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Abstract: This work reports the effect of scaling up annular centrifugal contactors (ACCs) upon the
residence time distribution and the efficiency of extraction of uranium. The experiments were carried
out in a multi-scale ACC platform of three ACCs with rotor diameters of 12, 25, and 40 mm. To enable
direct comparison across all three scales of ACC, the residence time distributions were acquired by
injecting dye into the solvent phase at a constant relative volume related to the ACC liquid holdup.
Across all scales and flowrates, there was little difference in residence time distribution (<6 residence
volumes), except for the smallest 12 mm rotor diameter ACC with a high solvent/aqueous feed
ratio, which required 12 residence volumes, potentially due to internal circulation in the annulus.
At low flowrates, the stage efficiency in all cases was >95%, and it improved further in larger rotor
diameter ACCs.
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1. Introduction

Liquid-liquid extraction is the name chosen by the International Union of Pure and
Applied Chemistry (IUPAC) [1]. Liquid-liquid extraction (LLE), which is synonymous with
solvent extraction, ‘is the process of transferring a dissolved substance from one liquid
phase to another (immiscible or partially miscible) liquid phase in contact with it [2]’ and
shown in Figure 1. The solute ‘material can be partitioned into specific fractions which can
be extracted selectively by using appropriate reagents’ in the process known as Sequential
Solvent Extraction [3] or Selective LLE.
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Figure 1. Schematic diagram of Liquid-Liquid Extraction [3].

Liquid-liquid extraction (LLE) has become the preferred method for isolating ura-
nium and plutonium from irradiated fuel in the nuclear fuel cycle (known as reprocessing
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within nuclear engineering), surpassing precipitation/recrystallization methods. Batch-
wise single-stage extractions performed in chemical laboratories, at a small scale for an-
alytical validation of methods, involve contacting the solution loaded with solute with
an immiscible solvent that contains a ligand. The transfer of the solute is driven by a
favourable chemical potential for the solute to form a new complex in the solvent containing
the ligand.

Traditionally, there are two physical limiting forces for LLE; the mass transfer between
the two bulk solutions and the separation of the two solutions by gravity. The intensification
of mass transfer is achieved by increasing the surface area of both phases, which is achieved
through agitation to produce a dispersion of fine droplets of both phases. However, a
dispersion cannot be separated and results in undesirable entrainment, which would
require further processing. The driving force for resolving the dispersion, known as
coalescing, is a function of the density, also known as volumetric mass density or specific
mass, which is a function of the gravitational force applied to the droplets. Currently, the
industrial benchmark technologies for LLE are mixer settlers and pulsed columns, both of
which rely on gravity and large settling tanks.

Process intensification has been described as ‘the development of novel appara-
tuses and techniques that compared to those commonly used today are expected to
bring a dramatic improvement in [ . . . ] processing substantially decreasing equipment
size/production capacity ratio or waste production, and ultimately resulting in cheaper
sustainable technologies [4]’.

Process intensification of LLE through increasing the gravitational force reduces the
time to resolve the dispersion of two immiscible phases. This results in a reduction in
both size and volume of the vessel required [5], known as a settling tank or settling zone.
This effect can be achieved through an annular centrifugal contactor (ACC), also known as
an annular centrifugal extractor. Alternatively, microfluidic devices are another form of
process intensification for LLE that are worthy of note [6], but they are not in the scope of
this work. The Advanced Fuel Cycle Programme, which was part of the UK government’s
Department for Business, Energy, and Industrial Strategy’s Energy Innovation Programme,
was tasked with the mission of increasing the sustainability of nuclear energy whilst
simultaneously minimising the environmental footprint [7]. In the broader context, nuclear
energy is part of the solution of removing carbon dioxide from the atmosphere, producing
low-carbon emission energy and reaching the legally binding ‘net zero’ commitments [8].
An aim of the Advanced Fuel Cycle Programme was to develop advanced technologies for
recycling spent fuels in the nuclear fuel cycle [8–10].

ACCs are considered as the likely advanced technology for future chemical-separation
recycling plants [10,11], as they offer advantages over mixer settlers and pulsed sieve-plate
extraction columns [12]. These features make a comparatively more efficient and compact
design, figuratively shown in Figure 2.
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The main features of an ACC are;

• high shear,
• high-efficiency mixing zone,
• an enhanced separation zone, using centrifugal force that is 200× greater than gravity.

An ACC consists of two cylinders: the outer cylinder is stationary, and the inner hollow
cylinder containing static vanes rotates (Figure 3) [5,11,14]. The space between the two
cylinders produces an annular mixing region. Typically, two immiscible liquids of different
densities are pumped into the annular mixing zone, the void between a stationary outer and
an inner rotating cylinder [15,16]. The revolution of the rotor creates a high-shear mixing
zone within the annulus and breaks up the two phases into a fine dispersion. The inner
cylinder rotation provides sufficient shear to induce Taylor vortexes through turbulent flows
and destabilises Couette flow regimes [17]. The internal cylinder rotation simultaneously
provides a vertical pumping motion, forcing the fluids downwards, drawing them up into
the hollow inner rotating cylinder using guide vanes. The centrifugal force within the inner
rotating cylinder then separates the two phases.
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Figure 3. Labelled diagrams of an ACC, (a) the housing labelling showing the inlet, annulus mixing
zone between the static wall and the rotor, (b) the inner hollow rotor in which the mixed dispersion
is resolved and the weir in which the phases are separated.

In 1993, the Atomic Energy Authority Technology conducted initial testing of a
55 mm RD Oak Ridge National Laboratory ACC for reprocessing research in the UK [18].
British Nuclear Fuels Limited tested ACCs in the mid-1990s; this led to the development
of 1 cm RD Institute of Nuclear and New Energy Technology ACCs and their adoption
for flowsheet testing due to their small sizes, which simplifies their use in several active
research facilities [19–24]. Flowsheet testing in other research establishments generally
uses similarly small ACC cascades [25–29]. Future reprocessing plants may need >20 cm
RD ACCs. There are large differences in the scales between laboratory scale flowsheet
demonstrations and commercial processes. Knowledge of the effect of scale is necessary to
understand process scale-up [14].

There is a body of work in the literature on the hydrodynamics and kinetics of ACCs.
However, only one described the experimental evaluation across scales, yet this work
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did not specifically look at mass transfer. In a recent review by Vedantam and Joshi in
2006 ACCs, it was stated that ‘relatively scanty information is available on the detailed
quantitative flow pattern in single and multiphase flows, mixing and axial mixing, mass
and heat transfer coefficients, and drop and bubble size distribution [30]’. The gap in how
this equipment scales means that any work predating the commissioning of the multi-scale
ACC platform will require unification. Additionally, without a complete understanding of
the velocity flow fields of an ACC, it is possible to predict the residence time distribution;
this requires a suitably validated model and is computationally expensive.

ACCs offer potential significant size advantages over mixer settlers and pulse columns.
It is known that ACCs have short residence times that minimise radiation damage to the
organic phase [31,32], but they are sensitive to solids, so improved feed conditioning is
expected to be necessary. The short resistance times of ACCs minimise contact times
between highly radioactive streams that reduce the solvent dose. Understanding ACC
behaviour across sizes is important to be able to relate small-scale laboratory flowsheet
development studies to pilot scale tests and the larger plant scale. Understanding the
relationship between ACC size, flowrate, and stage efficiency will allow for the design
of processes with the correct number of ACC stages. Whilst understanding the effect of
S/A inside ACCs and resistance distribution time will allow for improvements in ACC
and process simulations [7]. The modelling developments will lead to improvements in
the following ways. CFD modelling to understand hydrodynamic behaviour and process
modelling improvements will allow for a more accurate simulation of the mass transfer
and the simulation of chemical reactions that occur inside the ACC on timescales that are
similar to the residence times in the ACC [7,33–38].

This work at the University of Leeds examined the effect of scaling up ACCs in terms
of their residence time distributions and extraction efficiency. It includes the construction of
a multi-scale ACC platform, figuratively shown in Figure 4. This platform was developed
under the Advanced Fuel Cycle Programme to support the decision on whether ACCs
should be used in any Fourth Generation Nuclear Reprocessing plant by producing data to
underpin the scale-up of flowsheet models from lab scale to plant scale [39].
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2. Materials and Methods
2.1. Construction of the Multi-Scale Contactor Rig

A single platform, known as the multi-scale contactor rig (MSCR), was built to use the
auxiliary equipment and instruments across multiple scales. The three sizes of ACC were
obtained from the BXP series from the commercial supplier Rousselet-Robatel:

• 12 mm RD,
• 25 mm RD,
• 40 mm RD.

The selected ACCs were installed in the Leeds Nuclear Laboratory, and their operating
envelope is summarised in Table 1.

Table 1. ACC parameters on the MSCR.

Rotor Diameter 12 25 40 mm

Maximum
rotor speed

10,000 4000 3000 RPM
(670) (223) (200) (G)

Bowl volume 2.2 19 110 mL

Heavy phase weir 7.5 15.5 25.5 mm

Maximum total throughput 33 166 833 mL/min

Minimum total throughput >3.3 13 83 mL/min

Vanes in mixing zone 4 6 6 -

Height 295 482 792 mm

Width 100 170 312 mm

Weight 5 25 50 kg

Metering pumps were chosen to match the existing United Kingdom National Nuclear
Laboratory capabilities [25], and the Q1 1/4” piston diameter pump head (FMI Product
QH312N2P0000) was specifically chosen to provide the lowest flowrate of the smallest
contactor and the highest flowrate of the largest contactor; from 0.22 to 432 mL/min.
However, a key learning from this multi-scale rig would be to use smaller pump heads for
lower flows, as recalibrations were required after each run on the smallest ACC. A skeleton
drawing of the configuration, Figure 5a, shows the four tanks at the back; one aqueous feed
tank with an agitator for suspending solids, one solvent feed tank, and two receiver tanks
for the outlet streams. Figure 5b shows the proposed arrangement of the non-active feed
tank, pumps, ACCs, and control units.

The bund was constructed from stainless steel. The stand was built from a metal
framing system that was 100% reusable, 100% adjustable, and required no welding or
drilling, as shown in Figure 5c. The stand was powder coated to prevent corrosion if
accidental spillages occurred.

Figure 5d shows the MSCR as built, upon which testing commenced. The as-built
iteration included a Perspex panel upon which the ACC rotor control boxes were mounted
for accessibility for emergency shutdowns, and the pumps were also placed upon the floor
of the bund for accessibility to the pump head while reducing the number of pipe bends,
which could result in pressure drops that cause the pumps to stall. The deconstructed
12 mm RD ACC is shown in Figure 6a, and the three sizes of ACC in place are shown in
Figure 6b. A complete list of all the components can be found in the Supporting Information.
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2.2. Materials

Uranyl nitrate hexahydrate (UO2(NO3)2.6H20, 98–102%) was procured by ABSCO
Ltd., UK, from International Bio-Analytical Industries, Inc., Boca Raton, FL, USA. Nitric
acid (>65%, Analytical Reagent, catalogue number 20429.320) and tributyl phosphate
(≥99.0%, catalogue number 304886L) were supplied by VWR International. Brenntag
supplied Exssol D-80 kerosene (catalogue number EXX0080NF). All materials were used
without purification.

2.3. Uranium Solvent Extraction Batch Test

The batch test was performed in a beaker (100 mL), to which the corresponding
volumes for a desired S/A were added to an initial aqueous solution of uranium (10 g/L)
in nitric acid (1.5 M) in contact with tributyl phosphate (30 vol%) in kerosene (branded
Exxsol D-80) with a magnetic stirrer (4 cm). The beaker was placed on a stirrer plate and
stirred at 500 RPM for 20 min at room temperature (19 ± 3 ◦C). The mixture was poured
into a separator funnel (50 mL), swilled to force droplets down the sides, and was then
allowed to settle for 10 min. The two phases were disengaged, and the samples were placed
on a benchtop centrifuge at 6500 rpm for 150 s.

2.4. UV Vis Spectrometer

The Spectrometer Assembly (FLAME-S-UV-VIS, 200–850 nm) with thermoregulator
(USB-TC) was connected to a High Power MINI Deuterium Tungsten Halogen Source
w/shutter (200–2000 nm) via cuvette holders (either 1 cm path or 10 cm) with 400 um
Fiber, solarization-resistant (2 m, P400-2-SR). The system was turned on for 20 min before
capturing the first spectrum to ensure the lamp and spectrometer achieved operating
temperatures. For the captured spectra, the reference sample was used to collect the
background, the ‘integration time’ was set to 45 ms, and the ‘scans to average’ was set to 5.
Then, the lamp shutter was closed and a dark spectrum was taken.

Two UV-Vis calibrations were produced to allow the quantification of uranium in
nitric acid and 30%TBP in D-80 kerosene. The aqueous calibration was prepared by
volumetric dilution of a commercial uranium standard (Fishersci 12946434). The sol-
vent calibration was carried out by preparing a series of uranium-loaded TBP in D-80
kerosene samples using different aqueous uranium concentrations. The final aqueous
uranium concentration was determined using the aqueous calibration and solvent uranium
concentrations calculated.

2.5. Titrations

Titrations were manually performed using a burette (50 ± 0.1 mL) charged with
0.1 M NaOH standard solution. To a beaker (100 mL), a sample of aqueous or solvent
(1 mL) was added. Then, deionised water (9 mL) and phenolphthalein (2 vol%, 2–3 drops)
in ethanol solution (Honeywell Fluka 74760-100 ML) (3 drops) was added. The sample
was titrated with 0.1 M NaOH standard solution. The endpoint was determined upon the
sample colour changing from colourless to pink and the volume of titrant was documented.
For completeness, the free acidity was also determined by titration of 1 mL samples added
to 9 mL of 1 mol/l KF using 0.1 mol/l NaOH. These results were consistent with those
expected and are not reported.

2.6. Residence Time Distribution Experiments and Liquid Holdup within ACC Housings

Solvent samples were taken from the solvent phase outlet over designated time steps.
The aqueous feed tank was charged with water and the solvent feed tank was charged
with D-80 kerosene. The centrifuge motor was started, the aqueous pump was started at its
desired flowrate and was allowed to run for 5 min, and then the solvent pump was started
and allowed to run for 10 min, at T = 0 s the dye (Sudan Blue II 0.4 g/L in D-80 kerosene)
was injected by hand by a single, quick depression of the syringe plunger into the solvent
inlet using a tee-piece connected to a syringe. At the end of an experiment, the pumps and
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centrifuge were stopped and the liquid holdup within the contactor housing was measured
using measuring cylinders (25 ± 0.5 mL and 10 ± 0.2 mL) and syringes (2 ± 0.1 mL).

2.7. Uranium Solvent Extraction with ACCs

The aqueous feed tank was charged with aqueous uranyl nitrate (10 g/L) in nitric
acid (1.5 M). The solvent feed tank was charged with reagent grade TBP (30 vol%) in D-80
kerosene. The centrifuge motor was started, at T = 0 min the aqueous pump was started
at its desired flowrate, at T = 5 min the solvent pump was started; at T = 25 min, liquid
samples were taken from the aqueous phase outlet and solvent phase outlet over desig-
nated time steps. The samples were volumetrically measured using measuring cylinders
(100 ± 0.5 mL and 10 ± 0.1 mL). At the end of the experiment, non-active feed containing
no uranium was pumped through the ACCs at high flowrates to decontaminate the ACCs.

2.8. Working with Open Sources of Ionising Radiation

All work with radioactive substances at the University of Leeds is carried out under a
strict management protocol to ensure compliance with health, safety, and environmental
legislation. Ionizing radiation is radiation that has the power to charge (ionize) atoms. In
the human body, this ionization can cause adverse health effects such as the induction of
cancer. The risk of an adverse health effect is related to the level of exposure to radiation,
and the risks are, therefore, controlled by limiting the exposure of workers to radiation.
Radiation workers have to complete radiation safety training, log risk assessments, or-
der and confirm the receipt of sources, record the usage of sources, and log radioactive
waste disposal.

Only individuals holding a valid University of Leeds Radiation Work Permit are
permitted to handle unsealed radioactive substances. The University’s permits for radiation
work, issued under the Environmental Permitting Regulations 2010, specify that ‘Best
Available Techniques’ must be used to minimize the radiological impact of discharges on
people and the environment. Contamination control techniques are used to minimize the
creation and spread of contamination, as follows:

• Careful dispensing and handling of any material to minimize the risk of contamination.
• Immediate disposal of any contaminated tips, syringes, etc.
• Containment of any samples created in a secondary container such as a plastic bag

or box.
• Storage or disposal of any stocks and samples not in use as soon as practicable.
• A radiation monitor is used to identify any contaminated areas or equipment.

3. Results and Discussion

Volumetric holdup is a term used in chemical engineering to describe the amount
of liquid within a reactor; in this manuscript, it is the amount of liquid within an ACC.
It represents the actual liquid volume rather than using the static free space available
in an ACC. It is an important parameter in the design and optimization of chemical
processes that involve the flow of liquids, as it affects the efficiency of mass transfer and
reaction kinetics.

During the operation of an ACC, the volumetric holdup varies due to several fac-
tors; the void volume in the bowl [40], the ratio of solvent, total throughput, and the
solvent/aqueous (S/A) ratio. As ACCs operate with high shear mixing and centrifugal
force, the liquid holdup is reduced relative to the void volume. The equipment may also
suffer from stagnant regions within the vessel, internal recirculation, or a channelling
of the fluid. Ideally, understanding these flow types would improve the mass transfer
performance and stage efficiency modelling. For a given system, different molecules that
enter a vessel will have a range of residence times, with some molecules exiting almost
immediately, while others remain in the system much longer. The distribution of these
times is known as the fluid’s residence time distribution (RTD) and is measured in s−1.
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In this work, there were three specific techniques to determine two of the factors
affecting the performance of ACCs:

1. Residence time
2. Volumetric holdup
3. Residence time distribution
4. Extraction stage efficiency of uranium (in the species of uranyl nitrate item)

An experimental matrix, as shown in Table 2, was developed to encompass an extreme
operational range of S/A ratios. Of the flowsheets (of use to ACCs) that have developed
so far [11], these extreme S/A ratios would likely be the upper limits of a future recycling
plant. In all cases, to evaluate the conditions with the greatest residence time, the minimum
total throughput (also known as the combined flowrate of both phases), as stated by the
supplier, was used in these studies. Entries 2, 4, and 7 had multiple runs performed for
method development and the validation of results. Plotting the RTD on a phase volume
basis required the measurement of the solvent phase holdup to enable the comparison of
multiple RTDs across scales. The solvent and aqueous holdups were measured at the end
of the experiment when the separation rotor and flows simultaneously shut off. These
values are reported in Table 2 and plotted in Figure 7. Comparing the solvent (Figure 7a)
and aqueous (Figure 7b) holdup clearly shows that the solvent holdup is lower than the
aqueous holdup, showing a positive correlation with rotor diameter. The log-log plots,
displayed in Figure 7c,d, show a linear trend, implying a power-law relationship between
the two variables. This is expected as the vessels’ equipment are cylinders of the volume
derived from the diameter squared.

Table 2. Experimental matrix for RTDs measured solvent and aqueous holdup.

Entry
Rotor

Diameter
(mm)

Total
Throughput

(mL/min)

Rotor
Speed
(RPM)

S/A
Ratio

Number
of

Repeats

Solvent
Holdup

(mL)

Aqueous
Holdup

(mL)

1 12 3.3

9500

1:1 3 1.0 1.0

2 12 3.3 1:5.6 1 1.0 1.0

3 12 3.3 6.7:1 1 1.0 1.0

4 25 13.0

3500

1:1 3 4.5 17.0

5 25 13.0 1:5.6 1 6.5 14.5

6 25 13.0 6.7:1 1 8.5 16.0

7 40 83.0

2500

1:1 3 50.0 89.0

8 40 83.0 1:5.6 1 29.0 104.0

9 40 83.0 6.7:1 1 54.0 80.0

RTDs were experimentally determined by injecting a dye into the solvent inlet of
an ACC and regularly sampling the outlet to determine the concentration. In this study,
Sudan Blue II, Figure 8a, dissolved in the solvent phase, was selected due to its UV-Vis
compatibility. The injection point on the 25 mm RD ACC is shown in Figure 8b. For this
investigation, dye injection volumes, equating to approximately 4% of the experimentally
derived liquid holdup in each ACC and listed in Table 3, were used to keep any disruption
to the hydrodynamics to a minimum and maintain a steady state.
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Figure 7. Phase holdup against rotor diameter for: (a) solvent phase; (b) aqueous phase; (c) solvent
phase on a log-log basis; (d) aqueous phase on a log-log basis.
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Table 3. Dye injection volumes relative to ACC volumes to enable comparisons.

Rotor Diameter
(mm)

Experimentally Derived
Liquid Holdup (mL) 4% by Volume Dye Injection (mL)

12 2.7 0.1

25 25.3 1.0

40 143.0 5.5

To enable the comparison of multiple RTD curves, the data was normalised so that the
area was equal to 1.

∞∫
0

RTDdt = 1

As a result of measuring the liquid holdup values, the actual residence volumes were
estimated using the following equation:

Residence volume =
time× phase f lowrate

phase holdup

Figure 9a–c shows the normalised RTDs expressed on a time basis for all three contac-
tors for S/A ratios 1 to 5.6, 1 to 1, and 1 to 6.7, increasing in rotor diameter size from right
to left. The RTD curves across all S/A ratios exhibit positive skew and an approximately
log-normal distribution. A comparison of Figure 9a with the smallest 12 mm RD ACC
shows that the residence time and RTD appear to increase with decreasing S/A ratio;
however, this trend is not observed in the larger 25 or 40 mm RD ACC. By expressing
RTD on a solvent volume basis, the contrast is more definitive in that larger contactors
are less susceptible to recirculation of the solvent phase and likely have different internal
hydrodynamics [40]. The flattening of the RTD peaks for the 40 mm RD ACC is likely
caused by insufficient sampling frequency curtailing the peak.

For the 12 mm RD ACC, as the S/A ratio increases, the residence times (Figure 10d)
and solvent residence volumes (Figure 10) are reduced. This could indicate that the solvent
is being recirculated within the contactor with low solvent flowrates compared to the
aqueous flowrates. A comparison of plots Figure 10d–f indicates relatively little difference
on a solvent residence volume basis, with most of the tracer flushed through within six
residence volumes, except for the 1 to 5.6 S/A ratio run performed on the 12 mm RD ACC
ACC, which requires 12 residence volumes. This suggests significant solvent recirculation,
likely caused by the low solvent flowrate. It has been reported that to determine the
physical scale-up characteristics of the ACCs, the aspect ratio is a better quantification
and those results showed that a 12 mm RD ACC does not have the equivalent aspect ratio
properties and, therefore, cannot be assumed to have comparative physical dimensions to
other ACCs and cannot be scaled up.
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Figure 9. Normalised RTD curves expressed on a time basis for: (a) 12 mm RD; (b) 25 mm RD; (c) 40 mm RD. Normalised RTD curves expressed on a solvent
residence volume basis for: (d) 12 mm RD; (e) 25 mm RD; (f) 40 mm RD.
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Measurement of Stage Efficiency of Uranium Extractions

The investigated chemical system was a simulant of the Plutonium Uranium Reduc-
tion [40] Extraction (PUREX) process. This process utilizes the organic extractant tributyl
phosphate (TBP) to extract plutonium and uranium ions from an acidic aqueous solution.
The TBP forms a complex with the metal ions, which is then extracted into the organic
solvent phase shown in Scheme 1, typically kerosene, as it is readily available, cost-effective,
and has a low vapor pressure. In our study, an aqueous solution of uranium in nitric acid
was contacted with a solvent phase consisting of 30% vol. TBP and Exxsol D 80 kerosene.
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The second phase of this work was to examine the effect of high and low S/A ratios
upon the extraction of uranium using stage efficiency (S.E.). S.E. in a single ACC is
calculated by comparison of the initial and final concentrations with the final aqueous at
equilibrium, so S.E. = 1.00 is equivalent to the equilibrium.

S.E. = ([U]initial aqueous − [U]final aqueous)/([Uinitial aqueous] − [U]equilibrium)

To assess the quality of the data, mass balances (M.B.) are calculated as a measurement
of the accuracy of the data. M.B. is expressed as a ratio of the initial and final uranium
concentrations. A mass balance greater or less than 100% indicates a bias in an analytical
method or an experimental variable, such as flowrate.

M.B. (%) = 100([U]initial aqueous X Aqeuous.Volume)/(([U]final aqueous X Aqeuous.Volume) +
([U]final solvent X Solvent.Volume))

The experiments took account of the proposed extremes that may be used in future
UK advanced plutonium uranium reduction extraction (PUREX) flowsheets, namely a high
S/A ratio of 6.7:1 and a low S/A ratio of 1:5.6. In the experiments performed, the minimum
feed flowrates prescribed by the manufacturer were used.

The detection limit (0.2 g/L uranium) of the UV/vis spectroscopy was used. However,
using the initial aqueous concentration of uranium (10 g/L) after contact with the large
volumes of solvent used with a high S/A ratio, 6.7:1, resulted in a final aqueous uranium
concentration that was below this limit of detection and prevented the calculation of
accurate stage efficiency and mass balance, which meant the proposed high S/A ratio had
to be revised and reduced.

As the experimental campaign progressed and experiments were performed for longer
durations than the RTD experiments, it became clear that there was a deviation of the
total flowrate to the ACCs, creating an error in the mass balance calculations. Therefore,
a series of batch tests were used to determine the highest S/A ratio that could enable
measurement using UV/vis spectroscopy and calculate a mass balance. The S/A ratio of
the 2:1 batch test produced a final aqueous sample containing 0.214 g/L of uranium, and
thus a 2:1 S/A ratio was used in the revised experimental matrix. During the operation of
each experiment, the volumes from the outlets of both phases were collected and used to
calibrate the actual flowrate, with a corresponding change in the actual S/A ratios required,
as shown in Table 4.
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Table 4. Actual experimental matrix based upon volumetric measurements of the outlets of
both phases.

Entry
Rotor

Diameter
(mm)

S/A
Ratio

Measured Total
Throughput (mL/min)

Rotor Speed
(RPM)

1 12 2.1:1 1.5
9500

2 25 2.0:1 14.5

3 40 2.4:1 80.5
3500

4 12 1:7.1 3.5

5 25 1:6.4 13.8
2500

6 40 1:5.8 81.7

To determine the effect of the size and scale of ACCs on stage efficiency (SE), the
uranium was extracted from an aqueous solution of uranium (10 g/L) in nitric acid (1.5 M)
in contact with TBP (30 vol%), diluted in kerosene (branded Exxsol D-80, the supporting
information contains the hydrocarbon chain composition). For each entry in Table 3, the
rotor motor was started first, followed by the aqueous phase feed, followed by the solvent
feed, and allowed to reach stable outlet feeds.

The results of the high S/A ratio showed that, for the 12 mm RD ACC (Table 5),
25 mm RD ACC (Table 6), and 40 mm RD ACC (Table 7), the SE was >96% for all three
sizes of ACC with a mass balance of ±10% and the time taken to reach the steady state as a
function of increasing rotor size.

Table 5. Results of aqueous uranium solvent extraction in the 12 mm RD ACC with a rotor speed of
9500RPM, the S/A ratio was 2.1 to 1 with a total throughput of 1.5 mL/min.

Time (min)
25 45 65 85 105

S.E. 93% 97% 96% 97% 96%

M.B. 84% 89% 90% 90% 89%

Table 6. Results of aqueous uranium solvent extraction in the 25 mm RD ACC with a rotor speed of
3500RPM, the S/A ratio was 2.0 to 1 with a total throughput of 14.5 mL/min.

Time (min)
20 25 30 35 40

S.E. 97% 98% 99% 99% 99%

M.B. 104% 95% 97% 94% 96%

Table 7. Results of aqueous uranium solvent extraction in the 40 mm RD ACC with a rotor speed of
2500RPM, the S/A ratio was 2.4 to 1 with a total throughput of 80.5 mL/min.

Time (min)
25 27 29 33

S.E. 97% 98% 98% 98%

M.B. 113% 109% 110% 110%

The result of low S/A ratios for the 12 mm RD ACC (Table 8), 25 mm RD ACC
(Table 9), and 40 mm RD ACC (Table 10) showed that the S.E. was >96% for all three
sizes of ACC with a mass balance of ±10%. However, the 25 mm RD ACC did present an
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issue of reaching a steady state with such low solvent flowrates under the experimental
conditions tested.

Table 8. Results of aqueous uranium solvent extraction in the 12 mm RD ACC with a rotor speed of
9500RPM, the S/A ratio was 1 to 7.1 with a total throughput of 3.5 mL/min.

Time (min)
20 25 30 35 40

S.E. 93% 97% 96% 97% 96%

M.B. 90% 94% 93% 94% 93%

Table 9. Results of aqueous uranium solvent extraction in the 25 mm RD ACC with a rotor speed of
3500RPM, the S/A ratio was 1:6.4 with a total throughput of 13.8 mL/min.

Time (min)
40 50 55 60 40

S.E. 90% 87% 91% 96% 90%

M.B. 92% 91% 90% 107% 92%

Table 10. Results of aqueous uranium solvent extraction in the 40 mm RD ACC with a rotor speed of
2500RPM, the S/A ratio was 1 to 5.8 with a total throughput of 81.7 mL/min.

Time (min)
25 27.5 30 32.5 35 38.5

S.E. 97% 97% 99% 98% 99% 99%

M.B. 112% 108% 111% 109% 110% 107%

4. Conclusions

ACCs have a wide range of operations. This work aims to increase understanding
of the operating envelope of the BXP series of ACCs; specifically, their holdup, residence
times, and stage efficiencies for uranium across the extremes of the S/A ratio. With respect
to the first area of investigation, the liquid holdup did not significantly vary as a function of
total throughput under the conditions studied; however, within an ACC during operation,
the S/A ratio was lower than the feed ratio.

ACC residence time was investigated using solvent dye injection and appeared inde-
pendent of S/A ratios tested for the 25 mm RD ACC and 40 mm RD ACC ACCs, with a
maximum residence time equivalent to 6 volumes and a mean residence time of approxi-
mately 1.5–2 volumes. The 12 mm RD ACC at a low S/A ratio (1 to 5.6) showed a definite
difference with a maximum residence time of 12 volumes, and is a scale-up concern that
requires further investigation in future work. Future work could investigate the effect of
using ultra-low flowrates to take advantage of the solvent liquid holdup discovered due to
the RTD dye injections and using aqueous dyes to follow the aqueous liquid holdup.

The stage efficiencies studied showed little variation in either size or S/A ratio, with
>96% stage efficiencies recorded. The total throughput was at the low end of the manufac-
turer’s recommended value. Further work to investigate the effect of total throughput and
S/A on stage efficiency will improve knowledge of scale-up.
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ACC Annular Centrifugal Contactors
RTD Residence Time Distribution
RD Rotor Diameter
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LLE Liquid-Liquid Extraction
PUREX Plutonium Uranium Reduction Extraction
MSCR Multi-Scale Contactor Rig
TBP Tributyl Phosphate
S/A Solvent/Aqueous Ratio
RPM Revolutions per minute
SE Stage Efficiency
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