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Abstract: 5-Fluorouracil (5-FU) is now used in eye drops for the management of conjunctival malig-
nant melanoma, intraepithelial neoplasia, and corneal and conjunctival squamous cell carcinoma.
The previously used methods for 5-FU quantification in AqH were time-consuming and less sensitive.
Herein, a highly perceptive bioanalytical UPLC–MS/MS method was developed for the quantitative
determination of 5-FU in the aqueous humor (AqH) of rabbits using allopurinol as the internal
standard (IS). The 5-FU and IS were well separated in an Acquity™ HILIC column. Acetonitrile
and 10 mM of ammonium acetate at 95:5 (v/v) were isocratically pumped at a 0.3 mL/min flow
rate with a total runtime of 2.5 min. AqH samples were processed with a liquid–liquid extraction
method in ethyl acetate. The 5-FU and IS were identified in the negative mode with electrospray
ionization. The parent to daughter ion transitions for the 5-FU and IS occurred at m/z 128.92→41.68
and 134.80→64.10, respectively, as quantified using the multiple reaction monitoring mode. The
developed method was validated with the ICH-Harmonized Guideline for Bioanalytical Method
Validation, and the parameters were within acceptable limits. The calibration curve was linear at the
10.5–2000 ng/mL concentration range, with a correlation coefficient (R2) of 0.9946, and the lower limit
of detection was 3.55 ng/mL. The developed and validated method was rapid, sensitive, accurate
and robustly able to quantify 5-FU in rabbit AqH. The method was effectively applied to establish the
ocular pharmacokinetics of 5-FU following the topical instillation of 5-FU-containing preparations
in rabbits.

Keywords: 5-fluorouracil; allopurinol; aqueous-humor; UPLC–MS/MS; ocular-bioavailability

1. Introduction

The IUPAC name of 5-fluorouracil (5-FU) is 5-fluoro-1H-pyrimidine-2,4-dione (Figure 1a).
It is an antimetabolitic, cytotoxic chemotherapeutic agent. It is broadly used to treat
esophageal, stomach, pancreatic, breast and colorectal cancers through the intravenous
route of administration. As a cream or ointment, 5-FU is also applied to treat some skin
conditions that may become cancer (solar and multiple actinic keratoses) and some super-
ficial basal cell skin cancers. The inhibition of thymidylate synthase occurs through the
formation of a stable ternary complex system, and the incorporation of its metabolites into
RNA and DNA exerts anticancer activity to 5-FU [1–3]. Co-treatment with methotrexate
and leucovorin enhances these anticancer effects [4]. Extemporaneous formulations and
solutions of 5-FU as eye drops are used to treat conjunctival malignant melanoma, conjunc-
tival intraepithelial neoplasia, and squamous cell carcinoma of the cornea and conjunctiva,
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among others [5,6]. Treatment for these disorders entails applying topical 5-FU (1%, w/v)
up to four times daily for a number of treatment cycles spaced out by one month. However,
a lesion might re-occur, and retreatment might be needed even after an excisional biopsy;
therefore, prolonged follow-up might be requisite for such patients [5,7,8]. Generally, the
solutions and extemporaneous formulations of 5-FU are stable for up to 7 days, with only
limited bioavailability [9].
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A mucoadhesive nanocarrier called an amino-functionalized mesoporous silica nanoparti-
cle (AMSN) encapsulated with 5-FU was prepared in a previous study, and its surface was
further functionalized with carboxy methyl chitosan (CMC), which was then combined
with Carbopol gel to increase the bioavailability of 5-FU in the eyes [10]. An AMSN has
hydroxyl (-OH) and amine (-RNH2) functional groups; the -OH groups form H-bonds
with the mucin layer (negatively charged) on ocular mucosa and positively charged amino
groups form an ionic complex with the mucin layer. Both of these phenomena could en-
hance the ocular retention of these formulations, sustain the release of 5-FU in a controlled
way, increase transcorneal permeation, and improve the ocular availability of 5-FU.

To ensure the efficacy of 5-FU in the abovementioned eye conditions, the drug con-
centrations in eye structures must be determined. Accordingly, this study used anterior
chamber fluid (for easy sampling and drug analysis purposes) and developed an ultra-
performance liquid chromatography mass spectrometry (UPLC–MS/MS) method for the
quantification of 5-FU in the aqueous humor (AqH) of rabbits.

A number of HPLC methods are available for the quantification of 5-FU in simulated
colon media [11], biological fluids such as blood plasma [12–14], and aqueous humor [15,16].
An LC–MS/MS method for 5-FU determination is available, but this is for analytical
purposes only, not bioanalysis [17]. Most of the available analytical/bioanalytical methods
for 5-FU are used to identify the drug in plasma where adequately high sample volumes
are needed. Until now, no rapid, sensitive, and reliable bioanalytical UPLC–MS/MS
techniques for 5-FU quantification in AqH have been available. The available LC methods
for 5-FU determination in AqH are either time-consuming, require high retention times
(i.e., 7 min [12]), or are less sensitive due to a high limit of detection (5 ng/mL) [14].

As the drug amounts reached in the AqH remain low by default (due to the anatomy
of the eye and strong defensive, physiological ocular barriers), their quantification with
common bioanalytical methods is challenging. Therefore, in this study, for the quantifica-
tion of 5-FU (even in very small quantities of AqH), a sensitive, repeatable, robust, and
consistent UPLC–MS/MS method was developed and validated using allopurinol as the
internal standard (Figure 1b) [18]. This validated method was successfully applied in the
quantitative analysis of 5-FU in AqH after the topical ocular application of 5-FU-containing
preparations in rabbits to establish the ocular pharmacokinetics of the drug.
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2. Experimental Section
2.1. Chemicals and Animals

5-Fluorouracil (5-FU) powder of ≥99% purity, allopurinol of ≥98% purity, ammonium–
acetate (CH3CO2NH4; MW: 77.08 g/mol; CAS No. 631-61-8) and ethyl acetate (CH3COOC2H5;
MW: 88.11 g/mol; CAS No.141-78-6) were purchased from Sigma Aldrich (St. Louis, MO,
USA), now owned by Merck KGaA (Darmstadt, Germany). Chemically, 5-FU (C4H3FN2O2;
MW: 130.08 g/mol) is 2,4-Dihydroxy-5-fluoropyrimidine (CAS No. 51-21-8) and allopurinol
(C5H4N4O; MW: 136.11 g/mol) is 1H-Pyrazolo (3,4-d) pyrimidin-4-ol, 4-Hydroxypyrazolo
(3,4-) pyrimidine (CAS No. 315-30-0). Methanol and acetonitrile of HPLC grade were
purchased from HiPer-Solv® (Poole, England). Purified water was obtained in house with
a Milli-Q® water purifier (Millipore, Paris, France). All other solvents and chemicals were
of HPLC and analytical grade, respectively.

To ascertain the ocular bioavailability of 5-FU, we obtained New Zealand albino
rabbits (2–3 kg in body weight) from the Animal Care and Use Center of the College
of Pharmacy at King Saud University (KSU), Riyadh, Saudi Arabia. The research ethics
committee (REC) at KSU approved the protocol that was followed during the animal study
(protocol approval number: SE-21-80; 9 December 2021). Following the Guide for the Care
and Use of Laboratory Animals, the animals were permitted to reside in air-conditioned,
light-controlled rooms. All of the rabbits were fed a regular pellet diet and were given
access to unlimited amounts of water.

2.2. Mass Spectrometric and Chromatographic Conditions

A triple quadrupole mass spectrometer (TQD) with an electrospray ionization interface
for the simultaneous detection of 5-FU and allopurinol was used in the negative mode.
Nitrogen (N2) was used as the desolvation and cone gas, and argon served as the collision
gas. The TQD settings were as follows: 150 ◦C for the source, 350 ◦C for the desolvation,
0.93 kV for the capillary voltage, 0.245 s for the dwell period, 600 L/h for the desolvation
gas, 50 L/h for the cone gas, and 0.2 mL/min for the collision gas. Cone voltages of 32 V
and 40 V for 5-FU and allopurinol (IS), respectively, were set as the MS/MS conditions.
The collision energies were 14 and 20 eV for 5-FU and allopurinol (IS), respectively. The
quantification of 5-FU and allopurinol, which had parent-to-daughter ion transitions (m/z)
of 128.92→41.68 and 134.80→64.10, respectively, was conducted using the multiple reaction
monitoring (MRM) approach. MassLynx software (V4.1, SCN 714, Waters® Corp., Milford,
MA, USA) was used to automate the UPLC–MS/MS system, and the Target Lynx program
was used to process the data [18].

An Acquity™ UPLC system coupled with a TQD (Waters® Corp., Milford, MA, USA)
was used for elution and analysis. An Acquity UPLC BEHTM HILIC column (2.1 i.d.
100 mm, 1.7 m) coupled with a 0.2 m stainless steel fritted filter (Waters® Corp., Milford,
MA, USA) was used to achieve the chromatographic separation of 5-FU and allopurinol
(IS). The column oven had a temperature of 40 ◦C. A 95:5 (v/v) combination of acetonitrile
and 10 mM ammonium acetate served as the mobile phase. The runtime for the mobile
phase was 2.5 min, with a flow rate of 0.3 mL/min and an injection volume of 5 µL. At
retention times (Rt) of 1.13 and 1.47 min, respectively, the elutions of 5-FU and allopurinol
(IS) were well separated.

2.3. Making Stock Solutions, Calibration Standards, and Quality Control Samples

A standard stock solution of 5-FU (500 µg/mL) was prepared by dissolving a precisely
weighed quantity of 5-FU in ethanol. A stock solution of the IS (500 µg/mL) was prepared
by dissolving the allopurinol in ethyl acetate. In order to prepare the working calibration
samples (10.5, 300, 900, 1750, 3500, 7000, 14,000, and 20,000 ng/mL), the standard stock so-
lution of 5-FU was further diluted with ethanol. Among these working calibration samples,
a few dilutions (105, 300, 3500 and 14,000 ng/mL) were selected as the standard working
quality control (QC) samples. The working IS solution (1000 ng/mL) was prepared from
its stock solution via dilution with ethyl acetate. The aqueous humor (AqH) samples used
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for the calibration curve were prepared by spiking appropriate volumes of the working cal-
ibration samples into AqH to obtain the final AqH calibration samples at concentrations of
10.5, 30, 90, 175, 350, 700, 1400, and 2000 ng/mL. The selected calibration standard samples
that served as the working quality control (QC) samples were 10.5 ng/mL (low limit of
quantitation, LLOQ), 30 ng/mL (low-quality control, LQC), 350 ng/mL (medium-quality
control, MQC) and 1400 ng/mL (high-quality control, HQC). All calibration standards and
prepared QC samples were stored at −80 ◦C until analysis.

2.4. Aqueous Humor (AqH) Sample Preparations

The working IS solution (1000 ng/mL of allopurinol, IS) and 100 µL of ethyl acetate
were added to the 25 µL AqH samples, mixed, and vortexed for 30 s in Eppendorf tubes.
Thereafter, all samples were centrifuged for 10 min at 13,500 rpm and 4 ◦C. After centrifu-
gation, the supernatant (organic layer) was placed into different fresh Eppendorf tubes and
dried under a nitrogen (N2) stream at ambient temperature. The N2-dried samples were
reconstituted in a 100 µL 95:5 (v/v) mixture of acetonitrile:10 mM ammonium acetate and
placed into UPLC vials. Then, for the quantification of 5-FU, the reconstituted samples
(5 µL) were automatically injected into the UPLC–MS/MS apparatus.

2.5. Development and Validation of Method

The bioanalytical UPLC–MS/MS method used to analyze 5-FU in the AqH was
developed and validated by following the ICH-Harmonized Guideline for Bioanalytical
Method Validation and Study Sample Analyses [19]. The validation parameters were
linearity, selectivity, accuracy, precision, robustness, recovery, the stability of the samples,
and matrix effects.

2.5.1. Calibration Curve and Limits of Detection (LOD) and Quantitation (LOQ)

By processing the calibration curves using the least squares linear regression approach,
the linearity of this method was examined. The concentration levels for the three sets of
calibration samples were 10.5, 30, 90, 175, 350, 700, 1400, and 2000 ng/mL in blank AqH.
The calibration curves were prepared by plotting the different concentrations of 5-FU on
the x axis against the 5-FU/IS area ratios on the y axis. As a function of weighing factor
optimization, weighing factors (W)—none, 1/X, and 1/X2—were used to approximate any
deviation in the studied concentration levels. Additionally, for each calibration curve, the
sum of squares (SS), correlation coefficient (R2), sum of absolute values, and percentage
of relative error (% RE) statistical parameters were calculated. In order to compare the
back-calculated concentrations estimated using the regression equation obtained for each
weighing factor (W), the % RE was further plotted against the studied concentrations. The
best W is the one that has the smallest total % RE and results in a small band of randomly
distributed % RE around the x axis. W was additionally chosen based on the R2 value that
was closest to 1 and the smallest value of SS.

The lowest concentration (LOD) at which the analytical method is able to detect an
analyte of interest and the limit of quantitation (LOQ) were calculated as per the work of
Hartmann et al. [20] following Equations (1) and (2), respectively:

LOD =
3.3σ

S
(1)

LOQ =
10σ

S
(2)

where “σ” and “S” are the standard deviation of the response and the slope of the calibration
curve, respectively.

2.5.2. Selectivity

In the presence of wanted or unwanted components, a chosen analytical method
should be able to unequivocally measure the concentration of the analytes, which is termed
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the selectivity of a method. By comparing the chromatograms generated from the aspirated
rabbit AqH samples after 2 h of treatment with the 5-FU-containing formulations with those
generated from the blank AqH, the spiked AqH samples at the LLOQ level (10.5 ng/mL),
and the spiked AqH samples with the IS (250 ng/mL), the selectivity of the current UPLC–
MS/MS method was confirmed. The retention times (Rt) of the 5-FU and IS were then
monitored for any interventions occurring at or close to those times.

2.5.3. Precision, Accuracy and Robustness

The percentage relative standard deviation (% RSD) and percentage relative error (%
RE) of the theoretical concentrations, respectively, were used to evaluate the precision and
accuracy of the devised approach. To determine the precision and accuracy of this method,
quality control (QC) samples such as 10.5 ng/mL (LLOQ), 30 ng/mL (LQC), 350 ng/mL
(MQC) and 1400 ng/mL (HQC) were analyzed in triplicate using the obtained calibration
curve on different days (interday) and the same day (intraday). Deviances in the values of
precision (% RSD) and accuracy (% RE) were presumed to be ≤15% for the QC samples
except for 10.5 ng/mL (LLOQ, where it was assumed to be ±20%). To analyze the MQC
sample (350 ng/mL), the isocratic flow rate of the mobile phase (0.30 ± 0.02 mL/min) and
slight purposeful changes in the ratio of the mobile phase composition (95: 5 ± 2, v/v) were
used to test the robustness of the method. The deviance in the % RSD was presumed to be
≤10% for the purpose of checking the robustness of the method.

2.5.4. Recovery

First, 25 µL of pre-spiked LQC (30 ng/mL), MQC (350 ng/mL) and HQC (1400 ng/mL)
AqH samples were defrosted, vortexed, spiked with 25 µL of a working allopurinol (IS)
solution (1000 ng/mL), and vortexed again for 1 min in Eppendorf tubes. The mixtures
were centrifuged at 13,500 rpm for 10 min at 4 ◦C (pre-extracted sample of AqH, “X”).
Subsequently, the supernatant (organic layer) was taken into other fresh Eppendorf tubes
and dried under a nitrogen (N2) stream at ambient temperature. The samples (N2-dried)
were reconstituted in 100 µL of a 95:5 (v/v) mixture of the mobile phase (post-extracted
AqH samples, “Y”) allocated into UPLC vials. Thereafter, 5 µL of these samples were
injected into the UPLC–MS/MS apparatus. The ratio of the peak areas of the 5-FU and
allopurinol (IS) were noted as “X”. The recovery of 5-FU was determined as the ratio of
the peak areas of pre-extracted/post-extracted samples in triplicate, and it is expressed as
(X/Y) × 100. In the same way, the recovery of the IS (at 250 ng/mL) was also calculated.

2.5.5. Matrix Effect

A post-extraction method was followed to determine the matrix effect using three
concentration levels of the QC solutions in triplicate [21,22]. Briefly, at room temperature,
the blank AqH was thawed and vortexed (for 30 s). In Eppendorf tubes, the thawed blank
AqH (25 µL) was mixed with 125 µL of ethyl acetate, vortexed, and centrifuged for 10 min
at 4 ◦C and 13,500 rpm. The supernatants were collected in separate tubes, and proper
volumes of LQC, MQC, HQC and allopurinol (IS) solutions were added and vortexed
(designated as extracted AqH samples), dried under a nitrogen (N2) stream, reconstituted,
and analyzed as described above. The ratio of the peak areas of 5-FU and allopurinol (IS)
were obtained and termed “X”. Likewise, the working QC and allopurinol (IS) solutions
were mixed with Mill-Q water (25 µL) (rather than blank AqH) and 125 µL of ethyl acetate,
vortexed, and centrifuged. The rest of the procedures were the same as described above
(designated as unextracted AqH samples). Here, the ratio of the peak areas of 5-FU and
allopurinol (IS) were termed “Y”. Finally, the absolute matrix effect (%) was estimated with
the following expression: (X/Y) × 100.

2.5.6. Stability

The stability of the drug (5-FU) in the spiked AqH samples kept at different storage
conditions was determined in triplicate using LLQC (10.5 ng/mL) and HQC (1400 ng/mL)
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solutions. The processed QC samples were kept in an autosampler for 48 h at 10 ◦C and
analyzed to determine the autosampler stability of the drug. The short-term stability of
5-FU was determined by keeping the processed AqH samples at 25 ± 1 ◦C for 8 h. The
spiked and processed AqH samples were subjected to three freeze–thaw cycles from−80 ◦C
to 25 ◦C, and the drug was analyzed to determine its freeze–thaw stability. The prolonged
stability of the spiked QC samples was determined by analyzing the samples stored for
3 months at −80 ◦C. The 5-FU in the AqH was supposed to be stable when the % RSD was
restricted to ≤15% and the accuracy was limited to ±15% (% RE) relative to that of the
theoretical concentrations of the drug.

2.6. Application of the UPLC–MS/MS Method

The developed method was applied to determine the ocular pharmacokinetics of 5-FU
in rabbit eyes, in which the concentration of 5-FU in the AqH was determined to assess its
ocular availability after the single topical application of 5-FU formulations in the cul-de-sac.
Six animals were divided into two groups, each containing three rabbits. Group I was for
the 5-FU Carbopol gel, and Group II was for the AMSN-CMC 5-FU Carbopol gel. The
development and characterization of these products were previously reported [10]. Forty
microliters (40 µL) of the sterilized formulations of 5-FU (each containing an equivalent
amount of 100 µg of 5-FU) were topically applied in the eyes (right) of all the rabbits of
the two groups [23]. The rabbits were then given an intravenous injection of a mixture
of Ketamine hydrochloride and Xylazine (15 and 3 mg/kg of body weight, respectively)
1 h after receiving their dose [10,22–24]. Thereafter, approximately 50 µL of the AqH was
aspirated using an insulin syringe attached to 29-gauge needle at predetermined time
intervals (up to 24 h). The collected AqH samples were stored in a deep freezer, and the
quantitation of 5-FU in the collected AqH samples was performed by using the proposed
validated method. The real samples were spiked with 25 µL of the working allopurinol
(IS) solution (1000 ng/mL) along with the QC and calibration curve samples before being
processed as stated in Section 2.4. The processed samples were automatically injected
(5 µL each) into the LC–MS apparatus intended for the quantification of 5-FU. A software
program called PK-Solver, Nanjing, China, in MS Excel 2013 was used to calculate the
pharmacokinetic (PK) parameters through a non-compartmental approach [25]. The PK
parameters included the half-life (t1/2), maximum 5-FU concentration in AqH (Cmax),
Cmax in AqH at a given time (Tmax), mean residence time (MRT0-inf), maximum 5-FU
concentration versus time curve at a given time (AUC0-t and AUC0-inf), and rate of clearance
(Cl/F), where “F” stands for the maximum 5-FU availability in the eye. The AUC can be
defined as the plasma/AqH drug concentration (ng/mL) × time (h).

2.7. Statistical Analysis of Data

Except where otherwise stated, all data are presented as the average of three readings
with standard deviation (SD) or, in some cases, as the mean with the standard error of the
mean (SEM). GraphPad Prism: V5.0 (GraphPad Software, Inc., San Diego, CA, USA) was
used to generate the statistical analyses and graphs. After determining that p < 0.05 was
statistically significant, the results were also compared using the Student’s t-test.

3. Results and Discussion
3.1. Method Development

UPLC–MS/MS is considered one of the best advanced bioanalytical methods for the
quantification of drugs in body fluids. The objective of our method development and
optimization was to create a sensitive, reproducible, and reliable LC–MS method to analyze
5-FU in aqueous humor (AqH) samples. Therefore, the processes of chromatography and
mass spectrometry were carefully and systemically optimized to achieve suitable settings
for 5-FU analysis.
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3.2. Optimization of the Conditions of Chromatography and Mass Spectrometry

The conditions for liquid chromatography, such as the aqueous phase (volatile buffer),
organic modifiers, components, proportion, and the flow rate of the mobile phase, were
optimized to obtain well-separated, regular, symmetric, and highly resolved peaks of
the 5-FU and IS. Organic modifiers such as methanol and acetonitrile were isocratically
pumped with ammonium–formate, ammonium–acetate, and formic and acetic acids (as
volatile buffers) in variable proportions and flow rates (0.2 to 0.5 mL/min). We found
that 5-FU and allopurinol were separated well by acetonitrile as the organic phase at
a flow rate of 0.3 mL/min. Nobile phase additives in LC–MS/MS separation are used
to improve the peak shape and ionization efficiency of analytes. Accordingly, acidic
compounds have superior ionization at neutral and slightly basic pH conditions [26,27]. In
the present investigation, the target analyte (5-FU) was a weak acid, so it had the potential to
produce the most ionization with the 7.8 pH 10 mM ammonium acetate buffer [28–30]. The
ammonium acetate additive in combination with acetonitrile could have resulted in the high
deprotonation of the target molecule. Therefore, ammonium acetate was used to provoke
the ionization of the target molecule. Due to the weakly acidic nature of 5-FU, acetonitrile in
combination with ammonium–acetate or ammonium–formate led to the greater ionization
of 5-FU. Finally, the mobile phase selected for the chromatographic separation of the 5-FU
and IS consisted of acetonitrile: 10 mM ammonium acetate (95:5, v/v) at a 0.3 mL/min flow
rate, which was used with minimal intervention due to the endogenous materials present
in the AqH. Due to the polar nature of 5-FU, analytical columns of different sizes (50 mm
and 100 mm) were used, and the best elution and separation of 5-FU and allopurinol (IS)
were found with the UPLC HILIC column (Acquity™, 2.1 mm of i.d. × 100 mm, 1.7 µm) at
a 40 ◦C column oven temperature. The special separation materials of the HILIC column
showed good selectivity and reproducibility for the separation of polar compounds, so
they were selected for the separation of 5-FU in the present work.

A methanolic solution of 5-FU (300 ng/mL) was permeated in the mass spectrometer
to tune in the negative and positive electrospray ionization modes in order to optimize the
mass spectrometry (MS) parameters. Being weakly acidic in nature, the signal intensity
of the 5-FU parent molecular ion was most intense at m/z 128.76 in the negative mode
compared with the positive mode (Figure 2a). Consequently, the 5-FU parent ion (m/z of
128.76) produced different daughter ions at m/z values of 128.77, 85.65, 58.74, 41.96 and
41.68, as shown in Figure 2b. Among these, the signal for daughter ion with an m/z of 41.96
was the most prominent, abundant, stable and reproducible. Therefore, it was selected
for the multiple reaction monitoring (MRM) transition. In the same way, for allopurinol,
the parent ion with an m/z of 134.80 produced more signal intensity during negative
mode ionization (Figure 2c). The parent ion of the IS at an m/z of 138.40 produced a
more abundant and prominent daughter ion, with an m/z of 91.99, but it was not stable.
Therefore, the other daughter ion of m/z 64.1 was selected for MRM transitions, as shown
in Figure 2d. As a result, the m/z values of 128.76→41.68 and 134.80→64.10 for 5-FU and
allopurinol (IS), respectively, were utilized for the conversion of parent ions into daughter
ions. Additionally, the temperature, gas, and compound-specific parameters (for instance,
30–40 V cone voltages and 12–20 eV of collision energy) were optimized to have the lowest
quantifiable limits. Finally, the cone voltages for the 5-FU and IS were fixed at 32 V and
40 V, respectively, and the collision energies were set at 14 eV and 20 eV for the 5-FU and
IS, respectively.
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3.3. Sample Preparation Optimization

In order to obtain tidy and clean samples, the sample preparation technique was
adjusted. This prevented any unintentional potential interference from endogenous sub-
stances/chemicals in the AqH from being found during the process of UPLC–MS/MS
analysis. Initially, the acetonitrile- and methanol-based direct protein precipitation method
was used to prepare the samples, but no intense and sensitive 5-FU and IS peaks were
discovered when the AqH samples were analyzed (Figure S1a,b). Therefore, the liquid–
liquid extraction method was used with various amounts of AqH in ethyl acetate, n-hexane,
diethyl ether, and dichloromethane (DCM) as organic solvents for sensitivity and effec-
tiveness with good recovery and low matrix effects. Of these, ethyl acetate produced
high recovery and low matrix effects, so it was used as the extracting agent for sample
preparation (Figure S2). After the complete evaporation and drying (with the N2 stream) of
the organic solvents, the samples were reconstituted in the 95:5 (v/v) mixture of the mobile
phase (acetonitrile: 10 mM ammonium acetate) for analysis. The 5:1 (v/v) ratio of ethyl
acetate and AqH was found to be the most effective for complete 5-FU extraction from
AqH samples spiked with allopurinol (IS), with a high sensitivity, maximum recovery, and
negligible matrix effects without any significant intervention for 5-FU and allopurinol (IS)
elution and chromatographic separation.

3.4. Method Validation
3.4.1. Calibration Curve, Linearity, and Limits of Detection and Quantification

To obtain calibration curves, the ratios of the peak regions of the mass spectra of
allopurinol (IS) and 5-FU were plotted against the concentrations of 5-FU on the x axis.
At concentration levels from 10.5 ng/mL to 2000 ng/mL, the calibration curves showed
excellent linearity, as indicated by the values obtained for the parameters (Table 1). The
weighted least squares (1/X2) method was used to perform linear regression to obtain
the linear equation (y = mx + c). The slopes of the calibration curves did not show any
significant (p < 0.05) differences. The obtained linear equation was y = (1.667 ± 0.121) ×
10−3x+ (3.096 ± 0.104) × 10−2, with a correlation coefficient (R2) of 0.9946 ± 0.0023. Here,
“x” represents the 5-FU concentration in the AqH and “y” represents the ratio of the 5-FU
and IS peak regions. The slope, intercept, and coefficient of correlation had percentage
relative standard deviations (% RSD) and standard errors of means (SEM) of 12.49% and
0.121 × 10−3, 5.8% and 0.104 × 10−2, and 0.4% and 0.23 × 10−3, respectively.

Table 1. Calibration curve parameters of 5-fluorouracil (5-FU).

Calibration Parameters Values (Mean ± SEM, n = 3)

Linearity
Concentration range 10.5–2000 ng/mL

Slope (mean ± SEM) with % RSD (1.667 ± 0.121) × 10−3 with 12.49%
Intercept (mean ± SEM) with % RSD (3.096 ± 0.104) × 10−2 with 5.80%

Coefficient of correlation, R2 (mean ± SEM)
with % RSD

0.9946 ± 0.0023, with 0.40%

Calibration equation Y = 0.001667x + 0.030967

LOD 3.55 ng/mL
LOQ 10.77 ng/mL

“x” represents the 5-FU concentration in the AqH and “Y” represents the ratio of the 5-FU and IS peak regions.

3.4.2. Selectivity

Figure 3a,b show typical chromatograms of the blank AqH for 5-FU and allopurinol
(IS), respectively. Representative chromatograms of AqH spiked with 10.5 ng/mL of
5-FU (LLOQ) and 250 ng/mL of allopurinol (IS) are shown in Figure 4a,b, respectively.
Typical chromatograms of the AqH samples taken from the treated rabbit eyes 2 h after the
instillation of the AMSN-CMC 5-FU Carbopol gel are shown in Figure 4c (for 5-FU) and
Figure 4d (for the IS). The chromatograms in Figure 4c,d show that the peaks of 5-FU and
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allopurinol (IS) were symmetrical in their shape and time of elution. The retention times (Rt)
were 1.13 min and 1.47 min for 5-FU and allopurinol (IS), respectively, when the runtime
was 2.5 min. Since the calculated void volume and dead time for the used column were
0.24 mL and 0.81 min, respectively, the abovementioned retention time was sufficient for
the separation of the analyte and matrix. The developed UPLC–MS/MS method was very
selective, as evidenced by the absence of any noise or interfering peak during the analysis
(due to the matrix or any endogenous chemicals, metabolites, or formulation ingredients).
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Figure 4. Representative chromatograms of 5-FU and the IS in AqH spiked with the LLOQ level
(10.5 ng/mL) of 5-FU (a) and 250 ng/mL of the IS (b); in AqH aspirated at 2 h after the ocular
instillation of the AMSN-CMC 5-FU Carbopol gel (equivalent to 100 µg of 5-FU) in rabbit eyes for
(c,d) 5-FU and the IS, respectively.

3.4.3. Precision, Accuracy and Robustness

Table 2 provides an overview of the precision (intraday and interday), recovery, and
accuracy of the 5-FU measurements at various concentrations of the QC samples (10.5,
30, 350, and 1400 ng/mL) in rabbit AqH. The percentage recovery ranged from 93.07%
to 101.24%, the precision (intraday) ranged from 0.48% to 8.68%, and the accuracy (as
percentage relative error, % RSD) ranged from −6.93% to 1.25%. In the same way, the
precision (interday) in terms of % RSD was in the range of 0.69% to 6.63%. The percentage
recovery ranged from 90.88% to 98.52%, and the accuracy in terms of percentage relative
error (% RE) ranged from −9.12% to −1.48%. The changes in these data were slightly
higher at lower concentrations compared with the higher concentrations of the QC samples.
The non-significant variations in the calculated data indicated the reproducibility, accuracy
and reliability of the method developed for 5-FU determination in AqH samples obtained
from rabbits.

To check the robustness of the method, we performed deliberate alterations (±2 mL for
each) of the mobile phase composition. The developed method proved to be reliable because
there were no significant changes (p < 0.05) in the peak regions and shifting of the retention
time (Rt) of the analyte (5-FU at the MQC level). Likewise, no significant (p < 0.05) changes
in the peak area and shifting of the Rt were noted following moderate alterations of the
flow rate of the mobile phase (±0.02 mL/min). Table 3 presents a summary of the average
values of peak area and Rt (as mean ± SD), SEM, and % RSD following the intentional
modifications. Our findings showed that the mathematical values of the parameters fell
within the estimated acceptable limits for precision and accuracy, as mentioned in the
ICH-Harmonized Guideline for Bioanalytical Method Validation [19].
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Table 2. Intra- and inter-day precision and accuracy for the determination of 5-fluorouracil (5-FU)
with the proposed analytical method.

Spiked
Concentration of

5-FU in AqH (ng/mL)

Measured Concentration,
Mean ± SD, n = 3

(ng/mL)
SEM % RSD Recovery (%) Accuracy (% RE) *

Intraday precision

10.5 (LLOQ) 9.77 ± 0.31 0.17 3.02 93.07 −6.93
30 (LQC) 29.03 ± 2.52 1.45 8.68 96.75 −3.25

350 (MQC) 353.99 ± 5.76 3.33 1.63 101.14 1.14
1400 (HQC) 1417.47 ± 6.82 3.94 0.48 101.24 1.25

Interday precision

10.5 (LLOQ) 9.54 ± 0.11 0.063 1.14 90.88 −9.12
30 (LQC) 27.99 ± 1.86 1.072 6.63 93.32 −6.67

350 (MQC) 344.74 ± 2.98 1.720 0.86 98.50 −1.50
1400 (HQC) 1379.30 ± 9.56 5.522 0.69 98.52 −1.48

* % RE: percentage of relative error.

Table 3. Robustness of the method checked at a 350 ng/mL concentration of 5-FU (MQC). Results are
the means of three measurements with standard deviations (mean ± SD, n = 3).

Mobile Phase
(Acetonitrile: 10 mM
Ammonium Acetate)

Peak Area of MQC Sample (AU) Concentration of MQC
Sample (ng/mL) Retention Time (Rt) (min)

Mean ± SD SEM % RSD Mean ± SD SEM % RSD Mean ± SD SEM % RSD

Composition of the mobile phase

93:7 (v/v) 26,767.0 ± 843.9 487.27 3.15 347.24 ± 5.77 3.33 1.66 1.14 ± 0.03 0.01 2.21
95:5 (v/v) 29,302.7 ± 1009.5 582.86 3.44 350.14 ± 3.81 2.20 1.08 1.13 ± 0.02 0.02 2.23
97:3 (v/v) 28,546.6 ± 518.8 299.56 1.82 348.71 ± 1.21 0.69 0.34 1.12 ± 0.02 0.01 1.35

Rate of flow of the mobile phase

0.28 mL/min 27,313.0 ± 715.4 413.04 2.61 350.31 ± 4.47 2.58 1.28 1.14 ± 0.03 0.02 2.69
0.30 mL/min 28,605.3 ± 1651.8 953.72 5.77 349.74 ± 5.81 3.35 1.66 1.13 ± 0.01 0.01 1.02
0.32 mL/min 28,951.3 ± 916.3 529.01 3.16 350.31 ± 3.23 1.86 0.92 1.15 ± 0.02 0.01 1.33

3.4.4. Recovery and Matrix Effect

The extraction recovery data of the AqH and endogenous substance (matrix) effects at
the LQC, MQC and HQC levels of the 5-FU and IS (250 ng/mL) are summarized in Table 4.
The extraction recovery ranged from 77.06 ± 4.49% to 89.01 ± 4.72% with RSDs from
5.31% to 6.82% at the three selected QC concentration levels for 5-FU, and the extraction
recovery was 78.73 ± 1.61% with an RSD of 2.04% for allopurinol (IS). With an overall
average accuracy of 83.05 ± 5.97% and an RSD of 7.19%, the recovery of 5-FU using the
liquid–liquid extraction technique with ethyl acetate as the organic solvent was good. The
total matrix effects for 5-FU at the three selected QC concentrations were 92.67 ± 2.06%
with an RSD of 2.22%, whereas for allopurinol (IS), they were 95.67 ± 2.78% with an RSD
of 2.91%. Very small variations in such findings suggest that the endogenous substances
present in the rabbit AqH (matrix) did not cause any significant ion-suppression effects, so
the target analytes were successfully quantified [31,32].
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Table 4. Relative matrix effects and extraction recovery for three QC samples of 5-FU and allopurinol
(as the IS, 250 ng/mL) in the AqH of rabbits. The averages of three measurements, with standard
deviations (mean ± SD, n = 3), constitute the results.

Samples
Theoretical

Concentration (ng/mL)
Matrix Effect (%) Extraction Recovery (%)

Mean ± SD % RSD Mean ± SD % RSD

LQC of 5-FU 30 90.45 ± 4.29 4.74 77.06 ± 4.49 5.83
MQC of 5-FU 350 93.04 ± 3.87 4.16 83.09 ± 5.67 6.82
HQC of 5-FU 1400 94.52 ± 3.09 3.27 89.01 ± 4.72 5.31

Overall 92.67 ± 2.06 2.22 83.05 ± 5.97 7.19

Allopurinol (as the IS) 250 95.67 ± 2.78 2.91 78.73 ± 1.61 2.04

3.4.5. Stability

5-FU was stable in the rabbit AqH samples at the abovementioned storage conditions.
The measured and theoretical concentrations of 5-FU were in agreement with each other,
as can be seen by observing the values summarized in Table 5. Under all storage stability
conditions, the values for precision (% RSD), percentage recovery (%), and accuracy (% RE)
were satisfactory compared with the established restrictions.

Table 5. Stability of 5-FU under various conditions in spiked aqueous humor (AqH). The averages of
three measurements, with standard deviations (mean ± SD, n = 3), constitute the results.

Theoretical
Concentration (ng/mL)

Measured Concentration
(ng/mL), Mean ± SD SEM % RSD Recovery (%) Accuracy (% RE)

Short-term (for 8 h at 25 ± 1 ◦C)

10.5 (LLQC) 9.73 ± 1.12 0.64 11.55 92.68 −7.32
1400 (HQC) 1365.51 ± 37.57 21.69 2.75 97.54 −2.46

Freeze–thaw (−80 ◦C to 25 ◦C)

10.5 (LLQC) 9.98 ± 1.42 0.82 14.21 95.01 −4.99
1400 (HQC) 1373.36 ± 43.24 24.96 3.15 98.09 −1.90

Autosampler (for 48 h at 10 ◦C)

10.5 (LLQC) 9.74 ± 1.35 0.78 13.91 92.76 7.24
1400 (HQC) 1372.98 ± 17.91 10.33 1.30 98.07 −1.93

Long-term (for 3 months at −80 ◦C)

10.5 (LLQC) 9.53 ± 1.17 0.68 12.28 90.74 −9.26
1400 (HQC) 1370.59 ± 18.41 10.62 1.34 97.90 −2.10

3.5. Application of the Method

After the topical application of formulations containing 5-FU (5-FU Carbopol gel and
AMSN-CMC gel), the developed LC–MS method was effectively used for the quantitative
detection of 5-FU in the AqH samples collected from rabbit eyes. The average 5-FU
concentrations in the collected AqH samples were calculated and plotted against time at
various time intervals (1, 2, 4, 6, 12, and 24 h) (Figure 5). The pharmacokinetic data were
computed using the PK-Solver software following a non-compartmental, linear trapezoidal
approach to the AqH concentration–time profiles.
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Figure 5. 5-FU AqH concentration versus time profile following topical 5-FU Carbopol gel and
AMSN-CMC gel application in rabbit eyes. The averages of three measurements, with standard
deviations (mean ± SD, n = 3, three animals in each group), constitute the results. * signifies p < 0.05
against the 5-FU Carbopol gel.

According to the comparative pharmacokinetic data of the two 5-FU-containing for-
mulations, the AMSN CMC FU-Carbopol gel had a significantly (p < 0.05) higher ocular
availability of 5-FU compared with the 5-FU Carbopol gel. The AMSN-CMC 5-FU Car-
bopol gel showed statistically significant (p < 0.05) increases in t1/2, Tmax, and Cmax (2.4-,
2.3-, and 1.8-fold, respectively) compared with the 5-FU Carbopol gel. Comparatively,
significantly (p < 0.05) improved (5.3, 5.9, and 13.1 times, respectively) AUC0-24, AUC0-inf
and AUMC0-inf were found for the AMSN-CMC 5-FU Carbopol gel. Additionally, the mean
ocular residence (MRT0-inf) of the AMSN-CMC 5-FU Carbopol gel was 2.2 times higher.

Overall, the pharmacokinetic parameters of 5-FU in the 5-FU Carbopol gel were less
favorable than those of the AMSN CMC 5-FU Carbopol gel. This may have been related to
the relatively quick loss of 5-FU from the simple Carbopol gel preparation in the cornea
and precorneal region, which was also supported by its relatively quick clearance (Cl/F
was 1.17 ± 0.12 mL/h) and comparably shorter MRT (5.21 ± 0.63 h). A higher ocular
bioavailability of 5-FU was revealed by the PK values for the AMSN-CMC 5-FU Carbopol
gel. This was explained by the extended ocular retention brought on by the cationic and
mucoadhesive features of amino-functionalized mesoporous silica nanoparticles, which in
turn improved the cellular uptake of the nanocarriers and raised the ocular bioavailability
of 5-FU.

Our successful quantification of 5-FU for up to 24 h in rabbit AqH indicates the suitabil-
ity of the developed method for the ocular pharmacokinetic study of 5-FU. The selectivity
and robustness of the method were tested, and the concentration range used to obtain
calibration curves was applied to experimentally evaluate the ocular pharmacokinetics
of 5-FU. Generally, large populations of animals are used to obtain ocular tissues from
the AqH or vitreous humor for ocular pharmacokinetic studies, and individual variances
among animals could be the source of experimental errors. Here, the developed method
was successfully used to quantify 5-FU in a limited number of AqH samples. We extracted
AqH samples from the treated eyes of identical rabbits at regular time intervals.

4. Conclusions

To assess 5-FU in the AqH of rabbits, we developed and validated a UPLC–MS/MS
method that is easy to use, sensitive, quick, selective, exact and accurate. Our assay for
5-FU was found to be more sensitive (LLOQ of 10.5 ng/mL) and less time-consuming (total
run time was 2.5 min) than previously used methods. Our method can be utilized for the
5-FU analysis of other clinical or biological samples. Storage conditions did not affect the
analyte concentrations in the spiked AqH samples, and even in our limited number of
AqH samples, the validated method was successfully and efficiently used to determine
the ocular pharmacokinetics of 5-FU following the topical application of 5-FU-containing
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preparations. Because the AqH samples were aspirated in a small number of sedated
animals, further research should apply this method for the 5-FU quantification of AqH
samples in a larger number of awake rabbits.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/separations10060343/s1, Figure S1. Representative LLOQ chro-
matograms of the 5-FU and IS in AqH in samples prepared with the protein precipitation method.
Figure S2. The comparative extraction recovery (%) and matrix effects (%) data of the different
extracting solvents obtained during sample preparation and optimization.
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