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Abstract: Photochemical generation is an important pathway for atmospheric sulfate formation.
However, the roles of atmospheric co-existing photosensitive dissolved organic matter (DOM) in
sulfate formation are still unclear. The experimental results in this work provide evidence that atmo-
spheric photosensitizers produce active intermediates to oxidize S(IV) into S(VI) under illumination.
Quenching experiments of eight photosensitive model compounds (PS) demonstrate that their triplet-
excited states (3PS*) dominate sulfate formation for the photosensitizing pathway with a contribution
of over 90%, and 1O2 plays an important role in sulfate formation. The results using humic acid
(HA) and water-soluble organic carbon in vehicle exhaust particles (WSOC) as representatives of
atmospheric photosensitizers further verify that triplet-excited DOM (3DOM*) is the main reactive
species for sulfate formation, which is consistent with the results of PS. Our findings provide new
insights into the photochemical formation pathways of atmospheric sulfate.

Keywords: atmospheric oxidants; atmospheric sulfate; water-soluble organic carbon; aqueous-phase
oxidation; triplet-excited states; photosensitization

1. Introduction

Globally, atmospheric aerosol nucleation contributes nearly half of all cloud condensa-
tion nuclei, thus having a significant impact on global climate change [1]. Under certain
conditions, nucleated aerosol particles will grow into haze [2,3]. Sulfate is one of the main
components in fine particulate aerosol samples during haze events. Oxidation of SO2 in
the atmosphere produces sulfate aerosol particles, which can lead to air quality, climate,
human and ecosystem health problems [4].

The formation of sulfate particles depends on several factors, including solar radia-
tion, the background aerosol and volatile organic compound (VOC) concentrations, the
availability of NH3, the temperature and the humidity [5]. As a precursor of sulfate, SO2 is
extremely soluble in atmospheric water and forms SO2·H2O, HSO3

− and SO3
2−, which

increase the concentration of sulfate through the liquid phase oxidation pathway of SO2
in the atmosphere [6]. Some monitoring data have shown SO4

2− concentrations in cloud
droplets ranging from 17.3 to 211 µM [7], but some studies have also claimed that the
average SO4

2− concentrations in clouds, fog and rain observed in Southern California
range from 9.4 to 475 mM [8]. The significant enhancement in sulfate concentrations ob-
served in haze events since the 2013 Beijing haze incident has led to a growing interest
and demand for studying sulfate formation mechanisms among scholars. Traditionally,
sulfate formation mechanisms primarily include gas phase oxidation of SO2 by ·OH and the
aqueous oxidation of S(IV) by H2O2, O3, organic peroxides and O2 catalyzed by transition
metal ions (TMIs), such as Fe(III) and Mn(II), in cloud or fog water droplets [9]. However,
the mechanisms behind sulfate formation remain poorly described, and its yield is also
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underestimated [10], indicating that many important pathways related to atmospheric
sulfate formation have not been fully revealed.

In recent years, the triplet-excited state of dissolved organic matter (3DOM*) in at-
mospheric liquid water (cloud droplets, mist droplets or aerosol water) has attracted a lot
of attention as a special oxidant involved in liquid-phase photochemical reactions [11,12].
Xue et al. [13] and Wang et al. [14] suggested that atmospheric microaqueous reactions
may contribute significantly to sulfate production. Photochemistry has been proposed
as an important chemical trigger in tropospheric particles, and it has been emphasized
that several photochemical mechanisms of sulfate production mainly occur in the liquid
phase. Atmospheric brown carbon, mainly derived from forest fires, biomass burning and
biorelease, was shown to act as a photosensitizer and produce a variety of reactive interme-
diates to modify the oxidation capacity and highlighted the positive dependence of sulfate
production on relative humidity (RH) [15]. Wang et al. found that the triplet-excited state
could induce the conversion of SO2·H2O and HSO3

− to sulfate through energy transfer,
electron transfer or hydrogen atom extraction through liquid-phase reactions, suggest-
ing that the photosensitization pathway may make a significant contribution to sulfate
formation [16]. 3DOM* in natural water bodies promotes the photochemical oxidative
degradation of pollutants in an aqueous environment [17,18]. Similarly, the atmospheric
microaqueous phase can receive stronger sunlight, and the role played by atmospheric
photosensitizers is gradually being emphasized. In fact, the discussion of the liquid-phase
photosensitization pathway of sulfate in the atmosphere is still very limited. Although its
important contribution has been recognized, the specific photosensitization mechanism is
uncertain, and the atmospherically relevant affecting factors have not been investigated.

As the main driver of the sulfate photosensitization pathway, the types of photosensi-
tizers in the atmosphere are closely related to local agricultural and industrial conditions.
Many substances in the atmosphere can absorb light to produce 3DOM*, such as phenyl
ketones [19], aromatic aldehydes [20] and benzoquinones [21]. These photosensitizers
can produce certain photosensitizing effects in the atmosphere, which may impact sul-
fate formation. However, the effects of different photosensitizers on sulfate formation
remained unclear.

This study examines the effects of photosensitizer model compounds (PS) and real
environmental sample agents on sulfate formation under irradiated conditions. Active
substance quenching experiments are carried out using eight types of PS, including phenyl
ketones, benzaldehyde and benzoquinones, and the active intermediates in the reaction
system were determined. The effect of atmospheric co-existing ions on the sulfate pho-
tosensitive formation pathway is studied by adding different concentrations of Cl− and
NO3

−. In addition, the mechanism of photosensitized reactions of S(IV) with real envi-
ronmental substances was explored based on the photochemical reactions of humic acid
(HA) and water-soluble organic carbon in vehicle exhaust particles (WSOC) as agents of
real environmental samples. This work reveals a potentially important force for atmo-
spheric photosensitizers to drive haze events, particularly for regions with high vehicle
exhaust emissions.

2. Materials and Methods
2.1. Chemicals

All chemicals were used as purchased; 4-benzoylbenzoic acid (CBBP, C14H10O3,
99%), 3′-methoxyacetophenone (3-MAP, C9H10O2, 99%), 4′-methoxyacetophenone (4-MAP,
C9H10O2, 98%), benzophenone (BP, C13H10O, 99%), xanthenone (Xan, C13H8O2, 98.8%),
1,4-naphthoquinone (NP, C10H6O2, 99%), p-benzoquinone (PBQ, C6H4O2, 99%) and tetrahy-
drofuran (THF, C4H8O, 99.5%) were purchased from Aladdin Inc. (Shanghai, China), 3,4-
dimethoxybenzaldehyde (DMB, C9H10O3, 98%) and sorbic acid (SA, C6H8O2, 99%) were
purchased from Rhawn (Shanghai, China), humic acid (HA, Cat no. 449752) was purchased
from Sigma-Aldrich (Shanghai, China), tert-butanol (TB, C4H10O, 99.5%) was purchased
from Macklin (Shanghai, China), and other reagents were purchased from Sinopharm
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Chemical Reagent Co., Ltd. (Shanghai, China). In addition, all solutions were prepared
using ultrapure water (18.2 MΩ·cm). We configured these hazardous chemical solutions in
a fume hood and wore gas masks.

2.2. Environmental Sample Collection and Extraction

Particulate matter from vehicle exhaust was collected from the auto vent pipes of
many vehicles traveling in Kunming, Yunnan Province. The collected particulate matter
samples were placed in brown glass bottles, mixed well and stored away from light to dry.
Then, 0.5 g of pellets were placed in a conical flask with 250 mL of ultrapure water and
mixed by stirring and shaking in a constant-temperature shaking incubator at 25 ◦C for
24 h. The solid-liquid mixture was removed, and the suspension was filtered through a
0.45 µm polyethersulfone (PES) membrane before the filtrate (as WSOC stock solution)
was collected and stored in a brown polyethylene bottle at 4 ◦C under refrigeration and
protected from light. The dissolved organic carbon (DOC) concentrations of of WSOC
stock solution and HA (commercial chemical, in Section 2.3) were determined by TOC
using a CD-800S total organic carbon analyzer from Hangzhou Qikun Technology Co.
(Hangzhou, China).

2.3. Photochemical Experiments

An OCRS-PX32T merry-go-round photochemical reactor (Kaifeng Hongxing Technol-
ogy Co., Ltd., of Henan province of China) was employed, with quartz tubes to contain
the investigated solutions. A water-refrigerated, 500 W high-pressure mercury lamp sur-
rounded by 290 nm cutoff filters was used as the light source. The irradiation spectral of the
light source were reported in our previous study [22], and the main irradiation wavelengths
consist of 297, 302, 313, 334, 365 and 366 nm. The average light intensity at the center of the
solution was 0.23 mW/m2 [22].

The initial concentration of NaHSO3 in the photochemical experiment was 1 mM.
CBBP, Xan, BP, 4-MAP, 3-MAP, DMB, NP and PBQ (80 µM) as PS were employed to investi-
gate the reactivity between S(IV) and the model photosensitizers′ triplet-excited state (3PS*).
HA and WSOC were used as DOM representatives, and the initial concentration of DOM
was set at 10 mg C/L, falling within the typical range in the natural atmosphere [6]. H2SO4
and NaOH were used to keep the pH of the investigated solutions to a meteorological water
value of six [7,23,24]. Pure water control experiments were performed under the same
conditions to see if S(IV) underwent oxidation other than the photosensitive transformation.
Aliquots were removed at the same selected intervals for further analysis. Each set of
experiments was repeated three times.

To clarify the role of the reactive substances (RSs), quenching experiments were
performed by adding 5 mM sorbic acid (SA) to quench the 3DOM* [25], 5 mM tert-butanol
(TB) to quench the ·OH [26] or 5 mM tetrahydrofuran (THF) to quench the 1O2 [27]. Aliquots
were removed at selected intervals for further analysis.

2.4. Analytic Methods

The SO4
2− and SO3

2− concentrations in quartz cuvettes in a photochemical reactor
were analyzed using an ion chromatograph (Shunyu Hengping IC1800, Shanghai Shunyu
Hengping Instrument Co., LTD., Shanghai, China). The system was equipped with an
AS256 anion analysis column and an AES-100 anion suppressor. The reacted samples were
sent to the ion chromatograph (IC) for SO4

2− and SO3
2− detection after the addition of

0.1% formaldehyde (HCHO) to protect the S(IV). The anions were determined at a flow
rate of 1 mL/min using an eluent of 2.0 mM Na2CO3 and 8.0 mM NaHCO3. In addition,
both the Na2CO3 and NaHCO3 used in the IC eluents have chromatographic-grade purity.
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2.5. Kinetic Analysis

The observed transformation rate constants for the conversion of S(IV) could be
expressed as in Equation (1):

ln(Ct/C0) = −kobst, (1)

where kobs (s−1) is the pseudo-first-order rate constant of the S(IV), t (s) is the reaction time,
Ct (M) is the concentration of S(IV) at t and C0 (M) is the initial concentration of S(IV).

3. Results and Discussion
3.1. Transformation Kinetics of S(IV) with Triplet Photosensitizers

As shown in Figure 1, a significant increase in S(VI) was observed in the presence
of photosensitive substances. The difference between the pure water and PS irradiated
conditions suggests that the photosensitized substances promoted S(VI) production under
illumination. The selected PS were triplet-excited precursors [19–21], which indicates that
the increase in S(VI) could be attributed to the reactions between 3PS* and S(IV). It has been
reported that 3PS* can also generate a variety of reactive oxidizing species (ROS) in the
system through energy transfer or electron transfer, including 1O2, ·OH, ·HO2, ·O2

− and
H2O2 [28,29], which may affect the transformation of S(IV). For this reason, the roles of
3PS* and ROS in the transformation of S(IV) to S(VI) need to be further explored.
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Figure 1. Comparison of observed sulfate concentration (c(SO4
2−)) in different PS solutions

(PS = 80 µM, S(IV) = 1 mM and pH = 6).

3.2. Roles of Reactive Intermediates in Sulfate Production by Photosensitizers

Quenching experiments were conducted to study the photosensitive active intermedi-
ates among eight types of PS (Figure 2) and to explore the mechanism of the liquid-phase
photosensitive pathway of S(IV).
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Figure 2. Observed first-order photodegradation rate constants (kobs) of S(IV) in different PS systems
(S(IV) = 1 mM, PS = 80 µM, TB = 5 mM, THF = 5 mM, SA = 5 mM, pH = 6, and radiation time = 30 min).
The error bars represent each sample′s standard deviation.

In the presence of CBBP, Xan, BP, 4-MAP, 3-MAP, DMB, PBQ or NP, the kobs values
decreased by 15.5%, 20.6%, 6.5%, 9.1%, 1.96%, 19.6%, 5.9% or 7.7% with the addition of
TB as a quencher of ·OH. This observation indicates that PS can convert S(IV) through
the photosensitized production of ·OH. Although ·OH controls the natural atmospheric
oxidation capacity under most atmospheric conditions [30,31], and the gas-phase pathway
of sulfate aerosol production is mainly through the reaction of SO2 with ·OH [32], our work
suggests that ·OH plays a minor role in the indirect photochemical conversion of S(IV).

When THF was added as an 1O2 quencher, the kobs value decreased by 20~60%. It
was observed in PBQ that 1O2 quenching resulted in a decrease of about 60% in kobs,
which was the largest decrease among the eight types of PS. The kobs of CBBP and 3-MAP
decreased the least (about 20%), but overall, the effect of 1O2 was significantly greater than
the contribution of ·OH. This observation indicates that 1O2 plays a nonnegligible role, and
the contribution of several PS to 1O2 is various, which is attributed to the difference in the
energy transfer ability of 3PS* [33].

With the addition of SA as a 3PS* quencher, kobs decreased by more than 95% in
all systems. As SA is a well-known triplet-excited state quencher, 3PS* is inferred to be
predominant in inducing indirect photoconversion of S(IV). Wang et al. [16] also indicated
that atmospheric 3DOM* played a main role in the photoconversion of S(IV). The addition
of SA almost completely inhibits kobs, and therefore we inferred that the ·OH and 1O2 in the
system were derived from the electron transfer and energy transfer of 3PS*, which confirms
the role of 3PS*.

It has been reported that 3PS* has a strong oxidation potential (reduction potential
of 1.4–1.9 eV [34]) and high energy (250 kJ/mol on average [35]), and thus it can directly
degrade pollutants through oxidation or energy transfer. The difference of kobs correspond-
ing to various PS is mainly attributed to different kinds of 3PS* redox potential [7,36–38]
and the sensitivity of S(IV) to oxidants (E0 = −0.93 V), which may also be affected by the
functional groups in PS.
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3.3. Atmospheric Co-Existing Ions Influence Sulfate Photosensitization

The co-existing constituents (e.g., Cl− and NO3
−) in atmospheric waters may affect

the transformation of S(IV) because of their importance in photochemical reactions [39–41].
Therefore, the effects of Cl− and NO3

− on S(IV) transformation were investigated (Figure 3).
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different PS solutions and in different ions (PS = 80 µM, S(IV) = 1 mM, pH = 6 and radiation time =
30 min). The error bars represent each sample′s standard deviation.

As shown in Figure 3, the changes in kobs for BP, DMB and NP were less than 6.8%
when the concentration of Cl− was less than 1 mM, indicating that the low concentration
of Cl− had little effect on S(VI) generation. In contrast, when the concentration of Cl− was
increased to 10 mM, the kobs of BP, DMB and NP increased by 13.1%, rose by 30.8% and
decreased by 2.6%, respectively, indicating that there were differences in the effects of high
concentrations of Cl− on the different types of PS. Parker and Mitch reported that 3DOM*
contributes to the formation of RHS, which in turn affects the oxidation of certain added
organic compounds, and using a range of free radical quenchers, they found a strong linear
relationship between 3DOM* and RHS [26]. Therefore, we inferred that Cl− may accelerate
the oxidation of S(IV) by generating chlorine radicals.

Nitrate is a prevalent component of atmospheric aerosol particles [42], Nitrate′s con-
tribution was larger in a coarse fraction compared with PM2.5 instead of sulfate. Actually,
there is a balance between nitrate and sulfate that depends on their concentrations of am-
monium and on the meteorological conditions, as ammonium nitrate is relatively thermally
unstable [43]. Multiphase photochemical oxidation of SO2 via photolysis of nitrate particles
can make an important contribution to the formation of aerosol sulfate [44]. Therefore,
it is of great importance to elaborate upon the effect of different concentrations of NO3

−

on sulfate in the presence of photosensitizers for us to investigate the specific mechanism.
With the difference in kobs between NO3

− and Cl− at the same ion concentration (Figure 3),
we speculated that S(IV) oxidation was more affected by NO3

− than Cl−. Compared with
a <0.5 mM ion concentration, the same concentration of NO3

− resulted in increases in kobs
all greater than 10%. Obviously, the addition of NO3

− clearly had a stronger impact. In
fact, there was an overall upward trend in kobs after the addition of NO3

−. When 10 mM
of NO3

− was added, kobs increased by 29.8%, 20.9% and 17.2% for BP, DMB and NP, re-
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spectively. As a result, we suggest that the addition of NO3
− had a dramatic effect on kobs.

NO3
− is inherently photochemically active in the photochemical range (i.e., λ > 290 nm)

and can photolyze to produce highly reactive substances such as NO2, ·OH and N(III)
(NO2

− or HNO2) [45], all of which have an oxidizing effect on S(IV). It can be inferred that
in our work, it is the effect of the photolysis of NO3

− superimposed on the excited triplet
state, rather than the conversion of other reactive substances caused by the excited triplet
state as a precursor.

3.4. Sulfate Formation Promoted by DOM under Irradiation

Several pathways have been proposed to explain the sources of humic substances,
including direct emissions from terrestrial or aquatic sources and biomass or fossil fuel
combustion, as well as secondary production from the oxidative oligomerization of small
organic molecules through atmospheric chemistry [46–48]. WSOC and HA were used as
representatives of atmospheric DOM to explore the photosensitive conversion of S(IV).

In the pure water control, no significant S(VI) production was observed, while the
ln(Ct/C0) linear regression against time (t) indicated that photoconversion of S(IV) followed
pseudo-first-order kinetics (R2 > 0.95). The kobs values observed in pure water were
(0.11 ± 0.08) × 10−4 s−1, and for HA and WSOC, the kobs values were (1.05± 0.09)× 10−4 s−1

and (1.18 ± 0.02) × 10−4 s−1, respectively, as shown in Figure 4. Thus, the photogeneration
rate of S(VI) in solutions containing DOM was much higher than in pure water, indicating
that DOM is an effective photosensitizer for the photoconversion of S(IV).
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different DOM solutions (S(IV) = 1 mM, DOM = 10 mg C/L, TB = 5 mM, THF = 5 mM, SA = 5 mM
and pH = 6). The error bars represent each sample′s standard deviation.

In the WSOC quenching experiments, the addition of TB, THF and SA resulted in a
reduction in kobs of 15.5%, 50.3% and 92.1%, respectively. In the HA quenching experiments,
the addition of THF and SA resulted in a kobs reduction of 39.1% and 92.1%, respectively.
This achieved a high degree of agreement with the results of our quenching experiments
for the photosensitizer model compounds. Significantly, in the quenching experiments
of HA with ·OH, we found that the kobs was (1.40 ± 0.04) × 10−4 s−1 after the addition
of TB, which was 33.7% expanded compared with the kobs without quenching, which
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seems to be different from the results of our previous work. It has been suggested that
alcohols as scavengers may have produced substances such as H2O2 during the scavenging
process, leading to a wrong estimation of the ·OH concentration [49], which together with
the complex composition of HA increased the possibility of H2O2 generation, resulting in
higher kobs values after quenching than without the quencher instead.

4. Conclusions

In this work, we derived a rational pathway for the liquid-phase photosensitive
oxidation of S(IV) and demonstrated that 3DOM* dominates the generation of S(VI). In
this process, 3DOM* can directly convert S(IV) to S(VI), which is its main mechanism.
Moreover, 3DOM* can also generate 1O2 through energy transfer, which indirectly leads
to S(IV) conversion, and this can even account for 50% of the conversion. Furthermore,
3DOM* is also capable of indirectly oxidizing S(IV) via electron transfer by generating
very little ·OH. Previous studies [21] have documented that the concentration of triplets in
typical fog water is much higher than the ·OH concentration, making the triplet state the
main photooxidant.

To our knowledge, the liquid-phase photo-oxidation pathway for SO2 has been ex-
plored to a very limited extent. In this work, we propose that an alternative pathway for
sulfate aerosol generation is the photosensitive conversion of DOM in the atmospheric
microaqueous phase, which as a new finding for rapid sulfate formation in the atmosphere
can be considered an effective driver of haze events. More importantly, we demonstrate
that the atmospheric DOM acts as a potential generator of ·OH, 1O2 and 3DOM* in the
troposphere under solar illumination. Therefore, more detailed studies are needed to
understand the homogeneous and non-homogeneous photochemistry associated with
atmospheric DOM.
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