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Abstract: The process of storing oil depots and combined station tanks is affected by factors such
as process technology, equipment, and management methods. Inevitably, some heavy hydrocarbon
components will condense. According to the available literature, the existing detection methods are not
enough to accurately measure the component composition so that the proportion of heavy hydrocarbon
substances in the lost gas is reduced. In this paper, by inventing a homogeneous reduction device, the
lost gas in the entire laboratory process was kept in a homogeneous state so that the gas components
were well-retained. Using the homogeneous reduction method and a traditional inspection method,
gas chromatography was performed on a standard gas and the on-site lost gas, respectively. The
standard gas measurement results show that the mean deviations of the homogeneous reduction
method and the traditional test method were −3.45% and −11.62%, respectively, and the reduction
degree reached 96.55% with the homogeneous reduction method. The results of the on-site gas loss
measurements show that the proportions of most hydrocarbon substances in each lost gas increase
to varying degrees after using the homogeneous reduction technology. Therefore, it is proved that
these components can be better preserved using the homogeneous reduction method. It can effectively
avoid the condensation of components, which is of great significance to the study of oil and gas loss.

Keywords: homogeneous reduction method; loss of gas; transmission device; direct intake method

1. Introduction

Petroleum and petroleum products are mixtures of a variety of hydrocarbons, of which
the light component is highly volatile [1–4]. The evaporation loss of oil is large, and the
oil loss rate is as high as 1.5~3% [5]. The study of oil and gas loss in storage tanks is
conducive to discovering the loss problems in the production process of crude oil [6–13],
and carrying out the corresponding transformations is conducive to promoting low-carbon
energy saving and improving the economic benefits in oilfields [14,15].

The formula for quantitative research on oil evaporation loss in the world is mainly
recommended by the American Petroleum Institute and is obtained by summarizing and
analyzing the respiration process of oil in a tank, and its practicality is wide, but when
using formulas for calculations, the precise values of various parameters are first required.
The values of these parameters are generally more difficult to determine, and enterprises
are simplified, so the experimental error is large [16]. In addition to the quantitative re-
search formula, Waheed [17] and Haelssig et al. [18] adopted a combination of the mass
transfer equation and the turbulence model based on Fair’s law to study the mass transfer
diffusion phenomenon and linked the leakage amount with the disturbance of external
wind speed so that the simulation results would be more consistent with the experimental
results. L. Chernyak et al. [19] studied the effect of oil and gas loss on oil quality through
experiments. Busahmin et al. [20] studied the surface tension between a mineral oil system
and a crude oil system through experiments. The results showed that the surface tension of
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the mineral oil system was higher than that of the foamy crude oil system based on the exper-
imental principle of gas–liquid interfacial tension. Hassanvand et al. [21] conducted a CFD
(computational fluid dynamics) simulation of oil evaporation loss in the process of sending
and receiving oil in a vertical storage tank containing gasoline, and the results showed that
the total evaporation loss of oil can be significantly reduced when the speed of receiving
the oil in the tank is increased. Farzaneh-Gord et al. [22] studied the evaporation loss of
crude oil in an external floating roof storage tank, verified the numerical model for the tank
temperature measurement at different times of the day, and analyzed the influence of the
coating on the oil loss from the outer surface of the tank. The results showed that the evapo-
ration loss of crude oil is lowest when the outer surface of a tank is coated with light-colored
paint. Liang et al. [23] analyzed the temperature change process in a tank and combined
this with programming to simulate the effect of temperature change on oil evaporation.
Gao et al. [24], on the basis of the research on and analysis of the mechanism of evaporation
loss, proposed a variety of effective consumption reduction measures, which achieve good
functional significance. Zhang et al. [25] designed and produced a small stainless-steel cone
tank, which they used to measure the temperature change of the gas space and oil in a
tank using equidistant thermal resistance temperature measuring points with four equally
spaced temperature measuring points. An austenitic gas analyzer was selected to record
and analyze the change in the concentration. Zuo et al. [26] gave a calculation formula that
is more suitable for China at different times on the basis of discussing and comparing the
existing respiratory loss formulas. Wang et al. [27,28] studied the oil and gas diffusion law of
oil and gas in the oil tank recovery process and discussed the influence of various variables
on oil and gas diffusion with the help of TRNSYS. Huang et al. [29–32] established a small
conical top metal evaporation loss test platform in view of the serious evaporation loss
problem in the process of oil storage and transportation and experimentally measured the
evaporation loss of a small conical top gasoline tank, but due to safety and the complex
methods and other issues, it is not suitable for on-site monitoring. On the basis of a basic
parameter test of some crude oil tanks, the flash emissions and respiratory emissions of the
tanks were calculated using an online monitoring system, but the greenhouse gas emissions
were not studied [33]. Zheng et al. [34] carried out research on monitoring technology in
view of the respiratory loss of Shengli Oilfield storage tanks, designed the mechanical
structure of a monitoring system, and proposed a monitoring scheme for all parameters and
key parameters. Through the design of hardware circuits and software, the goal of online
monitoring has been achieved, but there are many monitoring points, the monitor is electri-
fied, and the problem of potential safety hazards is still difficult to solve. Chen et al. [35]
used infrared thermal imaging technology to study the respiratory loss of a storage tank,
whereby the infrared thermal imager can accurately measure the temperature of a target
without contacting the measurement object and present its temperature distribution, but the
disadvantages of infrared detection are that the detection sensitivity is related to the thermal
emissivity, the detection time–temperature relationship is strict, and the cost is high.

In order to measure the oil and gas loss in a field more accurately and safely, we
propose a novel gas sample homogeneous reduction technology. A set of experimental
devices with a constant-temperature heating box, constant-temperature transmitter, and
constant-temperature input gas pipeline as their cores were designed. By setting an ap-
propriate temperature, the components flow in a homogeneous state during gas sample
collection, transfer, and laboratory testing so that the components are stored and collected
relatively completely. The condensation of components is effectively reduced. This has
important technical reference value for achieving the efficient detection of oil and gas loss
and reducing oil and gas loss.

2. Experimental Scheme and Design
2.1. Laboratory Equipment

In view of the characteristics of the lost gas, the differences in the boiling point of
each component were used to control a certain temperature to maintain the lost gas in
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a homogeneous state during the whole detection process. This effectively ensures that
the lost gas reaches the required laboratory accuracy. Condensation occurs when a gas
sample is collected into the transmitter. In this paper, a constant-temperature transfer
device was designed to continuously heat the gas sample during the transfer process to
keep the gas sample in a homogeneous state. For the condensation problem, this paper
designed a constant-temperature heating box. By setting an appropriate temperature in the
constant-temperature heating box, a gas sample’s components are kept in a homogeneous
state. In order to continuously heat the gas sample during the connection of the chromato-
graph [36–38] and the sampling bag, a constant-temperature input gas tube was designed.

2.2. Schematic Structure Design of Heating Box

The device in Figure 1 mainly plays the role of gas sample transfer. The collected
gas samples are stored in a constant-temperature heating box, which avoids condensation
during storage. According to the boiling points of the various alkane components, the
constant-temperature heating box sets an appropriate temperature to ensure that the gas
sample remains in a homogeneous state. The heating system is a key device for the
continuous supply of hot air. The internal pipes of the heating box are made of metal.
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Figure 1. Constant-temperature heating box.

2.3. Transfer Device Design

The device in Figure 2 is mainly used for gas sample collection. The consumption gas
is evaporated from the oil product and enters the transfer device through the input tube.
Through the continuous heating of the thermostatic transfer device and the input tube, the
lost gas is always kept in a homogeneous state. The transfer device and the input tube
adopt the shape of a syringe. The material of the transfer device is made of glass and is
100 mL in volume. The material of the heat adapter, the input tube, and the sleeve was
finally selected as brass H65. The material of the insulation pipe is PVC plastic. The left
and right caps are made of POM. The inner surface of the sample is coated with PTFE (poly
tetra fluoroethylene). The obtained coating is acid- and alkali-resistant and insoluble in
various organic solvents, which can effectively prevent the adsorption of trace components
in the sample and improve the corrosion resistance of the sampler.

2.4. Constant-Temperature Gas Transmission Pipeline Design

Saeid et al. [39] simulated the jet impingement heat transfer process of a moving plate
under steady laminar flow conditions. The study showed that the convective heat transfer
of the moving plate was related to thermal conductivity. Based on this, this paper designed
a constant-temperature conveying gas pipe, as shown in Figure 3. This is a device that
plays a connecting and continuous heating process during the entire gas sample collection,
transfer, and laboratory process. The sampled gas needs to be continuously heated and
transported through the constant-temperature gas delivery pipeline. The gas transmission
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pipeline heating device is composed of a sampling tube, spring tube, and silicone tube.
The space between the sampling tube and the silicone tube is the hot air channel. During
sampling and testing, the sampling tube is continuously heated through the intermediate
heating channel so that the gas components do not condense. The intermediate spring tube
mainly plays the role of isolation to prevent the latex tube from adhesion to the silicone tube
during the heating process. The thickness of the silicone tube is thicker than the sampling
tube and the spring tube, and its purpose is to insulate heat.
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3. Experimental Parameter Design
3.1. Heating Temperature of the Transmitter

According to the upper limit of the crude oil heating temperature in Sinopec Oilfield
Station, 80 ◦C was selected as the control temperature of the homogeneous reduction
technology. In order to clarify the heating performance of the thermostatic transmitter,
thermal response tests of 3 heating strips were carried out for 5 min, and the digital
temperature value was recorded every 5 s. In addition, the heating belt was fixed onto the
heat transfer tube of the transmitter, and the temperature of the heating belts No. 1, No. 2,
and No. 3 was set to 80–90 ◦C. The No. 1 and No. 2 heating strips were used for the 100 mL
constant-temperature transfers, and the No. 3 heating strip was used for chromatographs
supporting the constant-temperature transmitters. The heating response test data of the
heating belt are shown in Figure 4. It can be seen from the figure that the heating belt took
time to heat from the ambient temperature to 80 ◦C within 90~120 s; the heating speed
meets the design requirements; after heating to 80 ◦C, the temperature fluctuation range
was 78~82 ◦C; and the temperature difference was ± 2 ◦C.
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Figure 4. Heating with heat response test data.

When testing the 100 mL constant-temperature transmitter, 4 different heating condi-
tions were numbered, and the heating conditions inside the No. 521 glass syringe (No. 1
heating belt; 90 ◦C), the inner wall of the No. 521 glass syringe (No. 1 heating belt; 90 ◦C),
the inside of the No. 514 glass syringe (No. 2 heating belt; 80 ◦C), and the inner wall of the
No. 514 glass syringe (No. 2 heating belt; 80 ◦C) were numbered 1#, 2#, 3#, and 4#, in turn.
The thermal response test data of the 100 mL thermostatic transmitter are shown in Figure 5.
It can be seen in Figure 5 that when the temperature of the No. 1 heating belt was set to
90 ◦C and the temperature of the No. 2 heating belt was set to 80 ◦C, the inner wall and
the inside of the No. 1 heating belt syringe barrel reached 80 ◦C significantly faster than
the No. 2 heating belt. At the time of the test, the ambient temperature was approximately
25 degrees, and the time spent for the inner wall of the No. 1 heating syringe barrel to
reach 80 ◦C was 8 min and 20 s, and the internal time was 10 min and 20 s. The heating
time of the inner wall of the No. 2 heating belt was only 71.8 ◦C when the heating time was
30 min, and the internal temperature was only 67 ◦C. Based on the influences of the heating
belt temperature and heating belt type on the heating speed, the No. 1 heating belt and
No. 521 glass syringe were selected, and the heating temperature was set to 90 ◦C. When
used on-site, the heating time of the 100mL thermostatic transmitter was at least 10 min.
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From the results of the thermal response test of the thermostatic transducer supporting
the chromatograph (Figure 6), the test data of the thermostatic transmitter are 80 ◦C
and 90 ◦C. From the results of the thermal response test of the thermostatic transducer
supporting the chromatograph (Figure 4), it can be seen that when the internal temperature
of the transducer reached 80 ◦C, the time taken to reach the heating temperature of 90 ◦C
was significantly faster than that for 80 ◦C. When the heating temperature was set to 90 ◦C,
the time taken to reach 80 ◦C inside the transmitter was 7 min and 40 s, and when the
heating temperature was set to 80 ◦C, the time taken to reach 80 ◦C inside the transmitter
was 13 min and 20 s. Therefore, the heating temperature of the constant-temperature
transfer device equipped with the chromatograph was set to 90 ◦C. The heating time was
at least ten minutes.
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3.2. Hot Air System Temperature

The selected hot air system power was 3300 W, the working voltage was 220 V, and
the minimum air volume was 400 L/min. The time required for the hot air system to reach
80 ◦C and the temperature control accuracy were tested. The heating system was tested for
thermal stability for 10 min using a high-precision thermometer, as shown in Figure 7. The
heating system took no more than 3 min to reach 80 ◦C, and after the temperature reached
80 ◦C, the thermal stability performance was good, and the temperature control accuracy
was ± 3 ◦C. When the hot air system was tested for the first time, it took 175 s to reach
80 ◦C, which was a long time. After 5 min of testing, it took 40 s to reach 80 ◦C, which was
greatly shortened, because the parts and heating elements in the heating system were at a
high-temperature level. After 10 min, 30 min, and 60 min tests, the time required to reach
80 ◦C gradually increased. In general, the thermal response performance and temperature
control accuracy of the heating system can meet the requirements of this experiment.

3.3. Heating Temperature of the Constant-Temperature Conveying Gas Pipe

The constant-temperature gas transmission pipe was installed in the constant-temperature
heating box for the gas transmission test. According to the upper limit of the crude oil
heating temperature of the Sinopec oil station, the heating temperature should be similar
to the temperature in the tank. In order to clarify the actual temperature situation in the
constant-temperature gas transmission pipe, the temperature of the heating belt of the
constant-temperature gas pipeline was set to 70, 72, 72, and 80 ◦C. It can be seen in Figure 8
that when the temperature of the heating belt was set to 70 ◦C, the heating time was 600 s,
the temperature in the gas pipeline was 76 ◦C, and the final temperature was maintained at
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76 ◦C, which cannot meet the requirement for 80 ◦C of the homogeneous reduction device.
When the heating temperature was set to 75 or 90 ◦C, it could reach 80 ◦C when the heating
time was 300 s, but at this time, the internal temperature of the gas hose continued to rise,
reaching a maximum of 95 ◦C, which is a potential safety hazard. When the temperature of
the heating belt was set to 72 ◦C, the time required to reach 80 ◦C was 440 s, and the subse-
quent temperature rises to 83 ◦C stopped meeting the heating performance requirements.
Therefore, the heating band temperature of the constant-temperature gas pipeline was set
to 72 ◦C, and the heating time was at least 8 min.
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3.4. The Experimental Scheme

The homogeneous reduction device includes a constant-temperature transfer device,
a constant-temperature heating box, a constant-temperature gas transmission pipe, and
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various sampling and laboratory transportation tools. According to the sampling, trans-
portation, and laboratory procedures of on-site consumption gas and the standard national
emission standards for natural gas [40], with the homogeneous reduction device, the oil and
gas loss components were accurately measured, and two sets of homogeneous reduction
technology application schemes are provided.

Option one:
A: The standard gas is stored in a 1 Mpa cylinder. The gas composition is collected

and detected using homogeneous reduction technology. The sampling bag is heated in
a heating box for a period of time, and the gas is extracted with a constant-temperature
transfer device and introduced into the gas chromatograph.

B: The standard gas is stored in a 1 Mpa cylinder. The gas composition is collected
and detected via direct intake. The gas is collected with a sampling bag and introduced
into the gas chromatograph with a transfer device.

Comparison between Method A and Method B.
Option two:
C: By collecting the gas from the site, the gas is collected into airbags. The gas

components are collected and detected via homogeneous reduction. The gas is collected
with the constant-temperature transmitter. The transfer is put into the constant-temperature
insulation box for storage, and then the constant-temperature transfer device is used to
import the gas chromatograph.

D: By collecting the gas from the site, the gas is collected into airbags. The gas
composition is collected and detected via direct intake. The gas is collected in a sampling
bag and introduced into the gas chromatograph with a transfer device.

Comparison between Method C and Method D.

3.5. Gas Chromatography–Mass Spectrometry Analysis Methods

The column for gas chromatography was selected as 30 m × 0.32 mm × 10 µm (TG-
BONDQ). Trace GC Ultra was selected as the gas chromatography system, and ultra-pure
helium with a purity of more than 99% was selected as the carrier gas. The carrier gas
flow rate was 1.2 mL/min. The ion source temperature was 290 ◦C. The transmission line
temperature was 270 ◦C. The injection temperature was 114 ◦C. The injection volume was
300 µL. The shunt ratio was 25. The initial column temperature of the heating furnace cham-
ber was configured as follows: 50 ◦C for 2 min, then heat to 270 ◦C at a rate of 60 ◦C/min
and hold for 6 min. The scanning ion range was 10~115 in order to avoid air peaks and
water peaks, and the signal was checked after 4 min. The mass spectrometer was equipped
with an electron bombardment power source (EI). The acquisition rate was in SIM mode,
and the acquisition rate was >240 scans/sec. The mass range was 1.2–1100 u. The quality
of the gases was analyzed with chromatographic analysis using thermal desorption, purge
trap, solid-phase extraction, solid-phase microeconomics, and liquid-phase microextraction.
Manual injection was performed using a thermostatic transmitter. When quantitative analy-
sis is carried out with a gas chromatograph, the sample follows the flow of helium, and the
components in the sample are adsorbed–desorbed many times according to the principle
of similar miscibility, and each component is separated after passing through the column,
leaving the column in turn, and after detection in the detector, each component flowing
out of the column is converted into an electrical signal via the detector and then processed
with the amplifier to show the chromatographic peak of each component in the sample
on the recorder. When a sample is qualitatively analyzed using mass spectrometry with a
gas-phase mass spectrometer, because all samples are in a gaseous state, the volatile sample
is ionized via an EI source, and the electron flow with extremely high energy emitted by
the filament is used to ionize the sample via collision, that is, fragments such as molecular
ions are generated. Unknown compounds are then searched and matched with the data
library to determine the component class. When performing quantitative analysis, because
of the presence of C5 and C6 volatile components, and because the gas sample components
are more complex, it is necessary to choose the more commonly used area normalization
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method with accurate and simple characteristics, which can achieve all the components
of the column effluent gas sample in the linear range being detected with the detector. If
the operating experimental conditions change, this will not affect the accuracy of the gas
sample injection amount during analysis.

3.6. Standard Gas Test Data Analysis

After collecting the gas lost at the site, the gas sample was determined using gas
chromatography. We obtained the test report from the gas chromatography–mass spec-
trometer and analyzed the gas sample components (Figure A1). After the post-processing
of the test data, the results of the homogeneous reduction method and direct intake method
for the gas sample were determined. The average deviations of the two methods were
calculated according to the measurement results. The average deviation is the mean value
of the absolute value of the difference between each original data value and the arithmetic
mean, which is represented by the symbol A.D. (average deviation) to reflect the average
difference between each marker value and the arithmetic mean, as shown in Table 1. After
analyzing the processing results and filtering the noise data, the A.D. values of the ho-
mogeneous reduction method and the direct intake method were −3.45% and −11.62%,
respectively, and the reduction degrees of the homogeneous reduction method and direct
air intake method were 96.55% and 88.38%, respectively. It is concluded that the use of
the homogeneous reduction method can better retain the components, which is of great
significance to the study of oil and gas loss.

Table 1. Standard gas component test results.

Serial Number Component Homogeneous Reduction Method Direct Intake Method

Test results Deviation Test results Deviation
1 N2 0.57258 6.95% 0.59347 10.86%
2 CH4 0.19924 0.63% 0.19819 0.10%
3 CH3CH3 0.05238 −11.53% 0.05103 −13.79%
4 CH3CH2CH3 0.05265 −11.06% 0.05000 −15.53%
5 CH3CHCH3 0.02742 −7.35% 0.02526 −14.67%
6 CH3CH2CH2CH3 0.02943 −0.92% 0.02621 −11.75%
7 CH3(CH2)2CH3 0.01420 −6.55% 0.01266 −16.74%
8 CH3CH(CH3)CH2CH3 0.01516 3.11% 0.01261 −14.22%
9 CH3CH2CH2CH2CH3 0.01700 −13.69% 0.01377 −30.13%

10 CH3C(CH3)2CH2CH3 0.00293 −40.42% 0.00247 −49.78%
11 CH3CHCHCH3 0.00520 5.86% 0.00440 −10.33%
12 CH3CH2CH2CH(CH3)2 - - - -
13 CH3CH2CH(CH3)CH2CH3 0.00274 −44.19% 0.00235 −52.12%
14 CH3CH2CH2CH2CH2CH3 0.00907 −53.98% 0.00757 −61.55%

Total - 1.0000 1.0000
Mean - −3.45% −11.62%

3.7. Field Gas Loss Measurement Data Analysis

The gas samples were measured using gas chromatography. The mass spectrometer
test report of the on-site gas loss is shown in Figure A2. The composition data of the gas
measurements were obtained employing a uniform reduction method and the standard
method, as shown in Table 2. It can be seen that the homogeneous reduction technology
has a significant effect on the experimental accuracy for on-site gas loss. After the use of
the homogeneous reduction technology, the proportion of hydrocarbon substances in the
test value increased greatly, and some hydrocarbon substances that cannot be detected
using the direct intake method were added. According to the order of the 2# gas samples
in the 4th area of the Hekou, Yongyi Lian primary settlement tank gas sample, Yongyi Lian
secondary settlement tank gas sample, and Yongyi Lian external transport tank gas sample,
the improvements in the laboratory accuracy using the homogeneous reduction method
were 26.96%, 53.46%, 38.16%, and 55.40%, respectively.
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Table 2. On-site gas depletion components test results.

Serial
Number Component

Estuary District 4–2# Yongyi Lian Primary Settling Tank Yongyi Lian Secondary Settlement Tank Yongyi Lian Export Tank

Homogeneous
Reduction

Method

Direct
Intake

Method

Boost
Performance

Homogeneous
Reduction

Method

Direct
Intake

Method

Boost
Performance

Homogeneous
Reduction

Method

Direct
Intake

Method

Boost
Performance

Homogeneous
Reduction

Method

Direct
Intake
Method

Boost
Performance

1 N2 0.9473 0.9448 0.26% 0.5487 0.7704 −40.40% 0.8449 0.9426 −11.56% 0.7836 0.9762 −24.58%
2 CH4 0.0295 0.0317 −7.46% 0.2816 0.1669 40.73% 0.0677 0.0140 79.32% 0.1279 0.0015 98.83%
3 CO2 0.0009 0.0010 −11.11% 0.0027 0.0023 14.81% 0.0016 0.0008 50.00% 0.0021 0.0009 57.14%
4 CH3CH3 0.0105 0.0112 −6.67% 0.0181 0.0094 48.07% 0.0070 0.0015 78.57% 0.0084 0.0005 94.05%
5 CH3CH2CH3 0.0062 0.0065 −4.84% 0.0455 0.0177 61.10% 0.0220 0.0069 68.64% 0.0258 0.0025 90.31%
6 C(CH3)4 0.0013 0.0013 0.00% 0.0137 0.0051 62.77% 0.0070 0.0031 55.71% 0.0083 0.0015 81.93%
7 CH3CH2CH2CH3 0.0020 0.0019 5.00% 0.0363 0.0125 65.56% 0.0195 0.0098 49.74% 0.0196 0.0049 75.00%
8 CH3CH(CH3)CH2CH3 0.0008 0.0007 12.50% 0.0195 0.0057 70.77% 0.0106 0.0068 35.85% 0.0101 0.0037 63.37%
9 CH3CH2CH2CH2CH3 0.0006 0.0005 16.67% 0.0150 0.0044 70.67% 0.0084 0.0057 32.14% 0.0067 0.0031 53.73%
10 C5H10 0.0000 0.0000 0.0010 0.0003 70.00% 0.0005 0.0004 20.00% 0.0004 0.0002 50.00%
11 C10H10 0.0000 0.0000 0.0000 0.0001 100.00% 0.0000 0.0000 - 0.0000 0.0000 -
12 CH3CH(CH3)CH2CH3 0.0001 0.0001 0.00% 0.0035 0.0009 74.29% 0.0019 0.0016 15.79% 0.0015 0.0008 46.67%
13 CH3CH2CH(CH3)CH3 0.0001 0.0000 100.00% 0.0019 0.0005 73.68% 0.0011 0.0009 18.18% 0.0008 0.0005 37.50%
14 CH3CH2CH2CH2CH2CH3 0.0001 0.0001 0.00% 0.0039 0.0012 69.23% 0.0022 0.0020 9.09% 0.0015 0.0010 33.33%
15 C5H9CH3 0.0001 0.0000 100.00% 0.0020 0.0006 70.00% 0.0011 0.0010 9.09% 0.0007 0.0006 14.29%
16 C6H6 0.0000 0.0000 - 0.0002 0.0001 50.00% 0.0001 0.0001 0.00% 0.0001 0.0000 100.00%
17 C6H12 0.0000 0.0000 - 0.0010 0.0003 70.00% 0.0006 0.0006 0.00% 0.0004 0.0003 25.00%
18 CH3CH2CH2CH(CH3)CH2CH3 0.0001 0.0000 100.00% 0.0023 0.0006 73.91% 0.0015 0.0011 26.67% 0.0009 0.0007 22.22%
19 CH3CH2CH2CH2CH2CH2CH3 0.0001 0.0000 100.00% 0.0011 0.0003 72.73% 0.0007 0.0004 42.86% 0.0004 0.0003 25.00%
20 C6H11CH3 0.0000 0.0000 - 0.0010 0.0003 70.00% 0.0007 0.0004 42.86% 0.0004 0.0003 25.00%
21 C7H8 0.0000 0.0000 - 0.0003 0.0001 66.67% 0.0002 0.0001 50.00% 0.0001 0.0000 100.00%
22 CH3CH(CH3)CH2CH2CH2CH3 0.0000 0.0000 - 0.0004 0.0001 75.00% 0.0003 0.0001 66.67% 0.0002 0.0001 50.00%
23 CH3CH2CH2CH2CH2CH2CH2CH3 0.0000 0.0000 - 0.0002 0.0000 100.00% 0.0002 0.0000 100.00% 0.0001 0.0000 100.00%

Total - 0.9997 0.9998 620.08% 1.0000 1.0000 1229% 1.0000 1.0000 876.3% 1.0000 1.0000 1274.2%
Mean - - 0.0435 26.96% 0.0435 0.0435 53.46% 0.0435 0.0435 38.16% 0.0435 0.0435 55.40%
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4. Conclusions

Based on the meteorological data, the lost gas testing process, and the physical prop-
erties of the hydrocarbon components of each oilfield of Sinopec, it was determined that
there would be obvious cooling and condensation in the two links of lost gas collection
and laboratory testing, which was the key problem leading to the low accuracy of lost gas
testing. According to the available literature, the existing detection methods are not enough
to accurately measure component composition, so the proportion of heavy hydrocarbon
substances in the lost gas is reduced. In view of the cooling and condensation phenomenon
in collection and laboratory tests, the homogeneous reduction method was used in this
paper so that the lost gas in the whole laboratory process was kept in a uniform state so
that the gas components were well-retained. In this paper, the homogeneous reduction
method and the direct intake method were compared by using standard gas and on-site
lost gas. The A.D. values of the homogeneous reduction method and direct intake method
for standard gas were −3.45% and −11.62%, respectively, and the reduction degree reached
96.55% with the homogeneous reduction method. The uniform reduction method improved
the measurement accuracy of gas loss in each field by 26.96%, 53.46%, 38.16%, and 55.40%.
The results show that the use of the homogeneous reduction method can better retain
components. It can effectively avoid the condensation of components, which is of great
significance to the study of oil and gas loss.
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