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Abstract: Despite the fact that strong routine separation methodologies can give reliable specificity
and validity at usual working pharmaceutical concentrations, they may fail at very low concentration
levels. This poses considerable challenges for researchers investigating product purity and therapeutic
drug monitoring. Sensitivity enhancement procedures are thus required to maximize the perfor-
mance of separation techniques. Solid-phase extraction/solid-phase enrichment (SPE/SPEn) and
pre-, post-, and in-column derivatization, as well as the use of sensitive detection devices, are the
simplest strategies for improving sensitivity of separation-based analytical techniques. Large-volume
injection of samples with online SPE/SPEn coupled with separation techniques increased sensitivity
and improved detection as well as quantification limits without affecting peak shape and system
performance. Although the primary purpose of derivatization is to improve sensitivity and selectivity,
greener derivatization is growing in popularity and should be considered in analytical chemistry.
In general, two strategies are essential for accomplishing greener derivatization goals. The first is
the search for and use of ecologically acceptable derivatizing reagents, solvents, and reaction condi-
tions. The second is miniaturization and automation of analytical methods. This review discusses
significant advances in separation-based analytical techniques, specifically enrichment approaches
and detector signal improvement for pharmaceutical quantification in various matrices at very low
concentration levels. As a result of improved analytical systems setup in drug assays, the possibility
of high-throughput analyses was also highlighted.

Keywords: separation-based analytical techniques; large-volume injection; solid-phase enrichment;
solid-phase analytical derivatization; packed reactor; trace analysis

1. Introduction

The development of a sufficiently sensitive procedure ensures the technology’s viabil-
ity for its intended purpose. Despite many advances in chromatographic technologies such
as liquid chromatography (LC), gas chromatography (GC), and capillary electrophoresis
(CE), sensitivity concerns continue to pose significant difficulties for compounds with poor
detection limits. Highly sensitive analytical separation-based techniques play important
roles in contamination assessments, environmental analysis, and therapeutic drug monitor-
ing (TDM) [1,2]. In recent years, there has been a significant increase in the participation of
researchers in the sensitivity improvement of quantitative techniques. In this area, a wide
range of approaches has been described.

Separations 2023, 10, 351. https://doi.org/10.3390/separations10060351 https://www.mdpi.com/journal/separations

https://doi.org/10.3390/separations10060351
https://doi.org/10.3390/separations10060351
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/separations
https://www.mdpi.com
https://orcid.org/0000-0001-6965-4668
https://orcid.org/0000-0002-0584-3432
https://orcid.org/0000-0002-9126-4858
https://doi.org/10.3390/separations10060351
https://www.mdpi.com/journal/separations
https://www.mdpi.com/article/10.3390/separations10060351?type=check_update&version=1


Separations 2023, 10, 351 2 of 31

The analysis of pharmaceuticals in bio-fluids possesses numerous analytical challenges.
The medications in a complex matrix such as serum or plasma are frequently bound to
the protein’s contents or are present as free forms in different ratios. Because it can be
used to separate and isolate medications and their metabolites from biological fluids, high-
performance liquid chromatography (HPLC) has emerged as a very helpful technology.
Reversed-phase (RP) HPLC is widely used to separate various pharmaceuticals [3–12];
however, serum and plasma samples cannot be directly injected onto RP columns due to the
presence of high-molecular-mass proteins. Biomolecules such as proteins may have many
affinity mechanisms by which they are adsorbed onto surfaces they encounter because
of their complex chemistry and amphoteric nature [13]. Each protein molecule generally
contains a large number of hydrophobic moieties, as well as multiple positive and negative
charges. Hence, there may be a variety of points of interaction that cause protein to adhere
to surfaces. The complexity of such macromolecules can lead to non-specific adhesion to
surfaces. This can have an adverse effect on the chromatographic analysis in addition to
carryover and instrument problems. As proteins can accumulate and plug the columns and
instruments, they could make separation by HPLC troublesome. Thus, the LC system will
certainly be affected after direct application of protein-rich complex matrices such as serum
and plasma. For instance, the porosity of the columns will decrease if a lot of proteinaceous
materials are absorbed onto their surfaces, resulting in increasing backpressure. The
quick rise in pressure at the column’s head is brought on by protein denaturation and
precipitation. The high concentration of organic solvents in the mobile phases used to elute
the tested analytes from the RP columns, particularly the ODS columns, causes protein
denaturation and precipitation. Moreover, the analyte’s distribution between the solid and
mobile phases may be affected, resulting in alteration of the capacity factor. Thus, sample
preparation is an essential component of analytical technique development, regardless
of whether the analysis is for pharmaceutical, bio-analytical, environmental, or other
applications. The fundamental purpose of sample preparation is to eliminate or reduce the
impact of interferences caused by the many matrix components in complicated samples.
Moreover, sample preparation can be utilized to simplify other elements of analysis, such
as pre-concentration or derivatization, in order to improve sensitivity or selectivity.

In many circumstances, sample preparation consumes the most time and resources
throughout the analytical process. Generally, analysts spend almost two-thirds of their time
performing the sample preparation steps during the entire procedure [14]. Additionally,
the offline sample preparation approach is anticipated to cause more than one-third of the
analytical errors [15]. Conventional sample work-up processes in bio-analysis frequently
entail a variety of pretreatment stages to purify the protein-rich samples before they are
loaded into the LC, but three of the most frequent are solid-phase extraction (SPE) [3,4],
liquid–liquid extraction (LLE) [16–18], and protein precipitation [19].

Despite their success, classical methods are generally regarded as having limited
selectivity and/or poor recovery, as well as being more expensive for target analyte mea-
surement. The equipment costs and development times of such approaches are only
justifiable in situations where large sample throughput over an extended period of time is
anticipated, despite the fact that using robotics can enable sophisticated sample preparation
to be carried out with great precision and minimal labor cost. Thus, there is a huge need
for simplified analytical procedures because the sample throughput in bio-analysis, for
instance, in the TDM and pharmaceutical industry, has increased significantly. There-
fore, developing new sample preparation procedures to accommodate the various types
of samples and conditions encountered during analysis is a research field that requires
continuing development.

2. Solid-Phase Extraction/Pre-Concentration Strategies for Drug Analysis

Because of the lower concentration levels of pharmaceuticals and the high levels of
interferences present in bio-fluid samples, sample clean-up and enrichment processes are
critical prior to chromatographic analysis to optimize technique sensitivity, recovery, and
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accuracy. It is difficult to justify extraction procedures that employ large amounts of haz-
ardous organic solvents in the sample preparation steps in an era when it is recommended
to implement green chemistry principles in analytical laboratories. Of the different purifica-
tion methods, SPE is a quick, low-cost, and extensively applicable technology. Furthermore,
it is broadly applicable for the enrichment of pharmaceuticals and extraction of biological
interferences with high removal effectiveness. SPE is seen as a good substitute for LLE
because it moves past many of the shortcomings of LLE [16–18]. Moreover, the entire
procedure can be automated. Besides that, SPE does not require phase separation, as LLE
does, which eliminates errors related to inaccurately estimated extract volumes, one of the
primary reasons for errors observed in the analysis of extracts obtained by LLE. Thus, major
efforts have been made to design and evaluate innovative formats and efficient sorbent ma-
terials in order to improve their selectivity, specificity, and sorption capacity towards target
analytes and enhance physicochemical or mechanical stability, among other SPE-related
properties. Solventless sample preparation approaches based on analyte extraction and
enrichment by online SPE, using phosphate buffers as washing solvents, have been proven
to be viable and environmentally friendly alternatives to conventional solvent extraction
techniques [20,21]. Fluconazole in serum has been directly quantified by trapping on a
pre-column and subsequently separating on an analytical column, utilizing an elution
mode by online SPE and HPLC methods (Figure 1) [21]. Because of its simplicity of use,
flexibility, rapid extraction time, safety, minimal organic solvent consumption, and high
enrichment factor, solid-phase microextraction (SPME) is a promising sample pretreatment
approach [22]. To boost sensitivity in separation techniques, the large-volume injection ap-
proach and online sample pre-concentration have been widely employed. Highly sensitive
and selective HPLC methodologies with less costly fluorescence (FL) detection systems
are also required. Thus, the derivatization technique is necessary to enable sensitivity
enhancement by converting non- or weakly native fluorescent compounds into highly fluo-
rescence derivatives. The combination of pre- or post-column derivatization procedures
with the chromatographic systems, as well as FL detection, made it possible for determining
different medications at low concentration levels. One of the primary goals of the present
review is to achieve greener derivatization developments. As stated, automation and
miniaturization are two critical factors in developing greener derivatization techniques.
When compared to conventional techniques, the amounts of chemicals needed and wastes
generated are reduced. On-column/in-capillary [23,24] derivatization with HPLC and CE
are two greener derivatization approaches. Because derivatization takes place during the
separation process, these methodologies are superior to the most common pre-column and
pre-capillary offline modes of derivatization, in that the sample and derivatizing agent
consumption is low, and full automation arises without the need for additional equipment.

2.1. Offline Solid-Phase Extraction/Enrichment

Advanced sorbent technologies reorient SPE materials with various functionalities
according to their structures, such as RP, normal-phase (NP), cation exchange (CEx), anion
exchange (AEx), and mixed-mode types. Offline SPE in conjunction with the RP-HPLC
approach for highly sensitive determination of ciprofloxacin, acetaminophen, caffeine,
benzophenone, and irgasan in aquatic environments has been reported [25]. The SPE was
conducted prior to the analysis using an RP-C18 cartridge to pre-concentrate the tested
analytes from the ecological water samples. Dawson et al. reported a simple and reliable
assay for nicotine and its main metabolite, cotinine, in plasma [26]. On the silica columns, an
extraction/pre-concentration approach compatible with RP-HPLC separation was devised
followed by quantification on ODS column using UV detection. Torre et al. simplified the
SPE process for determining risperidone and 9-hydroxyrisperidone in human plasma using
polymeric RP sorbents [27]. The SPE-HPLC approach for assessing melamine in liquid milk
has been reported to meet the detection demand for melamine-contaminated milk [28].
The developed method was validated using LC tandem mass spectrometry (LC-MS/MS)
and has been successfully applied for routine melamine measurement in a variety of milk
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samples. Moreover, the CEx resin column is utilized for separation and pre-concentration
purposes in LC-MS to analyze melamine in egg samples [29]. He et al. and Wang et al.
described rapid and efficient SPE procedures followed by HPLC-UV methods for the
determination of melamine in aqueous and milk formula samples, respectively [30,31].
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Figure 1. Manifold of on-through elution HPLC methodology for measuring fluconazole directly
from serum samples: position (A) depicts the system set up for loading, washing, trapping, and
pre-concentration of the analyte; position (B) shows the quantification step, ready for separation and
measurement. HPLC circulation (separation and quantification) is segregated from the extraction po-
sition. A 6-port high pressure switching valve (S.V.) connects the PC column to an analytical column.

2.2. Offline Solid-Phase Microextraction

The application of the twelve green chemistry principles to laboratory practice surely
fueled the search for innovative methodological approaches to guarantee an improvement
in results quality while enhancing environmental friendliness. Since the concept of SPE
of target analytes was developed, substantial advancements in this technology have been
noted, including the original concept’s simplification, automation, and miniaturization. The
method put forth in 1951 by Braus and colleagues, which was based on the insertion of up
to 1.2–1.5 kg of granular activated carbon into an iron cylinder, is fundamentally different
from the SPE formats currently employed in laboratory practice [32]. Because of undeniable
advances in both the adsorption process and the large-scale production of new classes of
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materials, practical solutions for achieving high rates of recovery and enrichment while
using significantly less sorbents and organic solvents have become possible for trapping
various types of analytes. SPME is presently gaining popularity in a variety of fields
of investigation, including dietary, biological, and pharmaceutical products [33]. SPME
provides several advantages, including ease of use, low cost, compatibility with analytical
systems, automation, and a solventless extraction procedure. In recent years, SPME has
been employed prior to LC and CE, in addition to its application with GC. Enrichments of
pharmaceuticals from various samples with complex matrices make it necessary to produce
unique SPME fiber coatings such as metal organic frameworks, covalent organic frameworks,
carbon, polymer, ionic liquids, metal/metal oxide nanoparticles, and silica [34,35].

The majority of pyrethroid metabolites are extracted from urine in the literatures
using SPE or LLE, before being subjected to GC-MS or LC-MS [36–38]. As a pretreat-
ment procedure to meet the demands for rapid and environmentally friendly extraction
protocols, SPME is becoming more important. There have been various SPME methods
reported in the literature [39,40], but they are not sensitive enough to measure the trace
concentrations of pyrethroid metabolites that are important for evaluating environmental
exposure. For the analysis of pyrethroid metabolites in urine samples, a green analyti-
cal method by a packed sorbent coupled to large-volume injection and GC-MS has been
developed using an offline SPME technique [41]. With the aid of direct MS technology,
quantification of cocaine, methamphetamine, 3,4-Methyl-enedioxy-methamphetamine, and
lysergic acid diethylamide from oral fluid and urine samples has been conducted using
offline SPME [42]. Quinine, naproxen, haloperidol, ciprofloxacin, and paclitaxel have all
been extracted using multiple SPME [43]. After SPME, desorption was carried out offline,
each drug was then analyzed using HPLC with UV or FL detection. Cantú et al. reported
an offline SPME technique for analyzing anticonvulsants and tricyclic antidepressants in
human plasma for TDM purposes by HPLC-UV [44]. For measuring various medicines
in several matrices using offline SPE, different separation-based analytical approaches
have been proposed [45–58]. Table 1 lists the LODs, LOQs, sample matrices, and offline
extraction and separation processes as well as the detection systems used for the analysis
of various pharmaceutics.

Table 1. Applications of offline SPEn approach coupled with different separation techniques for
measuring various drugs in various matrices.

Analyte Sample
Matrix

Separation
Technique

Detection
System LOD LOQ Ref.

- Ciprofloxacin
- Acetaminophen
- Caffeine
- Benzophenone
- Irgasan

Water HPLC UV-Vis

0.50 ppm
0.09 ppm
0.09 ppm
1.48 ppm
0.65 ppm

1.69 ppm
0.32 ppm
0.32 ppm
4.96 ppm
2.19 ppm

[25]

- Nicotine
- Cotinine Plasma HPLC UV-Vis - 1.25 ng/mL

1.75 ng/mL [26]

- Risperidone
- 9-Hydroxyrisperidone Plasma HPLC UV-Vis 1 ng/mL

1 ng/mL
2 ng/mL
2 ng/mL [27]

- Melamine Milk HPLC DAD 18 lg/kg 60 lg/kg [28]

- Melamine Water HPLC UV-Vis 0.1 ng/mL 0.5 ng/mL [30]
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Table 1. Cont.

Analyte Sample
Matrix

Separation
Technique

Detection
System LOD LOQ Ref.

- Melamine Milk
formula HPLC UV-Vis 0.01 µg/mL 0.033 µg/mL [31]

- Cypermethrin
- Deltamethrin
- Permethrin
- Cyfluthrin

Urine HPLC MS/MS

0.015 ng/mL
0.015 ng/mL
0.015 ng/mL
0.015 ng/mL

0.025 ng/mL
0.025 ng/mL
0.020 ng/mL
0.030 ng/mL

[37]

- Quinine
- Naproxen
- Haloperidol
- Ciprofloxacin
- Paclitaxel

Urine HPLC Fluorescence

0.01 µg/mL
0.02 µg/mL
0.1 µg/mL

0.001 µg/mL
0.05 µg/mL

1 µg/mL
0.05 µg/mL
0.3 µg/mL

0.003 µg/mL
0.25 µg/mL

[43]

- Amitriptyline
- Imipramine
- Nnortriptyline
- Desipramine
- Carbamazepine
- Phenobarbital
- Phenytoin
- Primidone

Plasma HPLC UV-Vis -

75 ng/mL
75 ng/mL
75 ng/mL
75 ng/mL
5 ng/mL
6 ng/mL
5 ng/mL

75 ng/mL

[44]

- Clenbuterol Urine UHPLC MS/MS 0.0125 ng/mL 0.1 ng/mL [45]

- Andrographolide
- Neoandrograholide
- 14-Deoxy-11,12-
didehydroandrographolide

Plasma UPLC MS/MS
0.04 µg/mL
01 µg/mL

0.02 µg/mL

0.15 ug/mL
0.32 ug/mL
0.06 ug/mL

[46]

- Valsartan
- Hydrochlorothiazide Plasma HPLC MS/MS - 50.2 ng/mL

1.25 ng/mL [47]

- Pantoprazole Wastewater UPLC MS/MS 0.02 ng/mL 0.05 ng/mL [48]

- Amisulpride Saliva UPLC DAD 3 ng/mL 5 ng/mL [49]

- Ciprofloxacin
- Sparfloxacin
- Moxifloxacin
- Gatifloxacin

Wastewater CE UV-Vis

3 µg/mL
3 µg/mL
3 µg/mL
3 µg/mL

5 µg/mL
5 µg/mL
5 µg/mL
5 µg/mL

[50]

- Propionic acid
- Butyric acid

Chicken
feces HPLC DAD 0.14 mg/mL

0.14 mg/mL
0.45 mg/mL
0.43 mg/mL [51]

- Amphetamine
- Methamphetamine
- 3,4-Methylenedioxymethamphetamine

Urine CE MS/MS
1 ng/mL
1 ng/mL

0.60 ng/mL

5 ng/mL
8 ng/mL
2 ng/mL

[52]

- Dimetridazole
- Metronidazole
- Secnidazole
- Ornidazole
- Tinidazole

Water CE DAD

0.016 µg/mL
0.040 µg/mL
0.097 µg/mL
0.037 µg/mL
0.037 µg/mL

0.05 µg/mL
0.14 µg/mL
0.33 µg/mL
0.13 µg/mL
0.13 µg/mL

[53]

- Glyphosate
- 3-(methylphosphinico) propionic acid
- Glufosinate
- Aminomethylphosphonic acid

Tea
infusions CE Conductivity

0.80 ng/mL
0.56 ng/mL
1.56 ng/mL
0.54 ng/mL

2.68 ng/mL
1.87 ng/mL
5.19 ng/mL
1.82 ng/mL

[54]

- Tetracycline
- Chlortetracycline
- Oxytetracycline

Milk CE UV-Vis
19.93 ng/mL
23.83 ng/mL
18.60 ng/mL

59.79 ng/mL
71.49 ng/mL
55.8 ng/mL

[55]
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Table 1. Cont.

Analyte Sample
Matrix

Separation
Technique

Detection
System LOD LOQ Ref.

- Sulfadimidine
- Sulfathiazole
- Sulfadiazine
- Sulfachloropyridazine
- Sulfamethoxazole
- Sulfacetamide
- Phthalylsulfathiazole
- Succinylsulfathiazole

Milk CE UV-Vis

0.16 µg/mL
0.04 µg/mL
0.03 µg/mL
0.10 µg/mL
0.07 µg/mL
0.03 µg/mL
0.20 µg/mL
0.07 µg/mL

0.3 µg/mL
0.3 µg/mL
0.3 µg/mL
0.3 µg/mL
0.3 µg/mL
0.3 µg/mL
0.3 µg/mL
0.3 µg/mL

[56]

- Captopril Plasma GC MS/MS 0.5 ng/mL 1 ng/mL [57]

- Histimine Foods CE UV-Vis 0.087 ng/mL 0.29 ng/mL [58]

3. Column Switching and Large Volume Sample Injection

The offline SPE techniques utilized different types of organic solvents which have
negative impacts on the environment, and they are the most time-consuming steps of all
the analytical procedures. The scientists then consider how to simplify and accelerate the
measurement process during chromatographic analysis while simultaneously minimiz-
ing analytical errors generated by the offline sample preparation techniques. Aside from
developing a novel efficient sample preparation approach, online coupling of SPE with
subsequent chromatographic measurement is another strategy for improving analytical
sensitivity and accuracy. The online coupling approach of sample preparation and chro-
matographic separation has the following benefits: (1) enhancing sensitivity by reducing
sample loss; (2) reducing sample preparation process time; (3) lowering contamination of
samples and possible analyte degradation due to online sample preparation in a closed
system; (4) enhancing process reproducibility and further improving analytical precision
and accuracy with fewer human errors; and (5) potentially reducing organic solvent and
sample consumables. The online coupling of sample preparation methods with LC may be
traced back to the early 1980s, when SPE was hyphenated to LC [59]. Since then, online
coupling approaches have gained a lot of attention and have been used in a lot of analytical
studies. During the past twenty years, there have been numerous published articles on
online sample preparation techniques combined with LC.

Column switching serves a variety of purposes in online SPE and SPME strategies,
which are widely used in many automated LC methods. Several successful online SPE
approaches, followed by HPLC analysis with UV and FL detection systems using an
isocratic elution mode, have been described [60,61]. These systems were designed with
second pumps and six-port switching valves for better methods development. Small
changes can be made in the flow scheme of the traditional on-through elution SPE modes
by reversing the flowing direction of the mobile phase into the SPE columns in the back
flush modes, producing online SPE systems with dual functions (i.e., trapping the analytes
and separating them from interferences of proteinaceous materials prior to the analytical
columns) that eliminate interferences and achieve narrower analyte transferring zones.
After inserting a large volume of filtered plasma or serum samples into the sample loops,
bio-fluid samples were conveyed to the pre-columns by washing mobile phase (without
mixing with the analytical mobile phase), and the analytes were attached to the front ends
of the pre-columns due to the low elution performance of the solvent-free mobile phase.
Levofloxacin in serum was trapped on the pre-column and then separated on an analytical
column using this online SPE technique and back-flushed elution mode [20] (Figure 2). This
peak focusing method, based on trapping analytes at the head of the columns using eluents
with weak solvents, can effectively reduce the eluotropic strength of eluent, allowing
analyte to be focused on the stationary phase at the column head. In comparison to the
traditional offline SPE approaches, all analytical procedures are completed in a few minutes
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and provide the advantages of full extraction automation, lack of operator interferences,
and precise processes control.
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Figure 2. Manifold of back-flushed HPLC methodology for measuring levofloxacin directly from
serum samples: position (A) depicts the system manifold for extraction, capturing pre-concentration
of the analyte as well; position (B) shows the measurement step, ready for separation and quantifi-
cation. Separation and quantification are segregated from the extraction position. A 6-port high
pressure switching valve (S.V.) connects the PC-column to an analytical column.

3.1. Online Solid-Phase Extraction and Solid-Phase Enrichment

In the monitoring of pharmaceuticals at the trace levels, detection and quantification
limits are very important. Selectivity is also a very common additional requirement that may
necessitate chromatographic separation. Then, the detectable level will also be substantially
influenced by chromatographic variables, especially in the sample pretreatment procedures.
The nature of the samples or analytes of interest greatly influences the choice of sorbent
for the solid phase and solvents for the mobile phase. The primary polarities and charge
properties of the analytes—whether they are polar, nonpolar, or cations or anions—will
aid in determining the proper stationary phases. Pairing this with the appropriate solvent
hydrophobicity, depending on whether the analyte must pass through or be retained by
the column, will result in the most effective set of SPE sorbents.

Pre-concentration of the drugs and cleaning of complicated biological specimens
thus become parts of the chromatographic process and are accomplished through valve
switching. As a result, preliminary sample preparation can be simplified. In the early
1970s, the only method for determining trace quantities was to introduce large volumes
of samples. Karger et al. addressed the effect of sample volume on the resolution and
column efficiency [62]. Little and Fallick proposed a technique termed “trace enrichment”
in 1975 for concentrating nonpolar organic compounds from polar sources (river water
or food matrices) for quantification analysis by RP-C18 column [63]. Schauwecker et al.
published a trace enrichment approach utilizing RP sorbent materials [64]. They employed
RP-C8 and RP-C18 to enrich ergot alkaloids and peptides such as cyclosporine A and
oxytosine from urine samples of 2 mL or more. Huber and Becker used adsorbent silica
gel such as LiChrosorb Si-60 as well as RP-C18 with hydrophilic and hydrophobic surfaces
to transfer the analyte to a smaller volume than the original one and obtained enrichment
factors of an order of ten thousand for both polar and nonpolar compounds [65]. Lankelma
and Poppe employed a pre-column of RP-C8 silica for concentration and an ion exchange
(IEx) analytical column for separation of methotrexate (MTX) from plasma [66]. The
SPE column was placed at the position of the loop in an injection valve, allowing pre-
concentration to be controlled by simple solvent switching. The back-flushing mode was
employed by this system to reduce accumulating contamination on the trapping column.
The simultaneous determination of natural and synthetic estrogens, progestogens, and
androgens in environmental water samples at very low quantities using a quick and
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sensitive analytical approach has been described utilizing the GC technique [67]. An
analytical GC approach incorporating a one-way SPE has been used to analyze geosmin
and its metabolite, 2-methylisoborneol, for drinking water [68].

Most pre-columns have been packed using silica-based bonded phase sorbent materi-
als, which limit the pH of aqueous solvents that can be pumped through them to less than
8. Amberlite XAD-2 was an excellent adsorbent for online trace enrichment of lonazolac
from 100 µL sample volume of plasma specimen at higher pH values [69]. A pre-column
packed with the polymeric RP sorbent was connected to an NP-LC system in real time
for the analysis of chlorophenol [70]. A large volume (450 µL) of chlorophenol-containing
aqueous sample was run through the pre-column. The retained tested compound was
desorbed by the NPLC mobile phase, transferred to the separation column, and analyzed
after a brief period of nitrogen flushing to remove the leftover water from this column.
Wang et al. established an online SPE-HPLC technique for simultaneous enrichment and
measurement of β-sitosterol in five different edible oil samples by using poly(NMA-ST-co-
TAIC-co-EDMA) monolith as absorbent [71]. The first step in studying the glycoproteome
may entail glycopeptide enrichment to raise the number of glycosylated peptides (gly-
copeptides) [72]. Hydrophilic interaction liquid chromatography (HILIC) was frequently
utilized for enrichment of intact glycopeptides based on the hydrophilic characteristics
of glycopeptide glycans [73]. HILIC has been shown in many investigations to enrich
N-linked glycopeptides (N-glycopeptides) [74,75]. However, it was stated that HILIC could
not be a viable enrichment approach for O-linked glycopeptides (O-glycopeptides) [76,77].
It was reported that employing columns containing materials for strong AEx chromatog-
raphy increased the yield and improved identification of N- and O-linked glycopeptides.
Isobaric-tag-labeled glycopeptides could be efficiently enriched by AEx cartridges allowing
quantitative measurement of glycoproteomics [78].

3.2. Immobilized Metal Affinity Chromatography

Immobilized metal affinity chromatography (IMAC) was originally designed for pro-
tein affinity purification using the interactions of histidine and cysteine residues with the
IMAC resin [79,80], but the binding of phosphoproteins and phosphoamino acids to metal
ions reported by Andersson and Porath added a new dimension to this approach [81]. The
IMAC technique was extended by Neville et al. to the enrichment of phosphopeptides
derived from proteolytically degraded proteins [82]. Because many of the proteins targeted
for phosphorylation are low in quantity, phosphopeptides enrichment prior to MS analysis
is thus essential for their identification. Since then, the IMAC approach has been widely
utilized to enrich phosphorylated peptides prior to MS analysis and sequencing [83–87].
Immobilized titanium ion (Ti(IV)) affinity chromatography (Ti(IV)-IMAC) has been de-
signed for enriching phosphopeptides [88]. An IMAC adsorbent has been successfully
applied for the analysis of mouse liver phosphoproteome via zirconium (Zr(IV)) chela-
tion to the phosphonate-modified poly(glycidyl methacrylate-co-ethylene dimethacrylate)
polymer beads [89]. Monodisperse microsphere-based IMAC resins with flexible linker
endings with phosphonate groups that bind either Zr(IV) or Ti(IV) ions have proven to be
an efficient method for phosphopeptides enrichment [90]. The IMAC method has also been
utilized for the comprehensive analysis of salivary phosphoproteome [91]. The necessity
for effective sample preparation methodologies that allow for in-depth investigation of
protein phosphorylation has resulted in the development of a number of selective affinity
techniques that allow for the enrichment of phosphopeptides from highly complicated
peptide mixtures. Metal oxide affinity (MOA) materials have grown in popularity, and
MOA chromatography (MOAC) is currently one of the most extensively utilized phos-
phoproteomics techniques [92]. Hybrid materials of IMAC and MOAC were successfully
manufactured for the enrichment of phosphopeptides, with the goal of combining their
benefits for enriching both mono- and multi-phosphorylated species [93]. The use of MOAC
in combination with metal hydroxide (Al(OH)3) has been reported for the selective and
effective enrichment of phosphorylated proteins and peptides [94].
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3.3. Immobilized Protein Reversed Phase Columns for Solid-Phase Extraction/Enrichment

Direct injection of biological fluids including proteins is thought to impair the perfor-
mance or properties of the analytical column in conventional HPLC. Offline deproteiniza-
tion is hence the first conventional step in HPLC analysis. These procedures, nevertheless,
can occasionally be cumbersome and are not always reproducible. It is desirable to develop
an HPLC method that can directly analyze biological samples comprising proteins for the
sake of simplicity and reproducibility of chromatographic analysis. As mentioned briefly
in several research articles [60,61,95–100], RP materials coated with denatured plasma
proteins (“protein-coated (PC) columns”) exhibited RP properties for hydrophobic small
molecules even though they lost their affinity for plasma proteins. Protein immobilization
integrates various chromatographic modes in packed porous particles (most commonly, a
size exclusion mode caused by small pores as well as non-retentive outer layers with an
RP mode of a retentive inner pore surface) to accommodate the matrix’s macromolecular
components extraction and analytes enrichment prior to HPLC separation methodologies.

Although the magnitude of the direct large-volume injection is required for measuring
medications at very low concentration levels, it introduces large amounts of interfering
components. As a result, adsorption onto SPE using small PC RP pre-columns (PC-RP-
pre-columns) is the technique of choice for concentrating analytes from bio-fluid samples
while removing the majority of interfering components. A PC-columns methodology was
successfully employed to conduct online SPE that, when combined with HPLC, could
determine various drugs in serum and plasma. The components in the plasma and serum
samples must be compatible with the chromatographic phases when designing HPLC
systems for direct injection of these matrices. PC-RP-pre-columns are compatible with
serum and plasma matrices in the presence of phosphate buffer mobile phases, overcoming
the limits of conventional native RP sorbent columns. As a result, the PC-column is an
effective SPE tool for pre-concentrating pharmaceutical compounds from large-volume
bio-fluid samples without the need for organic solvents. Protein immobilization on RP
silica sorbents as a pre-column considerably protects the analytical column’s efficiency for
TDM; however, the most straightforward signal-column technique is still helpful in many
situations [101]. The signal-column approach has been applied to analyze bupivacaine in
human plasma. The use of single-column chromatography has further simplified sample
preparation by obviating the necessity for a second pump, pre-column, and switching valve.

3.4. Restricted Access Media Solid-Phase Extraction/Enrichment

Restricted access materials (RAMs) or media are another type of SPE. This type of
SPE is composed of porous materials that can limit macromolecule accessibility from
the sample to the active sites of the SPE materials. RAMs have beneficial synergistic
separation capabilities in that their macromolecular size exclusion features are based on
characteristics of the hydrophilic outer surface of the silica resin particles, but their varied
retention characteristics for smaller molecules arise from varying modifications on the
inner surface of the silica [102–108]. These separation capabilities can be accomplished
through (1) size exclusion, (2) size exclusion combined with hydrophobic interaction,
(3) size exclusion combined with hydrophilic interaction, and (4) size exclusion associated
with IEx interaction.

Online SPE approaches with RAM columns have been employed for the extraction and
enrichment of small analytes in bio-fluid samples. In this instance, direct high-throughput
online analysis of biological materials is made possible by RAM combined with an LC
system. This can be achieved by direct injection of a large volume of biological samples
while minimizing the process of clean up and extraction [109–112]. Pharmaceutical, clinical,
omics, and toxicological research always encounter the challenge of trace analysis of
medications as well as biomarkers in biological matrices. Given the physicochemical
characteristics of the aforementioned analytes, MS coupled with separation techniques
has emerged as the most sensitive and selective analytical tool for their measurement in
the complex samples. For the extraction, pre-concentration, and cleanup of numerous
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endocrine-disrupting chemicals in honey, a strategy based on the combined use of RAMs
and polymeric SPE sorbents was developed. Following online sample preparation, the
analytes were separated and analyzed using CE-MS [113]. The potential of the RAM column
to enrich benazepril hydrochloride in plasma online was investigated using a column-
switching technique coupled with HPLC-UV. This system was made up of an RAM column
as an enrichment column and an RP-C18 as an analytical column [114]. Zhang et al. [115]
and Wu et al. [116] developed and optimized column-switching HPLC-UV approaches for
the quantitative measurement of rifampicin in rat plasma samples utilizing RAM columns.
In the single-column configuration, the RAM column was connected directly to a detector.
Following injection, the analytes were eluted from the column and transferred directly to
the detector. When used in conjunction with an MS detector, the single column technique
has more potential applications because of the high selectivity of this detector compared to
UV or FL detectors. The RAM-MS approach, where the RAM column directly connected to
MS systems, has been developed for the analysis of fluoroquinolones [117].

3.5. Surface Modified Restricted Access Media

RAMs, as previously indicated, have sparked considerable attention in the field of SPE
as specific types of materials [118] with internal phases that hinder small molecules and
external hydrophilic layers that eliminate proteins. Protein exclusion is frequently achieved
using physical barrier layers based on pore size or a chemical diffusion barrier composed
of hydrophilic polymer networks. The modification of adsorbent surfaces with hydrophilic
polymers for the manufacture of modified RAMs has received more attention [119–122].
Several kinds of RAMs as SPEs have been designed that utilize different functional groups
on the solid particles’ outer surface. To obtain distinct matrix exclusion capabilities, bovine
serum albumin (BSA) has been employed as a protein functional group bound on the outer
surfaces of RAM (RAM-BSA) [123–126]. RAM-BSA columns exhibit good protein exclusion
efficiency and suitable sorption retention for acidic, neutral, and basic chemicals [127]. In
terms of removing specific matrix components, the RAM-BSA trap column outperforms
other RAM, notably in the analysis of milk-based specimens. Lopes et al. [128] successfully
demonstrated the utilization of an RAM-BSA trap column for measuring carbamazepine
and its metabolites in human milk. Human milk and other dairy products have special
difficulties not encountered in plasma or serum. In addition to protein matrix components,
milk, like other food-type matrices, has a high lipid composition. Lipids may gain access
to the RAM’s inner layers and hinder the effective retention of the tested small-molecule
analytes. Surface-modified RAM can overcome this problem. To ensure that the human
milk protein content was efficiently removed by the RAM-BSA trap column, an in-depth
matrix impact evaluation was investigated [128]. Aliquots of 500 µL of milk sample were
diluted with water to a final volume of 2 mL and then injected through the trap column at
a flow rate of 1.0 mL/min. To quantify protein concentration, Bradford’s technique was
applied to the collected eluent fractions. It was revealed that protein removal of 92% could
be accomplished in 3 min. Moreover, protein standards of β-casein and α-lactalbumin,
which are the principal protein components of human milk, were introduced into milk
samples to evaluate the RAM-BSA column’s molecular-mass cutoff. The tested protein
standards were eluted from the trap column in 1.5 min. RAM-BSA extraction efficiency
ranged from 78.2 to 105.3% for β-casein and α-lactalbumin, respectively. Protein coating
RAM phases are also made up of a protein-like component, such as acid glycoprotein
(AGP), which is covalently attached to the sorbents (RAM-AGP). As a result of this covalent
attachment, the protein network on the particles’ external hydrophilic surface renders RAM-
AGP compatible with proteinaceous samples that cannot fit through the tiny pores. Online
LC-MS was developed to determine free non-cholesterol sterols in human serum using
RAM-AGP [129]. A multidimensional HPLC method for the simultaneous determination
of sulfamethoxazole and trimethoprim in whole eggs samples with UV detection has been
described, using an RAM-BSA column in the first dimension and an analytical ODS column
in the second dimension [130].
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3.6. Restricted Access Media Molecularly Imprinted Polymers

The use of typical molecularly imprinted polymers (MIPs) for bio-fluid sample anal-
ysis is a problematic technique because of the presence of high concentration levels of
proteins, which can block selective binding sites, reduce adsorption capabilities, and affect
analytical validation. Modifications of typical MIPs have been developed to provide them
with the capacity to eliminate macromolecules. Surface coatings based on hydrophilic
groups and/or proteins have been the key methods in the development of restricted access
MIPs (RAMIPs). Thus, RAMIP is another good sort of RAM that combines restricted
access with molecular recognition, similar to MIP [131]. The interior part of the porous
particles may be hydrophobic while having a hydrophilic surface and a relatively nar-
row pore size that prevents macromolecular compounds from entering the inner pores.
These properties are responsible for the retention and isolation of low-molecular-weight
molecules from complicated samples. Thus, RAMIPs have been successfully employed to
selectively extract and enrich small molecular analytes from untreated bio-fluid matrices
(e.g., plasma, serum, and milk) without the necessity of pre-deproteinization. An online
RAMIP coated with BSA (RAMIP-BSA) connected to an LC-MS system has been developed
for the simultaneous measurement of serum bile acids as well as their taurine and glycine
conjugates [132]. A restricted RAMIP coupled with an MS detector [133,134], where the
RAMIP column is directly connected to the detection system, has been developed for
measuring tricyclic antidepressants. Table 2 lists the LODs, LOQs, sample matrices, online
extraction and separation techniques as well as the detection systems used for the analysis
of various pharmaceutics.

Table 2. Applications of online SPEn approach coupled with different separation techniques for
measuring various drugs in various matrices.

Analyte Sample Matrix Separation
Technique

Detection
System LOD LOQ Ref.

- Terbinafine Serum HPLC UV-Vis 1 ng/mL 3.5 ng/mL [60]

- Guaiphenesin Serum HPLC UV-Vis 6.04 ng/mL 18.56 ng/mL [61]

- Hexestrol
- Diethylstilbestrol
- Estrone
- 17β-estradiol
- 17α-ethinylestradiol
- Estriol
- Testosterone
- Dihydrotestosterone
- Androstenedione
- Progesterone
- Norethindrone
- Levonorgestrel
- Pregnenolone

Wastewaters GC MS/MS

0.01 ng/L
0.10 ng/L
0.01 ng/L
0.01 ng/L
0.01 ng/L
0.01 ng/L
0.15 ng/L
0.15 ng/L
0.30 ng/L
0.05 ng/L
0.30 ng/L
0.05 ng/L
0.10 ng/L

0.04
0.04
0.04
0.04
0.04
0.04
0.50
0.50
1.00
0.18
1.01
0.18
0.35

[67]

- Geosmin
- 2-methylisoborneol Water GC MS/MS 2 ng/L

4.3 ng/L 10 ng/L [68]

- Lonazolac Plasma HPLC UV-Vis - 0.1 µg/mL [69]

- β-sitosterol Edible oil HPLC UV-Vis 6 µg/mL 20 µg/mL [71]

- Fluconazole Serum HPLC UV-Vis 50 ng/mL 180 ng/mL [95]

- Ambroxol Serum HPLC UV-Vis 2.60 ng/mL 8.00 ng/mL [96]

- Caffeine
- Theophylline
- Theobromine

Serum HPLC UV-Vis
22.2 ng/mL
24.1 ng/mL
21.7 ng/mL

72 ng/mL
79.5 ng/mL
71.8 ng/mL

[97]
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Table 2. Cont.

Analyte Sample Matrix Separation
Technique

Detection
System LOD LOQ Ref.

- Loratadine
- Terfenadine
- Desloratadine
- Fexofenadine

Serum HPLC UV-Vis

0.045 ng/mL
0.045 ng/mL
0.045 ng/mL
0.045 ng/mL

0.15 ng/mL
0.15 ng/mL
0.15 ng/mL
0.15 ng/mL

[98]

- Cholesterol Egg yolk HPLC UV-Vis - 20 µg/mL [100]

- Bupivacaine HPLC UV-Vis 24.85 ng/mL 85.36 ng/mL [101]

- 2,4-Dichlorophenol
- 2,4,5-Trichlorophenol
- Pentachlorophenol
- Bisphenol-A
- 4-Tert-butylphenol
- 4-Tert-butylbenzoic acid

Honey CE MS

23 ng/mL
9.5 ng/mL
5.3 ng/mL
7.5 ng/mL
31 ng/mL
7.5 ng/mL

50 ng/mL
50 ng/mL
50 ng/mL
50 ng/mL
50 ng/mL
50 ng/mL

[113]

- Rifampicin Plasma HPLC UV-Vis 0.2 µg/mL 0.2 µg/mL [115]

- Ciprofloxacin
- Enrofloxacin
- Gemifloxacin
- Moxifloxacin
- Norfloxacin
- Ofloxacin

Water UHPLC MS/MS

10.9 ng/mL
5.3 ng/mL

31.8 ng/mL
11.6 ng/mL
10.5 ng/mL
7.8 ng/mL

20 ng/mL
20 ng/mL

150 ng/mL
20 ng/mL
20 ng/mL
20 ng/mL

[117]

- Sulfamethoxazole
- Trimethoprim Bovine milk HPLC UV-Vis 15 ng/mL

25 ng/mL
25 ng/mL
50 ng/mL [123]

- Omeprazole Water HPLC UV-Vis 5 µg/mL 15 µg/mL [124]

- Omeprazole Plasma HPLC UV-Vis 0.0063 µg/mL 0.055 µg/mL [125]

- Amoxycillin Plasma HPLC UV-Vis 0.02 µg/mL 0.05 µg/mL [126]

- Lovastatin
- Rosuvastatin
- Simvastatin
- Pravastatin

Plasma HPLC UV-Vis -

125 ng/mL
125 ng/mL
125 ng/mL
500 ng/mL

[127]

- Carbamazepine
- Carbamazepine
10,11-epoxide

Milk HPLC MS/MS 20 ng/mL
40 ng/mL

25 ng/mL
50 ng/mL [128]

- Desmosterol
- Lanosterol
- Stigmasterol
- Campesterol
- Sitosterol

Serum HPLC MS/MS

5.0 ng/mL
0.2 ng/mL
7.5 ng/mL
7.5 ng/mL
13 ng/mL

17 ng/mL
10 ng/mL
25 ng/mL
25 ng/mL
43 ng/mL

[129]

- Sulfamethoxazole
- Trimethoprim Egg HPLC UV-Vis 25 ng/mL

40 ng/mL
80 ng/mL
80 ng/mL [130]

- Cholic acid
- Lithocholic acid
- Taurolithocholic acid
- Deoxycholic acid
- Glycocholic acid
- Ursodeoxycholic acid
- Taurodeoxycholic acid
- Hyodeoxycholic acid
- Glycodeoxycholic acid

Serum HPLC MS/MS

4.9 ng/mL
5.7 ng/mL
3.3 ng/mL
5.1 ng/mL
2.0 ng/mL
2.1 ng/mL
5.3 ng/mL
3.2 ng/mL
4.5 ng/mL

10 ng/mL
10 ng/mL
10 ng/mL
25 ng/mL
25 ng/mL
25 ng/mL
10 ng/mL
10 ng/mL
10 ng/mL

[132]
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3.7. N-Rich Twin-Column Continuous Chromatography

Isolation of product-related impurities prior to characterization is currently performed
utilizing inefficient and time-consuming procedures. The use of linear-scale RP or IEx chro-
matographic technique, either employing analytical LC or preparative systems coupled
to fraction collectors, is a standard strategy [135,136]. These techniques rely on the linear
range of the adsorption isotherm, achieving great resolution, minimizing components
overlapping, and yielding high purity outcomes. This, however, comes at the expense of a
limited injection volume per cycle. Thus, very low final target concentrations and longer
processing durations due to the necessity to pool target material from numerous chromato-
graphic runs were stated. Given the limitations of the conventional methods, we might
potentially alleviate bottlenecks by using the N-Rich process, a twin-column continuous
chromatography technology, to provide larger amounts of high-purity product-related
impurities in a short operation time [137–139]. This approach has already been employed
to successfully concentrate antibody isoforms and peptide impurities. Thus, continuous
chromatography was becoming more popular among industrial separation professionals
as a scalable manufacturing technology capable of minimizing bottlenecks in biopharma-
ceutical downstream processing applications such as capturing and polishing [140–143].
N-Rich is a relatively promising automated technique that enriches and purifies a desired
molecule from a complicated mixture utilizing two columns. Common resin materials
can be employed for N-Rich separations such as IEx, hydrophobic interaction (HIC), or
RP chromatography (e.g., ODS). N-Rich can be configured to target a single molecule or
a region of the chromatogram that contains multiple molecules. The first phase (startup)
starts by loading feed material into the first column and eluting it using a linear gradient.
During the second phase (enrichment), a section of the chromatogram containing a target
impurity is moved from the first column and re-adsorbed onto the second column using
in-line dilution. Any fraction not intended for recycling, including the primary products as
well as additional side impurities, can be dumped in waste or separately collected for other
purposes if worthwhile. Meanwhile, fresh feed is loaded onto the second column alongside
the recycled target. This procedure causes the target molecules to be enriched in compari-
son to the other molecules in the mixture. The process step is repeated cyclically between
the two columns, raising the concentration of the target impurities progressively. The third
phase (depletion) is a single switch with no fresh feed added. Before the final elution phase,
this step depletes non-target molecules while internally recycling the accumulated target
impurities. The depletion process significantly increases the final quality of impurities that
elute with the product peak. Finally, in phase four (final fractionation), the pre-concentrated
target molecule is eluted using a shallow gradient over two columns in series and then
recovered using fine fractionation. The N-Rich technique improves the resolution of en-
riched compounds and recovers pure target material at higher concentration levels than
batch methodology. Monoclonal antibodies are important biopharmaceutical medications
with a high commercial value [144]. Other monoclonal antibody heterogeneities, including
enzyme catalysis degradation and modification, could, however, be produced throughout
the production process [145]. Jing et al. developed an innovative twin-column contin-
uous chromatography method for isolating and enriching monoclonal antibody charge
variants [146]. When compared to typical analytical and preparative chromatography
techniques, Richard and Thomas found that the N-Rich approach performed better for
isolating Angiotensin II peptide contaminants [147].

4. Enhancement of Sensitivity through Chemical Modification

Chemical derivatization is known to be employed for various groups of analytes to
enhance their detectability as well as stability and improve chromatographic selectivity. The
derivatization reaction should be selected with the purpose of analysis and the intended
method of detection. Derivatizations are commonly used to increase the detectability of an-
alytes by introducing chromophores and fluorophores into weakly detectable compounds.
These choices are influenced by different processing variables, including the target com-
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pounds’ functional group(s), the complexity of the sample matrix, the detection technique,
and the quantity of resulting derivatives. Kinetic variables and derivatization reaction
mechanisms play important roles in selectivity and can influence statistical values such
as precision and accuracy [148]. The frequency of samples is also an important issue for
such modification [149]. Another point of view is the experimental framework in which the
derivatization is performed, considering that bio-analytical chromatographic-based meth-
ods generally have difficult tasks in the isolation and concentration of target analytes from
complex matrices. Thus, chemical modification of the target analytes depends on the matri-
ces’ removal or analytes extraction. Derivatization can take the form of simple reactions
between analytes and reagents, in which functional groups are substituted or condensed
using various reactants. Derivatization can also be conducted through complex routes
involving many functional groups, as a result of many successive reactions involving the
elimination of parts of small molecules and the formation of new moieties. By enhancing the
method’s selectivity, interference from components that chromatographic separation cannot
adequately separate can be avoided. Pre-column [150,151], post-column [152], online, and
offline settings can all be utilized for chemical modifications. Although the pre-column
derivatization approach is simple, it can alter the performances of some chromatographic
components. Furthermore, pre-column derivatization errors are more likely to occur since
the reactions take place in samples matrices. As a result, post-column derivatization is
frequently chosen. Post-column derivatization has been carried out online in segmented
flow reactors, packed bed reactors, and open tubular reactors [153]. The design and func-
tionality of these kinds of chemical reactors for chromatography have been addressed in
a variety of studies. The open tube reactor, which consists of a small tube through which
the effluent–reagent mixture passes, is the most popular. The most serious concern when
employing any type of post-column reactor is the additional peak broadening that happens
within the reactor itself. A well-designed post-column reactor should be implemented in
order to decrease the inevitable loss of sharpness due to the peak broadening.

To produce specific reaction products using a flow reactor, several conditions must
be fulfilled: (1) the detecting systems should not be hampered by solvents and chemicals;
(2) the reaction kinetics must be rather quick to avoid high peak broadening brought
on by large-capacity reactors; (3) the reaction yield should be high in order to achieve a
low detection limit; and (4) the reaction product should be stable over the course of the
experiment. Offline post-column chemical reactions are possible by fractionally collecting
the column eluates, applying derivatization agents, and quantifying the reaction products.

Although the primary goal of derivatization is to improve sensitivity, selectivity,
and detectability, greener derivatizations are receiving significant attention in analyti-
cal chemistry [154]. The reason for this concern is that the majority of regularly used
derivatizing reagents are corrosive, persistent, and poisonous. Furthermore, typical deriva-
tizations require unusually large amounts of derivatizing reagents and solvents and are
time-consuming. When converting analytes into highly detectable forms is becoming a
fundamental component of the analytical methodology, it is necessary to focus on the green
analytical chemistry (GAC) issue and conduct a series of experiments in accordance with
green chemistry and GAC [155] to provide the ideal environmental conditions for analyte
modification. However, derivatization is explicitly forbidden by GAC’s sixth principle.
In general, two strategies are critical for achieving the goals of greener derivatizations:
searching for and employing environmentally friendly derivatizing reagents, solvents,
reaction conditions, and energy sources and miniaturization as well as automation of the
analytical technique [156]. Because of the advancement of automated and/or miniaturized
technology, concerns about additional procedures and time requirements are not always to
be worried about [157]. As a result of this strategy, reagent waste is reduced, and so the
amount of waste generated is reduced. The use of microextraction methods in association
with derivatization effectively fulfills the requirements. Other strategies to conduct deriva-
tization processes in a “green” manner involve the use of environmentally friendly solvents
and reagents, and the use of eco-friendly variables such as microwaves, UV radiation,
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and ultrasound. It is obvious that using analytical derivatizations correctly can result in
improved sensitivity and selectivity. Certain instrumental setups are another option for
greening the derivatization technique. On-column or in-capillary derivatization [158–161]
using LC and CE, respectively, are of utmost significance in such cases. In these circum-
stances, the derivatization process occurs during the separation step, making them superior
to the most common offline derivatization modes because sample and derivatizing agent
consumption is low, and full automation occurs without the requirement of additional
equipment [162]. Furthermore, in-port derivatization (introduction of sample and deriva-
tization agent in the injection port), which is primarily used in GC, allows for simplified
sample preparation. It also reduces solvent consumption as well as avoids hazardous
circumstances and waste generation [163].

4.1. Solid-Phase Analytical Derivatization

High sensitivity, high sample frequency, ease of use, and automation are all criteria for
modern analytical procedures, in addition to statistical characteristics such as accuracy and
precision. Although some of these needs are met by instruments, sample preparation prior
to instrumental analysis is still a work in progress. Despite the additional reagent stages,
analytical derivatization (AD) of the analyte during sample preparation can significantly
increase chromatographic selectivity for good separation as well as sensitivity for measure-
ment of analytes at low concentration levels [164]. Even with the most modern detector,
MS, AD boosts sensitivity by one to three orders of magnitude [165]. This technique’s
application is limited since it requires an additional step in sample preparation that might
be time consuming. Despite this disadvantage, the benefits of AD prompted efforts to
simplify and minimize the solvent usage and automate the analytical technique [166,167].

SPEs are commonly used sample preparation protocols for determining analytes from
bio-matrices using chromatographic techniques; however, they can be used as solid-phase
analytical derivatization (SPAD) tools to produce highly detectable species. Extraction and
derivatization are combined into a single process by the SPAD approach simplifying sample
preparation. The solid phase retains both reagents and derivatives and frequently allows for
the simple separation of excess reagent or selective elution of the target products. SPAD is a
promising technique for determining a wide range of pharmaceuticals in complex bio-fluid
and environmental samples. SPAD has grown in popularity due to its minimal organic
solvent usage, simplicity, low price, and high efficiency [168]. As time becomes more
crucial in sample preparation procedures, more emphasis on automation can be expected
in SPAD method development. More SPAD variations are expected in the analytical
chemistry literature as a result of immerging derivatizing reagents. The previous attractive
characteristics will ensure SPAD’s importance as a technique for preparing samples in both
research and industrial settings. SPAD is also classified as a microextraction/derivatization
process and could achieve hydrophobicity modification [169]. Analytes are transformed
into their derivatization products on the surface of adsorbents or at the liquid–solid interface
using the SPAD approach.

Two recognized lung cancer biomarkers, hexanal and heptanal, have been analyzed in
human urine samples by HPLC-DAD using a combination of derivatization and bar adsorp-
tive microextraction for sample preparation [170]. 2,4-Dinitrophenylhydrazine (2,4-DNPH)
as a derivatization agent was adsorbed on the surface of the bar containing cork powder as
an SPAD for the determination of the tested aldehydes. Another approach for determining
hexanal and heptanal in human urine by HPLC-DAD utilizing 2,4-DNPH adsorbed onto
the surface of magnetite/silica/poly(methacrylic acid-co-ethylene glycol dimethacrylate)
has been reported [171]. The structures of the compounds arising from the SPAD approach
include diverse chromophores, fluorophores, and moieties for facilitating mass spectral
identification [172]. The reaction products are removed from the surface thermally or by
a solvent after derivatization for column chromatography. The entire technique is typi-
cally automated, leading to a high-throughput capacity for bioanalysis. Derivatization
of urine samples using 2,4-DNPH impregnated on a LiChrolut EN SPE column yielded
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highly detected low-molecular-weight aldehydes for analysis by LC-MS/MS [173]. Xia
et al. designed a one-step membrane-protected micro-SPE and derivatization approach for
selectively determining trace aliphatic aldehydes from complex cosmetic and food samples
using HPLC and DAD [174].

4.2. Solid-Phase Permethylation

The solid-phase permethylation (SPPM) technique has been widely employed for car-
bohydrate derivatization, particularly with complicated oligosaccharides and glycolipids.
SPPM produces extreme permethylation of low amounts of glycans produced from glyco-
proteins found in biological materials to improve MS analysis at very low concentration
levels [175–178]. This permethylation approach has also been used to characterize sulfated
glycan structures [179,180]. Ginseng oligosaccharide extracts have been permethylated us-
ing an SPPM technique before being analyzed using LC-MS [181]. The permethylation step
was carried out by injecting 400 µL of sample solution into the prepared SPPM column and
then washing with 800 µL of dimethyl sulfoxide and collecting the eluent in a centrifuge
tube. The reaction was then stopped using a 5% acetic acid solution. Dichloromethane was
used four times to extract permethylated oligosaccharides followed by evaporation. For
MS measurement, residues were reconstituted in acetonitrile/water (1:1). The potential of
miniaturizing SPPM for permethylated N-glycans obtained from model glycoproteins and
human blood serum has been investigated with the aim of minimizing sample loss and
yielding more sensitive results through MS study. Permethylated N-glycans were purified
online utilizing the RP-C18 trapping column prior to LC-MS/MS analysis. The feasibility
of this arrangement and its ability to be used for glycomics can allow for high-throughput
analysis [182].

4.3. Packed Oxidant Reactors

As part of pharmaceutical quality control, determining low drug levels is a crucial
concern. The development of flow injection analysis (FIA) methods for such analysis is
possible with the proper pre-concentration strategy and using appropriate detection sys-
tems. The primary drawback of all continuous FIA systems [183–187] is their high reagent
consumption, which occurs even when there is no sample in the instrument. Figure 3 illus-
trates three channels (1, 2, and 3) of the FIA system operating continuously for measuring
MTX in dosage forms. As a result, innovative solutions have been developed to reduce
reagent consumption and waste production while maintaining analytical performance.
Solid-phase reagents (SPRs) can be effectively exploited for chemical derivatization in flow
analysis [188]. The strategy relies on the reproducible experimental conditions, which
ensure a reproducible analyte interaction with the SPRs. Advantages include a low reagent
consumption (only the amount needed for the reaction is consumed), avoidance of dilution
effects, and manifold simplification. Increased reaction rate due to SPR excess, the ability
to sparingly use soluble reagents, and the existence of additional reactors in the form of
solid particles are all advantages.

While it is beneficial to react each sample with a fresh amount of reagent, this tech-
nique is not always practical if the reagent is only obtainable in solid form. In this situation,
the reagent’s solid particles should be packed in a small column through which the sample
zone passes, transported by a stream of suitable carrier. Particles are employed instead of
soluble reagents because they are more convenient and affordable, or because the reagents
are not available in soluble forms, such as metallic zinc reductant [189]. For the purpose
of determining nitrazepam in pharmaceutical tablets, a simple and fast reverse FIA sys-
tem has been proposed [190]. This system included a solid-phase reactor comprising
PbO2 and spectrophotometric detection. Phloroglucinol reagent was subjected to oxi-
dation using PbO2 immobilized in a polymeric matrix as part of the procedure, which
was then paired with reduced nitrazepam in aqueous medium. At 530 nm wavelength,
measurement was conducted for the resulting pink product. Green analytical techniques
for measuring folic acid (FA) and MTX have been developed and validated using online
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derivatization in conjunction with column switching and an RP-C18 short column for
SPEn [191,192]. The procedures employed a packed reactor containing cerium (IV) trihy-
droxyhydroperoxide (CTH) to oxidatively break down FA and MTX into highly fluorescent
2-amino-4-hydroxypteridine-6-carboxylic acid and 2,4-diaminopterdine-6-carboxylic acid,
respectively (Schemes 1 and 2), and then enriching the reaction products on short RP-C18
columns. A 400 µL aliquot of FA and MTX samples was loaded into the injection valve
and injected into a phosphate buffer. FA and MTX moving zones flowed through the
CTH-packed reactor at a rate of 0.25 mL/min (pump I). The oxidative cleavage of FA and
MTX occurs during the movement of the drugs-containing phosphate buffer through the
CTH column. The fluorescent products were pre-concentrated by flowing from the packed
oxidant reactor to the short RP-C18 column head. The valve was switched to position B
after 4 min (Figure 4). At this position, a green mobile phase with a 5:95 (v/v) ratio of
ethanol and phosphate buffer could pass through the short RP-C18 column, where the
fluorescent products of FA and MTX were eluted in a back-flush mode to the fluorescence
detection system. The flow rate was kept constant at 1 mL/min, and the fluorescence
intensity of the eluting compounds was measured at 463 and 367 nm for emission and
excitation, respectively. The valve was switched to position A five minutes after injection.
This packed reactor approach avoids costly method by allowing the sample zones to easily
move into the CTH reactor while the remainder of the system is flooded with phosphate
buffer. The CTH-packed reactor also offers improved mixing conditions and manifold
simplifications. The CTH solid reactor was chosen for the derivatization of FA and MTX
in accordance with previous studies of MTX since this reagent demonstrated good repro-
ducibility [193]. Although the conventional FIA technique is promising for measuring FA
in pharmaceutical formulations, the implementation of online SPEn with an FIA manifold
offers enhanced sensitivity.
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Emara et al. also used the CTH-packed reactor for pre-column oxidation combined by
column switching with an RP-C18 analytical column for sample enrichment and separation
to analyze MTX and FA [194,195]. In these studies, the automation was expanded by
incorporating online oxidation and pre-concentration steps before the HPLC separation of
the tested analytes using the column-switching technique (Figure 5). The separations were
conducted at room temperature with an environmentally friendly mobile phase composed
of ethanol and phosphate buffer in a 10:90 (v/v) ratio for MTX and a 90:10 (v/v) mixture of
phosphate buffer and acetonitrile for FA.
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Other studies have been attempted for the quantitative analysis of MTX in bio-fluid
samples using online pre-column derivatization coupled with the LC technique [196]. CTH
was used as a packed oxidant in this study. To achieve minimal background fluorescence
signals, as many endogenous plasma constituents as possible must be removed. As a
result, employing a precipitating agent such as acetone to separate proteins from plasma
samples was essential. This approach allowed for the HPLC measurement of plasma MTX
in 14 minutes. According to the obtained results, online oxidative cleavage with flores-
cence detection was six to eight times more sensitive than UV detection. MTX in human
plasma was also measured by HPLC with the integration of online pre-column derivatiza-
tion and automated SPE utilizing packed oxidant and PC-RP-pre-columns, respectively
(Figure 6) [197]. The goal of this work was to reduce analytical errors by developing a
direct injection chromatographic technique for derivatization, extraction, separation, and
quantification of the tested analyte in plasma. Two solvent-delivery pumps comprised the
system manifold. A manual injector was used, as well as two switching valves. The time
programs for flow direction switching and isocratic elution were controlled by a sequence
programmer. This system was equipped with a CTH column for oxidative cleavage of MTX
into highly fluorescent 2,4-diaminopteridine-6-carboxaldehyde and the corresponding
carboxylic acid derivatives, as well as a short PC-RP-C18 pre-column for deproteinization
and trapping of the fluorescence derivatives. The trapped compounds were desorbed
from the pre-column, and isocratic was eluted onto the end-capped RP-C18 analytical
column for further separation and quantification. Table 3 lists some analytical techniques
with UV and FL detection systems for measuring MTX in various matrices in addition
to their characteristic LODs as well as LOQs [177,193,194,196–208]. All HPLC procedures
that utilized the FL detector showed lower LODs and LOQs than the more frequently
employed UV-Vis system. The best results were obtained by combining online pre-column
derivatization and automated SPE for monitoring MTX in bio-fluid samples using the
HPLC-FL method [197]. Furthermore, the packed reactor technique with SPEn [194] outper-
formed the conventional HPLC method [201] in terms of sensitivity for measuring MTX in
dosage forms. Because the derivatization process is automated, internal standards, which
were significantly required by conventional HPLC methods, are no longer required in the
packed reactor technique [194,196,197]. Although two HPLC-FL methods for measuring
MTX in blood [204] and plasma [206] demonstrated higher sensitivity, sample preparation
including many steps prior to analysis, such as protein precipitation, evaporation, and
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reconstitution in the mobile phase, could affect system performance and introduce errors,
in addition to the use of more hazardous organic solvents. Thus, the packed reactor strategy
for analyte derivatization in conjunction with LC separation proved advantageous for MTX
analysis since it allowed for the measurement of low concentration levels of analyte in
bio-fluid samples and pharmaceutical formulations.
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Separations 2023, 10, 351 21 of 31

Separations 2023, 10, x FOR PEER REVIEW  21  of  32 
 

 

phase composed of ethanol and phosphate buffer in a 10:90 (v/v) ratio for MTX and a 90:10 

(v/v) mixture of phosphate buffer and acetonitrile for FA. 

 

Figure 5. Schematic diagram of online pre-column oxidation combined with column switching with 

an RP-C18 analytical column for sample enrichment and separation by HPLC to analyze MTX in 

pharmaceutical formulations. 

Other studies have been attempted for the quantitative analysis of MTX in bio-fluid 

samples using online pre-column derivatization  coupled with  the LC  technique  [196]. 

CTH was used as a packed oxidant in this study. To achieve minimal background fluores-

cence signals, as many endogenous plasma constituents as possible must be removed. As 

a result, employing a precipitating agent such as acetone to separate proteins from plasma 

samples was essential. This approach allowed for the HPLC measurement of plasma MTX 

in  14 minutes. According  to  the  obtained  results,  online  oxidative  cleavage with  flo-

rescence detection was six to eight times more sensitive than UV detection. MTX in human 

plasma was also measured by HPLC with the integration of online pre-column derivati-

zation and automated SPE utilizing packed oxidant and PC-RP-pre-columns, respectively 

(Figure 6)  [197]. The goal of  this work was  to reduce analytical errors by developing a 

direct injection chromatographic technique for derivatization, extraction, separation, and 

quantification of the tested analyte in plasma. Two solvent-delivery pumps comprised the 

system manifold. A manual injector was used, as well as two switching valves. The time 

programs for flow direction switching and isocratic elution were controlled by a sequence 

programmer. This system was equipped with a CTH column  for oxidative cleavage of 

MTX into highly fluorescent 2,4-diaminopteridine-6-carboxaldehyde and the correspond-

ing carboxylic acid derivatives, as well as a short PC-RP-C18 pre-column for deprotein-

Figure 5. Schematic diagram of online pre-column oxidation combined with column switching with
an RP-C18 analytical column for sample enrichment and separation by HPLC to analyze MTX in
pharmaceutical formulations.

Separations 2023, 10, x FOR PEER REVIEW  22  of  32 
 

 

ization and trapping of the fluorescence derivatives. The trapped compounds were de-

sorbed from the pre-column, and isocratic was eluted onto the end-capped RP-C18 ana-

lytical column for further separation and quantification. Table 3 lists some analytical tech-

niques with UV and FL detection systems for measuring MTX in various matrices in ad-

dition to their characteristic LODs as well as LOQs [177,193,194,196–208]. All HPLC pro-

cedures that utilized the FL detector showed lower LODs and LOQs than the more fre-

quently employed UV-Vis system. The best results were obtained by combining online 

pre-column derivatization and automated SPE for monitoring MTX in bio-fluid samples 

using the HPLC-FL method [197]. Furthermore, the packed reactor technique with SPEn 

[194] outperformed the conventional HPLC method [201] in terms of sensitivity for meas-

uring MTX  in dosage  forms. Because  the derivatization process  is automated,  internal 

standards, which were  significantly  required  by  conventional HPLC methods,  are  no 

longer required  in  the packed reactor  technique  [194,196,197]. Although  two HPLC-FL 

methods for measuring MTX in blood [204] and plasma [206] demonstrated higher sensi-

tivity, sample preparation including many steps prior to analysis, such as protein precip-

itation, evaporation, and reconstitution in the mobile phase, could affect system perfor-

mance and introduce errors, in addition to the use of more hazardous organic solvents. 

Thus, the packed reactor strategy for analyte derivatization in conjunction with LC sepa-

ration proved advantageous for MTX analysis since it allowed for the measurement of low 

concentration levels of analyte in bio-fluid samples and pharmaceutical formulations. 

 

Figure 6. Schematic diagram of the online pre-column derivatization and automated SPE utilizing 

packed oxidant and PC-RP-pre-column for the analysis of MTX in plasma. 

   

Figure 6. Schematic diagram of the online pre-column derivatization and automated SPE utilizing
packed oxidant and PC-RP-pre-column for the analysis of MTX in plasma.



Separations 2023, 10, 351 22 of 31

Table 3. Comparison of some analytical methods for measuring MTX in various matrices using FL
and UV-Vis detection systems, as well as their characteristic LODs and LOQs.

Matrix Extraction
Technique

Analytical
Technique

Derivatization
Reagent

Derivatization
Technique

Detection
System LOD LOQ Ref.

Dosage
forms - FIA Potassium

permanganate Online FL 1.20 ng/mL 4.0 ng/mL [177]

Dosage
forms - FIA CTH Online FL 1.30 ng/mL 4.50 ng/mL [193]

Dosage
forms - HPLC CTH Online FL 0.06 ng/mL 0.20 ng/mL [194]

Plasma Protein
precipitation HPLC CTH Online FL 2.78 ng/mL 9.56 ng/mL [196]

Plasma Online SPE HPLC CTH Online FL 2.6 ng/mL 8 ng/mL [197]

Urine Offline SPE HPLC
Carbodiimide
coupler and 2-

nitrophenylhydrazine
Offline UV-DAD 30 ng/mL 80 ng/mL [198]

Wastewater Offline SPE HPLC - - FL 0.9 µg/mL 3.0 µg/mL [199]

Serum Protein
precipitation HPLC - - UV-Vis 6 ng/mL 20 ng/mL [200]

Dosage
forms HPLC - - UV-Vis 0.6 µg/mL 0.8 µg/mL [201]

Standard - UPLC - - UV-Vis 3.3 ng/mL 10.9 ng/mL [202]
Standard - HPLC - - UV-Vis 0.77 µg/mL 1.03 µg/mL [203]

Blood Protein
precipitation HPLC Electrochemical

oxidation Online FL 1.2 ng/mL 2.6 ng/mL [204]

Urine - HPLC Potassium
permanganate Offline FL 10.6 ng/mL 12 ng/mL [205]

Plasma Protein
precipitation HPLC Electrochemical

oxidation Online FL - 3 ng/mL [206]

Plasma Protein
precipitation HPLC Photochemical

reaction Offline FL - 10 ng/mL [207]

Plasma - Fluorimetry Potassium
permanganate Offline FL 0.17 µM 2.0 µM [208]

5. Conclusions

In this review, we have summarized the development of sample enrichment techniques
prior to separation-based analytical methods and attempted to provide a comprehensive
overview of two strategies: large-volume injection and analyte derivatization. Online
SPE/SPEn approaches are gaining huge interest because they integrate several sample
preparation steps into a single step, demonstrating rapid, simple, solvent-saving, and
sensitive separation techniques. Additionally, the use of PC-RP-pre-columns, especially in
the online SPE technology, can allow rapid investigation of optimal extraction conditions in
a small number of analyses, resulting in quick, solvent-saving, and hence environmentally
friendly quantification procedures. The versatility and capability of the online separation-
based analytical techniques using powerful detection systems such as FL and MS are also
key benefits.

Because of the benefits it gives for improving sensitivity and selectivity, derivatization
is still frequently utilized in bio-chromatographic analysis. Derivatization is not always de-
sired; however, it is usually required to overcome the problem for measuring target analytes
at low concentration levels from bio-matrices. Although derivatization complicates the
analytical technique by adding more steps to the sample preparation process, it is obvious
that employing analytical derivatization correctly results in improved sensitivity and selec-
tivity. As GAC has become a popular concept nowadays, it requires analytical chemists to
develop techniques and tools, particularly those with a high degree of automation, that
take advantage of increased sensitivity and specificity while reducing or eliminating the
frequent downsides of derivatization. Due to advances in automated and/or miniaturized
packed reagent technology, there is no longer a need to worry about additional procedures
and time requirements. Thus, miniaturization and automation are two important factors
to consider while designing a “green” procedure that employs packed reactor derivati-
zation for analysis. As a result of this approach, reagent waste is reduced, lowering the
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amount of waste generated. Many applications focusing on combined techniques of online
derivatization and online enrichment have also emerged to significantly improve sensitivity
in HPLC.

6. Challenges and Perspectives

The primary goal and challenge of the separation-based analytical techniques is to
maximize sensitivity while minimizing analysis times. When analyzing large numbers of
samples or when sample measurement demands the employment of multiple techniques
and procedures, boosting analysis speed is also crucial. The second is the cleanliness after
preparing the complex sample matrices. For SPE of the matrix’s interferences and SPEn
of analytes as well as measurement, highly selective extraction supplies and procedures
are thus required. The third consideration is the importance of environmentally friendly
strategies, which necessitate reducing or eliminating the usage of organic solvents. More
SPE tools must be designed to meet the requirement of environmental friendliness and
solvent-free SPE/SPEn techniques. Hyphenation technology, such as HPLC-FIA, represents
a promising future route towards integrated and robust approaches for quick analysis.
Deep advancements in such hyphenation techniques are undoubtedly required to boost
sensitivity and selectivity in many different areas of pharmaceutical analyses.
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