0 ± 1.2 c 0.887 ± 0.029 a yellowish

60–120 Fr5 0.143 ± 0.011 c 7.1 ± 0.6 d 0.891 ± 0.019 a yellow
120–240 Fr6 0.180 ± 0.003 b 4.5 ± 0.1 e 0.879 ± 0.034 ab yellow

0–240 Control 0.820 ± 0.078 a 10.0 ± 1.0 c 0.889 ± 0.006 a yellowish

Results are shown as means ± standard deviations (n = 3). Within each column, values followed by the same
letter are not significantly different (p < 0.05). HDTs—hydrodistillation timeframes; f.w.—fresh weight.

Az–CJF EO fractions and control presented yield values of 0.06–0.18% (∑ 0.69%) and
0.82%, respectively, revealing no significant losses in the EO fractionation by the HD method.
The control EO yield value was in accordance with previous research (0.5–0.8%, w/f.w.) [26],
using similar extraction protocols and units of measurement. In general, we observed
the significant effects of HDTs on EO fraction yield, with decreasing values as follows:
Fr6 > Fr5 ≈ Fr1 > Fr4 > Fr3 ≈ Fr2. The EO fractions and control also had significantly
different HDR, presenting values of 4.5–208.5 and 10 mg/min, respectively, with EO HDR
values decreasing as follows: Fr1 >> Fr2 > Fr3 > Fr4 > Fr5 > Fr6. Thus, a significantly higher
EO HDR was observed in the first 2 min of the HD. The quick decrease in the following
fractions was most likely due to the simultaneous distillation of monoterpene hydrocarbons
(MHs), EOCs with the lowest boiling points. We achieved the maximum EO fraction yield at
120–240 min HDT (Fr6), which, despite being the fraction that showed the lowest HDR, had
the longest collection interval (2 h). On the other hand, when analysing the density of EO
fractions, there was minimal variation among the fractions, except for Fr1, which exhibited
a lower density (0.847 g/cm3) compared to other fractions (0.878–0.891 g/cm3), as well as
to control EO (0.889 g/cm3). Thus, all the studied EO samples had a density lower than
water. Finally, a colour gradient was easily observed from Fr1 to Fr6 (Figure 1), which could
be attributed to the progressive accumulation of sesquiterpenes and diterpenes during
the HD process. This phenomenon becomes evident as we progress from Fr1 (primarily
comprising MHs with no colour) to subsequent fractions.

Overall, the EO was extracted very quickly at the start of HD (0–2 min), rapidly
decreasing and stabilizing as HD progressed. During the first hour, 53% of the EO had
already been extracted (20% in Fr1 and 33% in Frs. 2–4), with the remaining 47% extracted
over the next 3 h (21% in Fr5 and 26% in Fr6).

Considering the available literature, we could only compare our findings to those
from previous studies on the influence of HDTs on EO yield in other Cupressaceae family
members (Juniperus virginiana, J. excelsa, J. sabina, and J. communis) [27,28] and Pinus species
(P. heldreichii, P. peuce, and P. mugo) [29]. These studies demonstrated a significantly higher
EO yield during the first few minutes of the HD fractionation process, as observed in the
present study.

3.3. Chemical Composition of the Az–CJF EO and Its Fractions

The chemical composition profile of the Az–CJF control EO and fractions collected at
different HDTs, is presented in Table S1 of the Supplementary Materials. Figure 2a,b–d
show the chromatographic profiles of the control EO and representative fractions (top,
middle, and bottom HDTs), respectively.
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Figure 2. Total ion current (TIC) representative chromatograms on a ZB5MSPlus column of Azorean
Cryptomeria japonica foliage essential oil (EO) samples obtained by hydrodistillation: (a) control EO
(0–240 min), (b) fraction 1 (0–2 min), (c) fraction 3 (10–30 min), and (d) fraction 6 (120–240 min).

A total of 89 components were identified in the control EO, accounting for 97.39% of the
total EO. Among these, 51–85 components were present in the EO fractions, accounting for
97.04–99.75% of the total EO composition (Supplementary Materials, Table S1), confirming
that not all EOCs were found in all the EO fractions obtained.

The main terpene class identified in the control EO was oxygen-containing sesquiter-
penes (OCS; 51.12%), followed by MHs (19.68%), diterpene hydrocarbons (DHs; 18.65%),
oxygen-containing diterpenes (OCD; 2.90%), oxygen-containing monoterpenes (OCM;
3.01%), and sesquiterpene hydrocarbons (SHs; 2.03%). On the other hand, the terpene
classes present in the EO fractions decreased in the following order: MHs (91.79%) >> OCS
(3.28%) ≈ OCM (2.96%) > SHs (0.93%) ≈ DHs (0.76%) > OCD (0.03%) in Fr1; MHs (45.23%)
> OCS (27.44%) > DHs (10.38%) > OCM (8.98%) > SHs (5.51%) > OCD (0.68%) in Fr2; OCS
(42.17%) > MHs (23.92%) > DHs (18.33%) > OCM (6.55%) > SHs (4.86%) > OCD (1.44%) in
Fr3; OCS (49.73%) > DHs (22.78%) > MHs (15.47%) > OCM (4.00%) > SHs (2.83%) > OCD
(2.23%) in Fr4; and OCS (50.85 and 62.39%), DHs (21.49 and 18.31%), MHs (17.48 and
10.09%), OCM (2.95 and 1.86%), OCD (2.95 and 3.77%), SHs (1.43 and 1.01%), in Fr5 and
Fr6, respectively (Supplementary Materials, Table S1).

The major EOCs (≥4%) identified in the control EO were elemol (27.47%), phyllo-
cladene (14.00%), α+β-eudesmol (13.10%), α-pinene (11.64%) and γ-eudesmol (6.55%)
(Supplementary Materials, Table S1). On the other hand, fifteen major EOCs were identified
in the EO fractions, as illustrated in Tables 2–7. The MHs α-pinene, camphene, sabinene,
myrcene, and limonene were extracted at the beginning of the HD (0–2 min HDT) and ac-
counted for 84% of the total EO fraction concentration. As expected, the MHs concentration
decreased gradually as the process continued, reaching its lowest level in the EO fraction
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obtained at 120–240 min HDT (Table 2). The OCM terpinen-4-ol and bornyl acetate were
also distilled earlier in the HD process, but not as much as MHs. Terpinen-4-ol and bornyl
acetate reached their maximum concentrations of 1.4 and 6.3% at 10–30 and 2–10 min HDT
(Table 3), respectively.

Table 2. Concentration (%) of the main monoterpene hydrocarbons (MHs) in the fractions and control
of Azorean Cryptomeria japonica foliage essential oil obtained by hydrodistillation.

HDTs (min) α-Pinene Camphene Sabinene Myrcene Limonene Other MHs Total MHs

0–2 54.18 a 4.99 a 10.25 a 7.45 a 7.16 a 7.76 a 91.79 a

2–10 24.12 b 2.60 b 5.16 b 3.88 b 4.61 b 4.86 b 45.23 b

10–30 12.48 c 1.58 c 2.29 c 2.07 c 2.52 c 2.98 c 23.92 c

30–60 8.48 e 1.07 d 1.01 d 1.32 cd 1.52 d 2.07 d 15.47 d

60–120 10.15 de 1.17 d 0.79 de 1.45 cd 1.57 d 2.35 d 17.48 d

120–240 6.35 f 0.60 e 0.26 e 0.78 d 0.82 e 1.28 e 10.09 e

0–240 (control) 11.64 cd 1.07 d 1.77 c 1.61 c 1.74 d 1.85 e 19.68 d

Results are shown as means ± standard deviations (n = 3). Within each column, values followed by the same
letter are not significantly different (p < 0.05). HDTs—hydrodistillation timeframes.

Table 3. Concentration (%) of the main oxygen-containing monoterpenes (OCM) in the fractions and
control of Azorean Cryptomeria japonica foliage essential oil obtained by hydrodistillation.

HDTs (min) Terpinen-4-ol Bornyl Acetate Other OCM Total OCM

0–2 0.17 d 2.32 c 0.47 cd 2.96 d

2–10 0.97 bc 6.32 a 1.69 a 8.98 a

10–30 1.40 a 3.92 b 1.23 b 6.55 b

30–60 1.16 ab 2.11 c 0.73 c 4.00 c

60–120 0.98 b 1.48 d 0.49 cd 2.95 d

120–240 0.64 c 0.86 e 0.36 d 1.86 e

0–240 (control) 0.65 c 1.72 d 0.64 c 3.01 d

Results are shown as means ± standard deviations (n = 3). Within each column, values followed by the same
letter are not significantly different (p < 0.05). HDTs—hydrodistillation timeframes.

Table 4. Concentration (%) of the main sesquiterpene hydrocarbons (SHs) in the fractions and control
of Azorean Cryptomeria japonica foliage essential oil obtained by hydrodistillation.

HDTs (min) δ-Cadinene Other SHs Total SHs

0–2 0.23 e 0.70 e 0.93 e

2–10 1.98 b 3.53 b 5.51 a

10–30 2.62 a 2.24 a 4.86 a

30–60 1.71 b 1.12 b 2.83 b

60–120 0.86 c 0.57 c 1.43 d

120–240 0.54 d 0.47 d 1.01 e

0–240 (control) 1.07 c 0.96 c 2.03 c

Results are shown as means ± standard deviations (n = 3). Within each column, values followed by the same
letter are not significantly different (p < 0.05). HDTs—hydrodistillation timeframes.

The SHs class was found to a lesser extent, with δ-cadinene being the only relevant one
to reach its maximum concentration (2.6%) at 10–30 min HDT (Table 4). On the contrary,
OCS (Table 5) were the most widespread terpenes identified in the studied Az–CJF EO
sample, as already highlighted. Elemol reached its peak concentration at 30–60 min HDT
and remained stable until the end of HD. Germacrene-D-4-ol exhibited similar behaviour
as OCM (Table 3), peaking at 2–10 min HDT and decreasing afterwards. γ-Eudesmol and
α+β-eudesmol displayed the same trend, increasing their concentration gradually along
the HD and reaching their maximum at 120–240 min HDT.
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Table 5. Concentration (%) of the main oxygen-containing sesquiterpenes (OCS) in the fractions and
control of Azorean Cryptomeria japonica foliage essential oil obtained by hydrodistillation.

HDTs (min) Elemol Germacrene-D-4-ol γ-Eudesmol α+β-Eudesmol Other OCS Total OCS

0–2 2.11 e 0.70 c 0.05 e 0.38 f 0.04 e 3.28 e

2–10 18.10 d 3.61 a 0.76 e 3.86 e 1.11 d 27.44 d

10–30 28.55 ab 1.43 b 2.14 d 8.05 d 2.00 c 42.17 c

30–60 30.07 a 0.18 d 4.38 c 11.99 c 3.11 b 49.73 b

60–120 25.62 bc 0.03 d 6.73 b 15.14 b 3.33 b 50.85 b

120–240 24.78 c 0.00 d 11.48 a 21.64 a 4.49 a 62.39 a

0–240 (control) 27.47 abc 0.97 c 6.55 b 13.1 bc 3.03 b 51.12 b

Results are shown as means ± standard deviations (n = 3). Within each column, values followed by the same
letter are not significantly different (p < 0.05). HDTs—hydrodistillation timeframes.

Table 6. Concentration (%) of the main diterpene hydrocarbons (DHs) in the fractions and control of
Azorean Cryptomeria japonica foliage essential oil obtained by hydrodistillation.

HDTs (min) Phyllocladene Rosa-5,15-diene Other DHs Total DHs

0–2 0.58 d 0.10 d 0.08 c 0.76 e

2–10 7.21 c 1.43 c 1.74 b 10.38 d

10–30 12.94 b 2.39 ab 3.00 ab 18.33 c

30–60 16.42 a 2.73 a 3.63 a 22.78 a

60–120 16.12 a 2.26 b 3.11 ab 21.49 ab

120–240 14.20 ab 1.66 c 2.45 ab 18.31 bc

0–240 (control) 14.00 ab 2.11 b 2.54 ab 18.65 bc

Results are shown as means ± standard deviations (n = 3). Within each column, values followed by the same
letter are not significantly different (p < 0.05). HDTs—hydrodistillation timeframes.

Table 7. Concentration (%) of the main oxygen-containing diterpenes (OCD) in the fractions and
control of Azorean Cryptomeria japonica foliage essential oil obtained by hydrodistillation.

HDTs (min) Nezukol Other OCD Total OCD

0–2 0.03 f 0.00 c 0.03 f

2–10 0.66 e 0.02 c 0.68 e

10–30 1.39 d 0.05 c 1.44 d

30–60 2.12 c 0.11 b 2.23 c

60–120 2.75 b 0.20 b 2.95 b

120–240 3.47 a 0.30 a 3.77 a

0–240 (control) 2.59 b 0.31 a 2.9 b

Results are shown as means ± standard deviations (n = 3). Within each column, values followed by the same
letter are not significantly different (p < 0.05). HDTs—hydrodistillation timeframes.

The DHs, a significant class of the studied Az–CJF EO sample, were also affected by
HDTs (Table 6). Phyllocladene and rosa-5,15-diene concentrations peaked at 30–60 min
HDT, slightly decreasing in later HDTs (Table 6). On the other hand, the amount of nezukol,
a major component of the OCD class, gradually increased throughout the HD process,
reaching its maximum at 120–240 min HDT (Table 7).

Overall, different HDTs significantly influence the composition of Az–CJF EO. The
MHs class dominated in Fr1 and Fr2, demonstrating a fivefold and 2.3-fold increase in
content compared to the control EO, respectively. α-Pinene was the major MH in these two
fractions, representing almost 50% of the total MHs. On the contrary, OCS dominated in
Frs. 3–6, as in the control EO. In these four samples, elemol was the major OCS, followed
by α+β-eudesmol, and γ-eudesmol. Furthermore, among all the studied EO samples, we
observed that: (i) Fr2 and Fr3 (distilled at 2–30 min HDT) were the richest in OCM (mainly
bornyl acetate) and SHs (mainly δ-cadinene); (ii) Fr4 and Fr5 (distilled at 30–120 min HDT)
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in DHs (mainly phyllocladene); and (iii) Fr6 (distilled at 120–240 min HDT) in OCD (mainly
nezukol). Previous reports on Az–CJF EO differ from the present results by highlight-
ing MHs are the predominant class, with α-pinene being the major compound [1,30,31].
Nonetheless, it is not an unprecedented event, since in Figueiredo et al.’s [30] study, an
Azorean C. japonica EO sample obtained by HD from branches and foliage also contained
high amounts of the OCS elemol (subcluster Id). In addition, of the 76 components present
in all 105 EO samples obtained by SD from C. japonica (branches and foliage) collected in
different Azorean Islands, the authors [30] selected 20 as representative and characteristic
Azorean C. japonica EOCs. α-Pinene, sabinene, myrcene, limonene, terpinen-4-ol, bornyl
acetate, elemol, α-eudesmol, β-eudesmol, phyllocladene, and nezukol, which are among
the major EOCs identified in our EO fractions, are within the selected 20 components [30],
confirming the homogeneity of the EO composition from Azorean C. japonica aerial parts.

The effect of HDTs on the CJF EO fraction composition can be attributed to various
factors influencing the distillation order of EOCs during HD, such as (i) volatility: EOCs
with lower boiling points and higher vapour pressures tend to be distilled earlier in the
HD process; (ii) molecular weight: EOCs with lower molecular weight generally have
higher vapour pressure; (iii) chemical structure: EOCs with polar functional groups or
hydrogen bonding capabilities may interact with HD medium (water), causing them to be
distilled later.

3.4. Kinetics Regression Models

Figures 3–7 illustrate the relationship between HDTs (excluding the 0–240 min) and
the following parameters: EO yield (%), HDR (EO mg/min), and individual concentration
(%) of major EOCs, while also showing the fitted model that best describes the mentioned
relationships. The fitted model can be used for prediction purposes, as described below.
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Figure 3. Plot of hydrodistillation timeframes (HDTs) vs. (a) essential oil (EO) cumulative yield and
(b) EO hydrodistillation rate along with the fitted Power regression models.

The relationships between HDTs and EO yield (Figure 3a), and HDTs and EO HDR
(Figure 3b), were adequately modelled by the Power model (Equation (1)).

The relationship between HDTs and major MHs (Figure 4) was also adequately mod-
elled by the Power model (Equation (1)).

Similarly, Semerdjieva et al. [27] used the Power model to describe the relationship
between HDTs and the α-pinene, sabinene, β-pinene, and limonene contents in Juniperus
sp. EO. In the present study, MHs camphene and myrcene were also adequately modelled
by the Power model, suggesting that the MHs class always follows this regression model
during HD.

The best regression models were exponential decay (Equation (2)) and logarithmic
(Equation (3)) for other major EOCs such as elemol, phyllocladene and rosa-5,15-diene
(Figure 5), α+β-eudesmol, and nezukol (Figure 6).
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Figure 4. Plot of hydrodistillation timeframes (HDTs) vs. the concentration ofα-pinene, camphene, sabinene,
myrcene, and limonene (monoterpene hydrocarbons) along with the fitted Power regression model.

On the other hand, the relationship between HDTs and γ-eudesmol content (Figure 7)
was delineated by a linear regression model (Equation (4)).

Relative to the other four major EOCs (terpinen-4-ol, bornyl acetate, δ-cadinene, and
germacrene-D-4-ol), there was no linear or NLIN regression model that could describe the
relationship between its concentration and the HDTs.

Overall, specific EO fractions can be targeted in Az–CJF EO by varying the HDT. For
example, Fr1, Fr4, and Fr6 were rich in α-pinene, phyllocladene, and elemol + eudesmol
isomers (α, β and γ), respectively, which were the major EOCs identified in the studied EO
sample, accounting for 54%, 17%, and 64%, respectively, of the total EO composition. Thus,
the present study results may be a significant finding for the C. japonica EO industry.
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4. Conclusions

To the best of our knowledge, no prior studies on HD use in fractionating EOs from
C. japonica have been reported. In the present study, a sequential separation of EOCs during
HD of Azorean C. japonica fresh foliage was performed using six distinct HDTs. The results
clearly demonstrated that HDTs can be a tool for obtaining EO fractions with specific
compositions from CJF. Thus, the valuable findings presented here offer EO producers
and processors an opportunity to exert greater control over C. japonica EO compositions
by manipulating HDT, which saves time and energy by identifying specific time points
during the HD process where higher yields of desired EOCs are extracted. The regression
models presented here can also serve as a valuable benchmark for comparing literature
reports. Furthermore, studies on a laboratory scale could be an incentive for the C. japonica
EO industry to optimize SD timeframes, obtain EO fractions with differential compositions
and, thus, produce products with higher added value.

Ongoing bioactivity screening studies into these novel Az–CJF EO fractions can help
to meet different market demands compared to the typical crude CJF EO. Furthermore,
they will contribute to the biovalorisation of wastes from abundant Azorean resources
(such as the CJBR) and the local circular economy.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/separations10090483/s1, Table S1: GC/MS analysis of
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hydrodistillation; HDR, hydrodistillation rate; HDT, hydrodistillation timeframe; MHs, monoterpene
hydrocarbons; NLIN, nonlinear; OCD, oxygen-containing diterpenes; OCM, oxygen-containing
monoterpenes; OCS, oxygen-containing sesquiterpenes; RI, retention indices; SHs, sesquiterpene
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