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Abstract: Satureja calamintha nepeta (S. calamintha) has a history of successful use in the treatment of
bacterial and fungal diseases. The present study was designed to investigate the chemical composition
and antioxidant and antimicrobial activities of essential oils extracted from wild S. calamintha (EOSS)
and domesticated S. calamintha (EOSD) for comparison purposes. Hydrodistillation was used to
extract the essential oils (EOs), while GC/MS was used for chemical analysis. Antioxidant activity was
studied using DPPH and FRAP assays. Antifungal activity was performed against Candida albicans,
Aspergillus niger, Aspergillus flavus, and Fusarium oxysporum), while antibacterial activity was tested
against clinically resistant bacteria, namely Staphylococcus aureus, Escherichia coli, Bacillus subtilis, and
Proteus mirabilis. By using ab=n in silico approach, the antioxidant and antimicrobial activities of the
main compounds of EOSS and EOSD were also investigated. The yields obtained of EOSS and EOSD
were 2.80% and 1.95%, respectively, with a dominance of eucalyptol, pulegone and rotundifolone.
Concerning the antioxidant power, the IC50 values recorded by the use of the DPPH assay were
in the range of 23.03 ± 4.30 and 24.09 ± 4.38 µg/mL for EOSS and EOSD, respectively, while by
using the FRAP assay, the EC50 values were in the range of 55.38 ± 2.16 and 60.72 ± 7.71 µg/mL for
EOSS and EOSD, respectively. Importantly, both essential oils of EOSS and EOSD exhibited good
antibacterial activity against all studied bacteria; notably, the inhibition zone ranged from 14 ± 0.00 to
48.67 ± 1.15 mm and the MICs ranged from 0.37 ± 0.00 to 5.96 ± 0.00 µg/mL. Similarly, the studied
EOs showed important antifungal activities compared to all the studied fungi, wherein the inhibition
percentage ranged from 47.33 ± 1.15 to 89.18 ± 0.75%, while the MICs ranged from 0.18 ± 0.00 to
2.98 ± 0.00 µg/mL. The molecular docking results showed that piperitenone and pulegone strongly
inhibited human acetylcholinesterase, whereas (+)-Isomenthone and piperitenone strongly inhibited
S. aureus nucleoside diphosphate kinase, and E. coli beta-ketoacyl-[acyl carrier protein] synthase,
respectively. The outcome of this article suggests that EOs of S. calamintha can be developed as
alternative agents to manage drug-resistant phenomena and free radical issues.
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1. Introduction

For a long time, aromatic plants have occupied a very important place in the daily
life of mankind; they are considered a real source of bioactive compounds, and they are
used in the field of agrifood, cosmetics, pharmaceuticals, and perfumery. Among the
most important plant families used for therapeutic and food purposes, Lamiaceae can
be noted, which possesses about 6900 species and 233 genera, including Satureja [1]. The
genus Satureja is distributed mainly around the Mediterranean basin, Asia, and boreal
America [2]. S. calamintha is extensively dispersed over the Mediterranean, Asia, and
American regions [2]. It is perennial, pubescent, aromatic, and 40–80 cm high. It has flexible
and hairy stems that carry opposite and slightly serrated leaves attached to a medium
petiole [2]. Native to Europe and the Mediterranean Basin [3], several ailments, including
motion sickness, gastrointestinal distress, viral illness, and diarrhea, have long been treated
using the genus Satureja [4]. S. calamintha. has also been traditionally used in the treatment
of various diseases such as indigestion, nausea, diarrhea, cramps, infectious diseases,
and muscle pain [4]. Satureja extracts have been reported to possess various therapeutic
effects. In addition, this plant possesses antiseptic, antioxidant, antibacterial, antifungal,
antidiarrheal, anti-inflammatory, and antispasmodic properties [5]. S. calamintha is very
popular in Morocco and Algeria, where it is used as an odoriferous agent in perfumes and
as a powerful disinfectant [6].

The literature has reported the chemical composition of wild S. calamintha in Morocco
and Algeria [7,8]. These studies concluded that the chemical composition of its essential oil
(EO) varies considerably according to the area of collection [7,9,10]

Indeed, several studies have revealed that medicinal and aromatic products have
pharmacological properties, including antimicrobial [11,12] and antioxidant properties [13],
and have shown that the essential oil of S. calamintha has an antimicrobial and antioxidant
effect [7,10,14]. The excessive use of wild species by the population leads to a decrease in
the abundance of S. calamintha nepeta. Notably, the harvest of medicinal plants during
flowering and before the seeds germinate leads to a decrease in the regeneration of these
plants [15]. Therefore, the process of domestication may serve to protect the plant from
extinction. One of the most effective ways to prevent the extinction of useful plants is to
cultivate them as houseplants [8,16]. However, domestication has the potential to alter the
chemical composition of plants, and as a result, their biological processes may be altered as
well. Thus, understanding the effect of domestication is necessary to successfully cultivate
such therapeutic species [17].

The present study was designed to Investigate the chemical composition and antiox-
idant and antimicrobial activities of the essential oils extracted from wild S. calamintha
(EOSS) and domesticated S. calamintha (EOSD. Notably, to the best of our knowledge, this is
the first study comparing the chemical composition and the antimicrobial and antioxidant
activities of wild and domesticated S. calamintha EOs.

2. Materials and Methods
2.1. Plant Material

In this work, the aerial parts (at flowering stage) and seeds (at post-flowering stage) of
wild S. calamintha nepta were collected in August in the northern region of Morocco, namely
Bouchfaa, in the province of Taza (Bouchfaa 34◦06′10.2′ ′ N 4◦17′15.4′ ′ W), (Figure 1).

2.2. Seed Germination

To perform germination, the seeds of S. calamintha nepta were collected from the wild
plant at the vegetative stage. The collected seeds were not treated and kept in plastic bags
until use. Next, seeds were isolated and sorted manually before being sown in trays and
placed in a greenhouse at ambient temperature. Each tray was seeded with 75 seeds with
5 seeds per hole. Humidity was maintained relatively high by watering the trays every
day. The cumulative percentage of germination was calculated every day for a month
to track the development of the germination. After being germinated, the seeds were
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transferred into a greenhouse. The ability of the regenerated plants to recover in their
natural habitat was evaluated by transplanting them into the field up to the eight-leaf stage.
Before being placed at the herbarium of the University of Fez, Morocco, the specimen
underwent botanical identification by a botanist. Prior to extraction, the leaves of the
studied plant were air-dried for ten days in the shade at room temperature.
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2.3. Extraction of Essential Oils

The S. calamintha (wild and cultivated varieties) was collected in the Taza region,
Morocco, in 2019 before being identified by the botanist Professor Amina Bari under the
voucher specimen (T/Bou.Sc.2019), which has been deposited in the herbarium of the
Faculty of Sciences Dhar El-Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco.
Next, in a round-bottomed flask, 200 g of finely cut aerial parts was soaked in 750 mL of
distilled water before being extracted using hydro-dilatation for 4 h. The resulting EOs
were stored at 4 ◦C until further use. The aerial parts of the studied plant were shade-dried.
Next, in a round-bottomed flask, 200 g of finely cut aerial parts was soaked in 750 mL of
distilled water prior to extraction by using hydro-dilation for 2 h. The EOs obtained were
stored at 4 ◦C until eventual use.

2.4. GC–MS Analysis of Essential Oils

The identification of the different chemical compounds contained in the essential oils
was performed using gas chromatography–mass spectrometry (Manufacturer: Agilent
Technologies, Santa Clara, CA, USA). Briefly, the separation of individual compounds
was conducted with the use of a GC Column HP-5MS at 30 m, 0.250 mm and 0.250 µm.
Helium was employed as a carrier at 0.9 mL/s. The oven temperature was raised from
60 to 300 ◦C/min for 20 min. The injection temperature was 250 ◦C and the temperature
of the interface was 260 ◦C. The identification of each separate chemical compound was
carried out on the basis of its mass spectra compared to those in the NIST database [18].
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2.5. Antioxydant Activity
2.5.1. DPPH Test

Analysis of the free radical scavenging activity of DPPH was performed according
to the protocol described by Wang et al. [19], with small modifications. Briefly, in test
tubes, 1.5 mL of a solution of DPPH solubilized in methanol was added to 0.2 mL of each
concentration of the EOs samples (0.1 to 2 mg/mL). The obtained mixture was vigorously
shaken prior to incubation in the darkness for 30 min at ambient temperature before the
absorbance was measured at 517 nm. The percentage % of inhibition was calculated using
the following formula:

%Antioxidant activity =
A control−A sample

A control
× 100 (1)

where “A control” is the absorbance of the control and “OD sample” is the absorbance
of the test. Notably, quercetin was used as a positive control and IC50 was calculated by
plotting the percent inhibition versus oil concentration.

2.5.2. FRAP Test

The reducing power test was performed as described by Moattar [20], with some
modifications. In brief, 2.5 mL of the essential oil from each wild and domesticated
S. calamintha plant was mixed with 2.50 mL of phosphate buffer (pH 6.60) and 2.50 mL of
potassium ferricyanide (1%). After incubation at 50 ◦C for 20 min, 2.5 mL of 10% C2HCl3O2
was added to the medium prior to centrifugation for 10 min at 3000 rpm. Subsequently,
2.50 mL of the obtained solution was combined with 2.5 mL of water and 0.50 mL of FeCl3
(0.1%). The quercetin was used as a positive control and the IC50 was determined by
plotting the absorbance against the corresponding sample concentration.

2.6. Antimicrobial Activity of Essential Oils of S. calamintha
2.6.1. Disk Diffusion Test

The bacterial strains used in the experiment, including Staphylococcus aureus ATCC-
6633, Escherichia coli K-12, Bacillus subtilis DSM-6333, and Proteus mirabilis ATCC-29906,
were inoculated onto Petri plates containing Mueller–Hinton agar media at a density
of 1–5 × 106 CFU/mL. Next, paper discs (6 mm in diameter) were soaked in 20 µL of
EOs of wild and domesticated S. calamintha before being placed on the inoculated dishes.
Afterwards, all bacterial stains were incubated at 37 ◦C for 24 h prior to determining the
inhibition zone diameters.

The fungi used in the experiment, including A. niger, A. flavus, and F. oxysporum,
were incubated with C. albicans and were inoculated onto Petri plates containing Potato
Dextrose Agar (PDA) media. Next, paper discs (6 mm in diameter) were soaked with
20 µL of EOs of wild and domesticated S. calamintha before being placed on the inoculated
dishes. Afterwards A. niger, A. flavus, and F. oxysporum were incubated at 30 ◦C, while
C. albicans was incubated at 37 ◦C for seven days prior to determining the inhibition zone
diameters [21,22].

2.6.2. Determination of the Minimum Inhibitory Concentration (MIC)

The determination of the minimum inhibitory concentration of wild and domesticated
S. calamintha EOs against the four bacterial and four fungal strains was performed using
the microdilution method, as described by Sarker et al. [23]. Briefly, a micro-dilution was
performed by diluting the sample by a factor of 2 in each well, with the exception of the
last well, which acted as the positive control for growth. After 24 h of incubation for
the bacteria, 48 h for C. albicans and 7 days for A. niger, A. flavus and F. oxysporium were
incubated at 37 ◦C and 30 ◦C, respectively. The MIC was determined by applying the
colorimetric method (TTC 0.2% (w/v)) [24,25]
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2.7. In Silico Molecular Docking of Antioxidant and Antimicrobial Activities of EO of Wild and
Domesticated S. calamintha

In this molecular docking study, the inhibition of human acetylcholinesterase (AChE)
was chosen to assess the antioxidant activity [26]; meanwhile, S. aureus nucleoside diphos-
phate kinase and E. coli beta-ketoacyl-[acyl carrier protein] synthase were chosen to examine
the antibacterial activity [27,28].

The primary chemicals found in the essential oils of S. calamintha, both wild and
domesticated, were acquired in SDF format from the PubChem database. They were
then produced using the OPLS3 force field and using the LigPrep tool in the Schrödinger
Software Maestro 11.5 software. After ionization at pH values of 7.0 and 2.0, each ligand
can yield up to 32 stereoisomers. Using the PDB IDs 4EY7, 1FJ4, and 3Q8U, respectively,
the three-dimensional crystal structures of AChE, E. coli beta-ketoacyl-[acyl carrier protein]
synthase, and S. aureus nucleoside diphosphate kinase were retrieved from the protein
data bank in PDB format.

Schrödinger-Maestro v11.5’s Protein Preparation Wizard was used to create and polish
each structure. The OPLS3 force field was used to minimize the structure. Volumetric
spacing was accomplished using a receptor grid that was set to 20 × 20 × 20. In Glide of
Schrödinger-Maestro v 11.5 SP, flexible ligand docking was performed [29].

2.8. Statistical Analysis

All results obtained were presented as triplicate experiment means ± standard devia-
tion. The significant difference between means was examined with the use of analysis of
variances (two-way ANOVA). In addition, Tukey’s multiple range tests at p < 0.05 were
performed using GraphPad Prism 8.0.1.

3. Results and Discussion
3.1. Phytochemical Characterization of EOs

The yields of essential oil of the wild and domesticated S. calamintha obtained in the
present study were 2.80% and 1.95%, respectively. Other studies conducted in Morocco and
Algeria on the wild plant reported that the yields of the essential oils of S. calamintha were
0.082% and 1.3%, respectively [7,30]. The EOs of S. calamintha studied in the present work
showed chemical variability, identified via GC–MS (Figure 2 and Table 1). S. calamintha
EO contained 42 identified compounds, of which the major compounds were eucalyp-
tol (23.10%), pulegone (12.44%), rotundifolone (9.68%), spathulenol (6.52%), piperitone
oxide (5.37%), menthol (4.58%) and isomenthone (4.40%). Meanwhile, the domesticated
S. calamintha EO had 36 compounds, which were identified via GC–MS. The latter was also
found to be rich in eucalyptol (22.23%), pulegone (12%), rotundifolone (10.49%), spathu-
lenol (7.59%) and menthol (6.04%). The two EOs shared almost similar compounds, with
a slight difference in concentrations (Table 1). This difference may be related to several
environmental factors, such as climate, soil, rain and exposure. Studies conducted in Mo-
rocco reported that EOs from many S. calaminta nepta samples mainly comprised borneol
(34.520%), α-campholenic aldehyde (14.260%), cedren-13-ol (6.450%) and manoyloxide
(3.780%) [30]. Meanwhile, other works mentioned that pulegone (39.5%), neo-menthol
(33%) and isomenthone (19.6%) were dominant in the EOs of S. calamintha from Algeria [9].
Rossi et al. and Couladis also recorded that pulegone (49–41%) and menthone (21.5–32%)
dominate in the EOs of S. calamintha from Corsica and Greece, respectively [23,24].

Table 1. Phytochemicals contained in the wild and domesticated S. calamintha.

Peak Compounds
RI EOSS EOSD

CT LT R.T Area (%) R.T Area (%)

1 α-Pinene 939 939 7.885 1.21 7.894 0.90

2 Sabinene 970 975 9.020 0.49 9.025 0.39
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Table 1. Cont.

Peak Compounds
RI EOSS EOSD

CT LT R.T Area (%) R.T Area (%)

3 β-Pinene 979 979 9.176 2.35 9.181 1.57

4 o-Cymene 1023 1026 - - 10.563 0.31

5 Limonene 1026 1029 10.712 3.39 10.728 1.41

6 Eucalyptol 1030 1031 10.799 22.23 10.824 23.10

7 Linalool 1096 1096 - - 12.798 0.25

8 (+)-Isomenthone 1163 1162 - - 14.513 4.40

9 Isomintlactone 2422 2422 22.348 0.61 - -

10 Mintlactone 1310 1314 23.736 2.37 - -

11 Menthol 1171 1171 14.921 6.04 14.940 3.52

12 Borneol 1165 1169 14.995 2.63 15.010 1.76

13 Trans-Isopulegone 1590 1596 15.074 1.37 15.082 1.76

14 Terpinen-4-Ol 1172 1177 15.236 0.35 15.245 0.40

15 Carvone oxide 1260 1263 16.295 2.14 16.297 2.20

16 Exo-2-Hydroxycineole 991 991 - - 16.585 0.26

17 Pulegone 1237 1237 16.891 12.00 16.928 12.44

18 Piperitone Oxide 1255 1256 - - 17.340 5.37

12 4-Hydroxy-2,6,6-trimethyl-1-
cyclohexenecarboxylic acid 1699 1698 - - 17.521 0.71

20 Piperitenone 1362 1368 17.745 0.58 17.748 0.26

21 Isophytol acetate 2215 2218 - - 18.165 0.26

22 Sabina ketone 1154 1159 - - 18.250 0.32

23 Thymol 1290 1290 18.531 3.06 18.319 2.15

24 Carvacrol 1299 1299 18.295 2.51 18.560 2.03

25 2,6,6-Trimethylbicylo [3.1.1]hept-2-ene 942 945 - - 18.641 0.31

26 2-Oxabicyclo[2.2.2]octan-6-one,
1,3,3-trimethyl- 1031 1031 - - 18.712 0.29

27 γ-Diosphenol 1105 1107 - - 19.247 0.31

28 Piperitenone 1342 1343 19.653 3.18 19.669 2.16

29 Rotundifolone 1458 1459 20.236 10.49 20.288 9.68

30 2-Butylcyclopentanone 1128 1128 - - 20.350 0.22

31 Tetrahydroactinidiolide 1284 1288 - - 20.441 0.36

32 5-Hepten-3-yn-2-ol,6-methyl-5-(1-
methylethyl)- 1458 1460 - - 21.806 0.37

33 Menthofurolactone 1353 1353 19.890 2.40 19.916 2.98

34 4-(2-Methyl-cyclohex-1-enyl)-but-3-en-
2-one 786 786 - - 23.615 1.01

35 Mintlactone 1310 1314 24.518 1.35 24.531 0.76

36 2-(2-Methyl-propenyl)-cyclohexanone 1158 1158 - - 24.965 0.41

37 Peperinic acid 1380 1380 - - 25.216 0.37
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Table 1. Cont.

Peak Compounds
RI EOSS EOSD

CT LT R.T Area (%) R.T Area (%)

38 Spathulenol 1577 1578 25.963 7.59 25.994 5.52

39 Caryophyllene Epoxide 1466 1466 26.145 1.50 26.162 1.27

40 2-Pentanone,4-hydroxy-4-methyl 847 847 5.312 0.35 - -

41 l-Menthone 1160 1162 14.507 2.26 - -

42 Menthofuran 1164 1164 14.742 0.47 - -

43 (1S)-1,3,3-trimethylnorbornan-2-ol 1160 1160 15.652 0.85 15.658 1.43

44 Isobornyl formate 1239 1239 16.651 0.31 - -

45 Carvone oxide 1263 1263 17.313 1.93 - -

46 7,11-Epoxymegastigma-5(6)-en-9-one 1312 1312 17.998 0.43 - -

47 Cyclohexasiloxane, dodecamethyl- 1350 1349 18.709 0.35 - -

48 1-Isopropenyl-4-methyl-1,2-
cyclohexanediol 1090 1090 19.790 0.42 - -

49 Indene-1,7(4H)-dione,3a,7a-dihydro-
5-methyl- 1590 1590 20.155 0.47 - -

50
3H-Naphtho[2,3-b]furan-2-one,4-hydroxy-

4a,5-dimethyl-3-methylene-
3a,4,4a,5,6,7,9,9a-octahydro-

2014 2016 22.041 0.30 - -

51 4-(2-Methyl-cyclohex-1-enyl)-but-3-en-
2-one 780 786 23.605 0.29 - -

52 2,4-Bis-(tert.-butyl-)-phenol 1513 1513 23.917 0.36 - -

53 Dinitropentamethylenetetramine 1874 1876 43.160 0.33 - -

54 3,6-Dimethyl-5,6,7,7a-
tetrahydrobenzofuran 1380 1380 - - 14.751 0.64

55 Isoborneol 1160 1160 - - 15.010 1.76

56 Mintlactone 1314 1314 - - 23.755 1.42

57 3,6-Dimethyl-4,5,6,7-
tetrahydrobenzofuran-2(3H)-one 1380 1380 - - 22.373 1.93

Monoterpene hydrocarbons 7.44 4.83

Oxygenated monoterpenes 79.17 82.74

Sesquiterpene hydrocarbons - -

Oxygenated sesquiterpenes 9.72 7.43

Others 2.63 3.97

Total identified (%) 98.96 99.97

EOSS: S. calamintha wild essential oil; EOSD: S. calamintha domesticated essential oil; “-”: absence; RI: retention
index; CT: calculate; LT: literature.

3.2. Antioxidant Activity

The antioxidant effect of the wild and domesticated S. calamintha EOs was eval-
uated using DPPH and FRAP assays. The results are given as IC50 values and per-
cent of inhibition (Table 2 and Figure 3). Figure 3A shows that all the three curves are
quite similar, including the fact that DPPH inhibition increases sharply at doses ranging
from 0 to 500 µg/mL, before stabilizing at higher concentrations. Analysis of the curves
(Figure 3A) shows that the efficiency of free radical neutralization for the wild and domestic
species is about the same, with the highest level of inhibition occurring at concentrations of
1000 µg/mL. The IC50 values indicate a very small difference between the wild and domes-
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tic S. calamintha (p < 0.05 vs. quercetin). The IC50 values are 23.03 ± 4.306, 24.096 ± 5.26,
and 17.733 ± 0.1788 µg/mL for the wild S. calamintha EO, the domesticated S. calamintha
EO, and quercetin, respectively. Figure 3B shows the iron-reducing/antioxidant power
of the two species and the absorbance values of quercetin at L= 700 as a function of con-
centration. From Figure 3B, it is evident that the absorbance increases proportionally as
the concentration increases. The IC50, which represents the concentration of EO required
to achieve an absorbance of 0.5, was obtained from the plot of the absorbance recorded
at 700.00 nm versus the corresponding concentration of EO. A significant difference was
also recorded between the two species: wild-type S. calamintha (55.382 ± 2.160 µg/mL)
and domesticated S. calamintha (60.720 ± 7.710 µg/mL) compared to the positive control
(28.414 ± 0.060 µg/mL).
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Table 2. Antioxidant power of EOSS and EOSD determined via the use of DPPH and FRAP assays.

IC50 (µg/mL)

DPPH FRAP

EOSS 23.030 ± 4.306 a 55.382 ± 2.16 a

EOSD 24.096 ± 4.381 a 60.720 ± 7.71 a

Quercetin 17.733 ± 1.788 b 28.414 ± 0.06 b

EOSS: wild S. calamintha EOs; EOSD: domesticated S. calamintha EOs. Row values with the same letters indicate a
significant difference according to multiple Tukey tests at p < 0.05.
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A work conducted in Morocco on the S. calamintha EO showed the scavenging capacity
of DPPH (22.01 ± 3.13%) [31]. Babajafari et al. [5] revealed that different species of Satureja
exert antioxidant, lipid peroxidation-inhibiting and anti-inflammatory activities. In addi-
tion, Bouzidi et al. [7] showed that S. calamintha oil has a significant effect on the inhibition
of the free radicals produced by DPPH with an IC50 of 31.25 µg/mL. However, the antioxi-
dant activity could be due to the presence of polyphenolic compounds. Labiod et al. [32]
revealed that pulegone has remarkable antioxidant properties.

3.3. Antibacterial Activity

The inhibition zone diameters and MIC values of the wild and domesticated S. calamintha
EOs against the tested pathogenic bacterial strains are presented in Table 3 and Figure 4,
respectively. When compared to the antibiotic streptomycin sulfate, both EOs showed
promising antibacterial action against all the bacteria used in the present study, and a
more pronounced effect was recorded against E. coli K12, with inhibition diameters of
25.67 ± 0.58 and 48.67 ± 1.15 mm and MIC values of 1.49 ± 0.00 and 0.373 ± 0.00 µg/mL
for the domesticated and wild S. calamintha EOs, respectively. However, the domesticated
and wild S. calamintha EOs showed the lowest activity against S. aureus ATCC6633, with
inhibition diameters of 14 ± 0.00 and 12.67 ± 0.58 mm and MIC values of 5.96 ± 0.00 and
5.96 ± 0.00 µg/mL, respectively.

Table 3. Antibacterial activity and MIC of EOSS and EOSD.

EODS EOSS Streptomycin

Staphylococcus aureus
ATCC6633

Diameter of
inhibition (mm) 14 ± 0.00 a 12.67 ± 0.58 b 11 ± 1.00 c

MIC (µg/mL) 5.96 ± 0.00 a 5.96 ± 0.00 a 1.56 ± 0.00 b

Escherichia coli K12

Diameter of
inhibition (mm) 25.67 ± 0.58 a 48.67 ± 1.15 b 0.00 ± 0.00 c

MIC (µg/mL) 1.49 ± 0.00 a 0.373 ± 0.00 b -

Bacillus subtilis
DSM6333

Diameter of
inhibition (mm) 18.67 ± 1.15 a 25.67 ± 0.58 b 0.00 ± 0.00 c

MIC (µg/mL) 2.98 ± 0.00 a 2.98 ± 0.00 a -
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Table 3. Cont.

EODS EOSS Streptomycin

Proteus mirabilis
ATCC29906

Diameter of
inhibition (mm) 26.00 ± 1.73 a 30.67 ± 1.15 b 0.00 ± 0.00 c

MIC (µg/mL) 1.49 ± 0.00 a 1.49 ± 0.00 a -
EOSS: wild S. calamintha EOs; EOSD: domesticated S. calamintha EOs. Means (±SD, n = 3) with similar letters
in the same line indicate a significant difference according to Tukey’s multiple tests at p < 0.05, MIC: minimum
inhibitory concentration.
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The promising antibacterial activity of the domesticated and wild S. calamintha EOs
against all pathogenic bacterial strains used in the experiment may be mainly due to the
presence of bioactive compounds such as d-limonene, eucalyptol, pulegone, and thymol,
which were reported to have anti-bacterial effects [25]. Eucalyptol exhibited antibacterial
activity against several pathogenic bacteria, as reported in earlier work [33]. These findings
are in line with those reported by Boudjema et al. [14], who demonstrated eucalyptol’s
potent antibacterial activities against B. cereus ATCC10876, E. faecalis ATCC49452, Listeria in-
nocua CLIP74915, methicillin-resistant S. aureus (MRSA) ATCC43300, S. aureus ATCC25923,
E. coli ATCC25922, K. pneumoniae ATCC700603, Salmonella enterica ATCC43972 and S. ty-
phimurium ATCC13311. Our results are consistent with the findings reported by Bouzidi
and Kemieg, who showed that the EOs from S. calamintha are highly antibacterial against
the strains of S. aureus and P. aeruginosa used in the study (ATCC29273 and ATCC27853,
respectively) [14].

3.4. Antifungal Activity

The inhibition percentages and MIC values of the wild and domesticated S. calamintha
EOs against pathogenic strains tested using the disk diffusion method are displayed in
Table 4 and Figure 5. From this Table, it can be observed that the domesticated and
wild S. calamintha EOs induced good antifungal activity, with inhibition percentages of
89.18 ± 0.75 and 86.58 ± 0.76% and MIC values of 1.49 ± 0.00 and 2.98 ± 0.00 µg/mL
against F. oxysporum, respectively. With regard to their fungicidal and fungistatic effects, the
domesticated and wild S. calamintha EOs exhibited a fungicidal effect against all tested fungi
strains. The promising antifungal activity of the domesticated and wild S. calamintha EOs
against the tested pathogenic fungal strains may be due to the richness of EOs in bioactive
molecules such as d-limonene, eucalyptol, pulegone, and thymol. These bioactive chemicals
have been shown in several studies to significantly inhibit the growth of pathogenic fungi,
especially in the study by Saghrouchni et al. [34], who reported that thymol has significant
antifungal activity mainly against F. oxysporum. Pulegone has been reported as a natural
effective compound against C. albicans growth [35]. Much research has been dedicated to
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the management of pathogenic fungi via the use of various kinds of bioactive compounds,
either of natural or synthetic origin. The present results regarding the antifungal activity of
the EOs are in agreement with the study by Boudjema et al. [14], which showed that the
S. calamintha EOs had significant antifungal activities against C. tropicalis DIV13-Z087D0VS,
C.tropicalis DIV13-Z087B0VS, C. albicans ATCC-1024, A. niger and A. flavus. In addition, this
study reported a low MIC (more potent), in the order of 0.500% (v/v), against C. albicans.
Medjdoub and co-authors investigated the action of S. calamintha nepeta EOs on three
fungal strains, including A. flavus, A. parasiticus, and A. ochraceus, and revealed that all
tested molds were killed with doses of 1/100 and 1/250 (v/v) after 7 days of incubation [36].

Table 4. Antifungal activity and MIC of EOSS and EOSD.

EOSD EOSS Fluconazol

C. albicans
ATCC-10231

Diameter of
inhibition (mm) 47.33 ± 1.15 a 40.00 ± 0.00 b 0.00 ± 0.00 c

MIC (µg/mL) 0.186 ± 0.00 a 0.373 ± 0.00 b -

A. niger
MTCC-282

Percentage of
inhibition (%) 67.19 ± 0.00 a 29.68 ± 2.71 b 18.46 ± 2.02 c

MIC (µg/mL) 1.49 ± 0.00 a 0.373 ± 0.00 b 7.125 ± 0.00 c

A. flavus
MTCC-9606

Percentage of
inhibition (%) 41.27 ± 1.37 0.00 ± 0.00 0.00 ± 0.00

MIC (µg/mL) 0.746 ± 0.00 - -

F. oxysporum
MTCC-9913

Percentage of
inhibition (%) 89.18 ± 0.75 a 86.58 ± 0.76 a 30.77 ± 0.58 b

MIC (µg/mL) 1.49 ± 0.00 a 2.98 ± 0.00 b 3.125 ± 0.00 b

Row values with different letters indicate a significant difference according to Tukey’s multiple tests at p < 0.05,
MIC: minimum inhibitory concentration. Means (±SD, n = 3) with.
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3.5. In Silico Molecular Docking of Antioxidant and Antimicrobial Activities of EOs of Wild and
Domesticated S. calamintha

Piperitenone is a natural compound found in various herbs such as peppermint and
spearmint. It belongs to the class of monoterpenoids and possesses several biological activ-
ities. Several studies have investigated the antioxidant properties of piperitenone. In terms
of antioxidant activity, it was found to have a strong scavenging effect against free radicals,
such as 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis (3-ethylbenzthiazoline-6-
sulphonic acid) (ABTS) radicals [37,38]. These studies showed that piperitenone’s antioxi-
dant activity was dose-dependent and increased with increasing concentrations.
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Pulegone is another natural organic compound found in various plants. It has been
reported to exhibit antioxidant properties due to its ability to scavenge free radicals and
prevent oxidative damage. Roy A. et al. investigated the protective effect of pulegone
against oxidative stress and inflammation in vitro and in vivo. The authors found that
pulegone significantly increased the expression of antioxidant enzymes via the Nrf2 path-
way and reduced the expression of pro-inflammatory cytokines via the NF-κB pathway,
indicating its potent antioxidant and anti-inflammatory effects [39]. In addition, pulegone
exhibited potent antioxidant activity in various assays, including scavenging free radicals
and reducing lipid peroxidation [40].

In antioxidant activity, the inhibition of acetylcholinesterase plays a key role [29]. The
powerful inhibitory effects of piperitenone, pulegone, and piperitone oxide (identified
only in domesticated S. calamintha) were demonstrated by the molecular docking of the
EO of wild and domesticated S. calamintha in the active site of acetylcholinesterase. These
compounds had glide scores of −7.682, −7.647, and −7.01 Kcal/mol, respectively, and
a glide energy of −22.946, −22.115, and −23.687 Kcal/mol, respectively (Table 5). The
2D and 3D viewers of wild and domesticated S. calamintha docked in the active site of
acetylcholinesterase showed that the pulegone established one hydrogen bond with residue
PHE 295 (Figure 6).

Table 5. Docking results of EOSS and EOSD in active site of acetylcholinesterase (4EY7), S. aureus
nucleoside diphosphate kinase (PDB: 3Q8U), and E. coli beta-ketoacyl-[acyl carrier protein] synthase
(PDB: 1FJ4).

Antioxidant Effect Antimicrobial Effect

PDB ID: 4EY7 PDB ID: 1FJ4 PDB ID: 3Q8U

Glide Score
(Kcal/mol)

Glide
Energy

(Kcal/mol)

Glide Score
(Kcal/mol)

Glide
Energy

(Kcal/mol)

Glide Score
(Kcal/mol)

Glide
Energy

(Kcal/mol)

Eucalyptol −5.58 −24.743 −5.7 −21.613 −4.172 −14.205

(+)-
Isomenthone −6.49 −22.919 −6.717 −19.745 −4.522 −16.974

MENTHOL −6.722 −21.106 −6.855 −18.662 −5.392 −18.125

Pulegone −7.647 −22.115 −7.099 −24.36 −5.067 −18.027

Piperitone
Oxide −7.01 −23.687 −6.399 −22.343 −5.479 −21.285

Piperitenone −7.682 −22.946 −7.112 −22.296 −4.497 −18.218

Rotundifolone −5.91 −26.979 −7.104 −27.481 −4.771 −19.301

Spathulenol −7.011 −26.214 −5.982 −20.041 −4.795 −17.187
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(E,F) Piperitone Oxide interactions with the active site of 3Q8U.

In addition to its antioxidant effects, piperitenone has also been shown to have an-
timicrobial activity against various microorganisms. The authors found that piperitenone
oxide (a derivative of piperitenone that is one of the main compounds of the plants studied)
exhibited potent antimicrobial activity against a range of bacteria and fungi, including
methicillin-resistant Staphylococcus aureus (MRSA) and Candida albicans [41].

Pulegone is a monoterpene ketone found in various essential oils. The antimicrobial
properties of pulegone have been extensively studied in vitro, and several mechanisms of
action have been proposed. One study demonstrated that pulegone has antibacterial activity
against Gram-positive bacteria, including Staphylococcus aureus and Streptococcus pyogenes,
and Gram-negative bacteria, such as Escherichia coli and Pseudomonas aeruginosa [42].

Piperitenone is the most effective molecule against E. coli beta-ketoacyl-[acyl carrier
protein] synthase (1FJ4), according to our in silico analysis of the antimicrobial activity
of the wild and domesticated S. calamintha EOs. It has a glide score and glide energy
of −7.112 and −22.296 Kcal/mol. Rotundifolone comes in second with a glide score
of −7.104 Kcal/mol. The piperitone oxide is the most active compound in the S. aureus
nucleoside diphosphate kinase (3Q8U), with a glide score and glide energy of −5.479 and
−21.285 Kcal/mol, respectively.

Furthermore, 2D and 3D viewers showed that piperitenone established two hydrogen
bonds with the residues HIE 298 and HIE 333 in the active site of 1FJ4. Meanwhile, the
piperitone oxide established one hydrogen bond with residue ASN 112 in the active site
of 3Q8U.
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4. Conclusions

S. calamintha is a plant widely used by the local population for its numerous thera-
peutic properties. The domestication of S. calamintha is a simple solution to preserving
this plant from extinction. Therefore, we evaluated the effect of domestication on its
chemical composition and biological activities. The present study aimed to investigate
the chemical composition and antioxidant and antibacterial properties of essential oils
extracted from S. calamintha. The results showed that the oils of S. calamintha are rich in
eucalyptol (23.10–22.23%), pulegone (12.44–12%) and rotundifolone (9.68–10.49%), with
slight differences in the chemical composition; nevertheless, both essential oils showed
almost similar antioxidant and antibacterial effects against clinically important strains.
Therefore, domesticating S. calamintha could be used as an important alternative so as to
preserve such a plant without compromising its biological activities.
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