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Abstract: Due to their extraordinary prospective uses, particularly in the areas of oil–water sep-
aration, underwater superoleophobic materials have gained increasing attention. Thus, artificial
nacre has become an attractive candidate for oil–water separation due to its superhydrophilicity and
underwater superoleophobicity properties. Synthesized artificial nacre has successfully achieved a
high mechanical strength that is close to or even surpasses the mechanical strength of natural nacre.
This can be attributed to suitable synthesis methods, the selection of inorganic fillers and polymer
matrices, and the enhancement of the mechanical properties through cross-linking, covalent group
modification, or mineralization. The utilization of nacre-inspired composite membranes for emerging
applications, i.e., is oily wastewater treatment, is highlighted in this review. The membranes show
that full separation of oil and water can be achieved, which enables their applications in seawater en-
vironments. The self-cleaning mechanism’s basic functioning and antifouling tips are also concluded
in this review.

Keywords: nacre; layered composite; self-assembly; layer by layer; oil–water separation;
antifouling coating

1. Introduction

Oily wastewater is a type of wastewater with a high oil content, which, in the
petroleum industry, can be generated from produced water brought to the surface during
oil and gas production. This wastewater can contain many harmful components and
usually consists of grease, oil, and other type of hydrocarbons, as well as high levels of
metals, salts, and suspended solid elements [1]. The sources of oily wastewater are quite
broad, covering offshore drilling, the oil industry, oil refining, oil storage, transportation,
and petrochemical industries [2,3]. The estimated global production of crude oil reaches
41 million m3/day, with the production of a barrel of oil also producing three barrels of
water [4]. The generation of produced water increases when the oil well ages [5]. The
treatment of oily wastewater has been very costly so far, involving several techniques, such
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as flotation, coagulation, biological treatment, and advanced oxidation process, including
electrochemical catalysis and supercritical water oxidation [6–8]. Any other approaches
require a large space, a long processing time, a high cost, and often cannot meet the strin-
gent treatment requirement for discharge or reuse [4,9,10]. Membrane technology has been
of great interest due to its potential advantages of simple systems, a short process time
and hence small footprint, and high separation efficiency [4]. The membrane selectively
separates oil and water through its microporous structure, and could demonstrate high
effectiveness of purification [10]. By mimicking the structure of strong natural materials,
such as nacre, membranes with advanced, robust, and durable properties can be fabricated.

The organisms in nature have become inspirations in creating advanced materials
by mimicking their unique structures. In particular, materials such as shells, lotus leaves,
or gecko skin, possessing high mechanical properties, superhydrophobicity, and super
adhesiveness, respectively, can be mimicked to fabricate materials with promising features
of the mentioned natural materials [11,12]. An excellent example of a strong biological
structure is nacre that forms the inside of shells.

Nacre is a material with a hierarchical structure, as can be seen in Figure 1. Its
fundamental structure consists of organic and inorganic components, including inorganic
aragonite layers within the layers of the polymer matrix [13]. There are two layers with
different microstructures observed in shells containing nacre: the calcite layer and an
inner aragonite layer [4]. The natural role of nacre itself is to protect the shell from any
breakage and damage due to its high mechanical properties [14–18]. Nacre has a tensile
strength ranging from 80 to 135 MPa and a Young’s modulus from 60 to 70 GPa [19].
Due to its excellent mechanical properties, nacre is of interest to many researchers. The
superior mechanical stability of nacre in seashells is related to hard minerals and soft
polymers existing in nacre’s structure [20]. Nacre owns a brick-and-mortar structure, where
soft biopolymers are attached to inorganic hard aragonite layers to form tiles, acting as
high-performance adhesives [10,11]. This tough and iridescent biomaterial is made up of
95% aragonite calcium carbonate, which is the rigid part, and glued with 5% of proteins
and polysaccharides as biopolymers [20]. The modulus of nacre is far superior compared
to cortical bone which is around 10 to 30 GPa [21], and also higher in comparison with
peritubular dentin at around 40 to 45 GPa [22].

The structure and properties of natural nacre are excellent; however, it is well known
that its production is limited in nature. Hence, artificial nacre is currently being developed
with an analysis of the development potential and application prospects of mimicking
natural nacre. Many approaches in fabricating artificial nacre have been performed through
the self-assembly method, either supported by vacuum filtration or film casting. Addition-
ally, a layer–by-layer synthesis method is also widely used. All fabrication methods aim
to synthesize a layered composite mimicking nacre by using various inorganic materials,
such as montmorillonite (MMT) [23], graphene oxide (GO) [24], calcium carbonate [25],
carbon nanotubes (CNTs) [26], clay [27], zeolite [28], and many more. In order to represent
biopolymer, organic materials are utilized to bind the inorganics, such as polyvinyl alcohol
(PVA) [29], chitosan [30], sodium alginate (SA) [31], polydopamine [32], polyurethane [33],
etc. The synthesized composites exhibit excellent mechanical properties, with a few demon-
strating a similar tensile strength to nacre. Additionally, artificial nacre usually exhibits
crack deflection from the crack propagation process, which mimics one of the unique prop-
erties of nacre. The organic layer acts as viscoelastic glue and connects the mineral bridges
to create tablet interlocking during sliding, which contributes to strengthen the nacre [34].
Nacre from the blue mussel, Mytilus edulis, is a nonburrowing, epibenthic species that
is widespread across the world and frequently appears in large numbers, making it an
important potential substrate for both micro- and macrofoulers to settle on. The majority of
M. edulis shells, nevertheless, are still devoid of fouling organisms [35]. The mechanism
of antifouling nacre from M. edulis shells can be mimicked for artificial nacre serving as
membrane antifouling accessories.



Separations 2023, 10, 205 3 of 20

Separations 2023, 10, x FOR PEER REVIEW 2 of 22 
 

 

of oily wastewater has been very costly so far, involving several techniques, such as flota-
tion, coagulation, biological treatment, and advanced oxidation process, including elec-
trochemical catalysis and supercritical water oxidation [6–8]. Any other approaches re-
quire a large space, a long processing time, a high cost, and often cannot meet the stringent 
treatment requirement for discharge or reuse [4,9,10]. Membrane technology has been of 
great interest due to its potential advantages of simple systems, a short process time and 
hence small footprint, and high separation efficiency [4]. The membrane selectively sepa-
rates oil and water through its microporous structure, and could demonstrate high effec-
tiveness of purification [10]. By mimicking the structure of strong natural materials, such 
as nacre, membranes with advanced, robust, and durable properties can be fabricated. 

The organisms in nature have become inspirations in creating advanced materials by 
mimicking their unique structures. In particular, materials such as shells, lotus leaves, or 
gecko skin, possessing high mechanical properties, superhydrophobicity, and super ad-
hesiveness, respectively, can be mimicked to fabricate materials with promising features 
of the mentioned natural materials [11,12]. An excellent example of a strong biological 
structure is nacre that forms the inside of shells. 

Nacre is a material with a hierarchical structure, as can be seen in Figure 1. Its funda-
mental structure consists of organic and inorganic components, including inorganic arag-
onite layers within the layers of the polymer matrix [13]. There are two layers with differ-
ent microstructures observed in shells containing nacre: the calcite layer and an inner 
aragonite layer [4]. The natural role of nacre itself is to protect the shell from any breakage 
and damage due to its high mechanical properties [14–18]. Nacre has a tensile strength 
ranging from 80 to 135 MPa and a Young’s modulus from 60 to 70 GPa [19]. Due to its 
excellent mechanical properties, nacre is of interest to many researchers. The superior me-
chanical stability of nacre in seashells is related to hard minerals and soft polymers exist-
ing in nacre’s structure [20]. Nacre owns a brick-and-mortar structure, where soft biopol-
ymers are attached to inorganic hard aragonite layers to form tiles, acting as high-perfor-
mance adhesives [10,11]. This tough and iridescent biomaterial is made up of 95% arago-
nite calcium carbonate, which is the rigid part, and glued with 5% of proteins and poly-
saccharides as biopolymers [20]. The modulus of nacre is far superior compared to cortical 
bone which is around 10 to 30 GPa [21], and also higher in comparison with peritubular 
dentin at around 40 to 45 GPa [22]. 

 
Figure 1. Multiscale structures in Mytilus edulis shells. (A) Multilayered structure of the cross-section 
of the bivalve shell observed under an optical microscope. Three layers are visible from the outside 
to the inside: the periostracum, the prismatic layer, and the nacre. (B) Scanning electron microscopy 
(SEM) images of oblique-arranged columnar calcite grains situated in the prismatic layer. (C) SEM 
image of the brick-and-mortar-like structure of nacre. White arrows in B and C indicate the normal 

Figure 1. Multiscale structures in Mytilus edulis shells. (A) Multilayered structure of the cross-section
of the bivalve shell observed under an optical microscope. Three layers are visible from the outside
to the inside: the periostracum, the prismatic layer, and the nacre. (B) Scanning electron microscopy
(SEM) images of oblique-arranged columnar calcite grains situated in the prismatic layer. (C) SEM
image of the brick-and-mortar-like structure of nacre. White arrows in B and C indicate the normal
direction of the shell from the inside to the outside. Scale bars: (A), 600 µm; (B,C), 10 µm. Reproduced
from ref. [13] with permission of The Company of Biologists.

In this review, several fabrication methods of nacre-mimetic artificial materials will
be discussed, combined with antifouling accessories and the emerging application of
the composites for oil–water separation. The production of oily wastewater has been
accelerated by the rapid growth of industrialization, in which the untreated oily wastewater
can cause fatality to aquatic organisms and even human beings due to the overconsumption
of oxygen by the organisms caused by the high content of organic matter [7,10]. Membrane
technology has been found to be effective in treating oily wastewater. As a semipermeable
membrane between two phases, the water flows through the membrane, and organic
matter will be retained on its surface [36]. The layered structure of nacre resembles the
structure of the membrane with excellent mechanical strength. Hence, for oily wastewater
separation, artificial nacre can be a suitable candidate. To achieve this goal, artificial nacre
should possess suitable properties that can retain oil on its surface and allow water to
penetrate its layered structure. When the membrane is designed by mimicking nacre, its
surface morphology can be controlled to produce a membrane with superhydrophilicity
and underwater superoleophobicity equipped with the additional trait of high mechanical
properties that can sustain its usability and allow it to be used to separate water and oil [34].
The interests in nacre research are shown to be increasing in Figure 2, started from 2013
until recently, as observed from published papers and issued patents. To the best of our
knowledge, a review of nacre for oil–water separation has not been published to date;
hence, this review will serve as an interesting discussion on the emerging application of
artificial nacre, especially for oily wastewater treatment.
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2. Fabrication Methods of Nacre-Inspired Materials
2.1. Self-Assembly

An effective way to fabricate a hierarchical system in composites is by using the self-
assembly method [37,38]. There are many methods that represent self-assembly, including
vacuum-assisted filtration and film casting followed by evaporation. Vacuum-assisted
filtration employs a suction pump to create vacuum conditions by using a filtration set-up
to produce layered composites. It is one of the most facile techniques, in which the thickness
of the composite can be controlled by adjusting the volume of solution [39]. However,
this method has been shown to be difficult to fabricate a large-area composite [40]. A
previous study attempted to increase the toughness of the composite by synergizing the
interface interaction of π−π stacking and hydrogen bonding through sulfonated styrene-
ethylene/butylene-styrene (SSEBS) on GO nanosheets, which can improve GO film’s
tensile strength and toughness from 90 MPa to 158 ± 6 MPa and from 1.53 MJ/m3 to
15.3 ± 1.5 MJ/m3, respectively [41]. The self-assembly of layered composites can also be
achieved through film casting. Nanoclay delaminated sodium fluorohectorite (NHT) was
used to increase the aspect ratio of nanoclay. By using poly(ethylene oxide), its polymer
chain length can be manipulated to bridge nanoclay platelets to achieve a depletion effect to
form layered composites with a tensile strength of 99.7 ± 10.3 MPa, and a Young’s modulus
of 24.3 ± 1.6 GPa [39]. A similar approach was performed by Sung et al. [16] in modifying
the surface of MMT through a cation exchange reaction using surfactant (undecyl 10-
undecenoyloxy trimethylammonium bromide (UUTA)). Functionalization of the MMT
surface was performed to incorporate the hydrophobic polymer in layered structures, since
MMT is highly hydrophilic and the utilization of a hydrophobic polymer is able to provide
a higher mechanical strength, since it will not absorb moisture which can deteriorate the
mechanical performance of the composite [27]. The organic acid-induced crystal growth
technique is one of the strategies to fabricate a hierarchical structure [42]. In this approach,
the organic material is used as a medium to produce inorganic minerals in supersaturated
solution [37,42]. The organic part can accelerate or reduce the rate of crystal growth,
depending on its molecular weight, functional groups present, concentration, temperature,
pH of solution, and other factors [37,42,43]. The absorption of polymers will affect the
mineral’s growth [44], which was shown in an early study by Sellinger et al. [45]. The study
relied on evaporation during the dip-coating technique using homogenous solutions of
soluble silicates, a coupling agent, surfactant, organic monomers, and initiators in a water–
ethanol mixture to form laminated structures [33]. The evaporation-induced partitioning
mechanism was adopted in their study to incorporate alcohol-soluble monomers and
initiators into micellar species [45]. The continuous evaporation resulted in the assembly of
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micellar species into organized liquid crystalline mesophases, simultaneously organizing
both the mineral and organic precursors into laminated structures [34].

Gao et al. demonstrated the scale-up of self-assembly techniques by fabricating a
three-dimensional bulk form of artificial nacre via a bottom-up assembly process based
on laminating prefabricated two-dimensional nacre-mimetic films (Figure 3) [46]. The
fabrication began with a mixture of calcium phosphate platelets and SA inducing facial
interaction through Ca2+–SA coordination [46]. The diffusion of Ca2+ ions has been shown
to induce mineralization which can prevent moisture traps [47]. This mixture underwent
evaporation-induced self-assembly, followed by interaction with chitosan through strong
electrostatic interaction via the carboxyl groups of SA and the amine groups of chitosan,
followed by cross-linking using CaCl2 which can improve the platelets’ orientation de-
gree [46]. This method produced a composite with a tensile strength of around 75 MPa,
and a Young’s modulus of around 2.1 GPa [46]. However, the ultimate flexural strength
at 267 MPa could surpass that of natural C. plicata nacre at 172 MPa, but the ultimate
stiffness at 18.6 GPa was lower than that of natural C. plicata nacre at 48.9 GPa [46]. The
biomimetic mineralization approach has been demonstrated to produce high performance
bulk materials [48].
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scattering within the film. At the same time, the surface must contain a minimum rough-
ness to avoid surface scattering [49]. However, this effect became less prominent in high 
aspect ratios when the composite turned opaque [49]. The advancement of layered com-
posite synthesis has also been directed towards smart materials. Du et al. [50] controlled 
the polymer chain dynamics to permanently program the composite’s shape through plas-
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platelets were aligned to three-dimensional porous structures via bidirectional freezing 

Figure 3. Fabrication and characterization of bulk artificial nacre. (a) Schematic illustration of the
bottom-up assembly process of bulk artificial nacre. (b) Large as-fabricated bulk artificial nacre. Scale
bar, 2 cm. Cross-section of the (c) artificial nacre and (d) natural Cristaria plicata nacre showing a
similar fractured layered microstructure. Scale bars, 1 µm. (e) Artificial nacre and (f) Cristaria plicata
nacre under the same strength of impact, illustrating the higher impact resistance of the artificial
nacre. Scale bars, 5 mm. Reproduced from ref. [46] with permission from Springer Nature.

The synthesis of the transparent layered composite mimicking nacre was successfully
performed using synthetic nanoclay and PVA. The transparency was formed at a low
aspect ratio, where irregularities and grain boundaries must be prevented to reduce light
scattering within the film. At the same time, the surface must contain a minimum roughness
to avoid surface scattering [49]. However, this effect became less prominent in high aspect
ratios when the composite turned opaque [49]. The advancement of layered composite
synthesis has also been directed towards smart materials. Du et al. [50] controlled the
polymer chain dynamics to permanently program the composite’s shape through plasticity
and temporarily through shape memory effects. Hence, the self-healing and programming
capabilities became interesting traits of smart nacre [50]. The densified alumina platelets
were aligned to three-dimensional porous structures via bidirectional freezing [50]. In order
to achieve smart nacre, infiltration of a Diels–Alder network polymer was performed into
the densified alumina platelets in liquid precursor form, followed by thermal curing [50].
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The dynamic of the Diels–Alder polymer network plays an important role, since reversible
Diels–Alder chemistry allows the healing of internal damage and polymer-filler interface
by reforming the network structure, hence providing the composite with a self-healing
property [51]. This delicate material design enables the property to be extended to shape
programming, where the temporary shape programming can be applied upon cooling, and
permanent shape programming can be applied via plasticity [50].

2.2. Layer-by-Layer

A layer-by-layer method is a strategy to produce functional multilayer thin films
and has been adopted to fabricate various materials. Ultrathin films with multilayered
structures are produced by sequential adsorption of a cationic polyelectrolyte and an-
ionic mineral platelets via layer-by-layer methods [29,52]. One of the most widely used
techniques to fabricate layered materials is by using spin coating through layer-by-layer
bottom-up colloidal assembly, as can be seen in Figure 4. By using this method, the layered
material can be peeled after synthesis with high flexibility and sufficient ductility [29]. The
advantage of this method is that the thickness of the inorganic–organic layers can be tuned
by altering the rotation speed during the spin coating process [39]. The layer-by-layer
method successfully fabricates artificial nacre which mimicked not only nacre’s mechan-
ical properties, but also its iridescence properties [51]. A study by Finnemore et al. [51]
proposed essential steps to fabricate essential nacre using amorphous calcium carbonate
(ACC), beginning from (1) the stabilization of ACC in solution, followed by (2) specific
aggregation and continuous film formation on organic surfaces, (3) the deposition of a
porous and suitably functionalized thin organic film on the formed mineral layers, (4) the
crystallization of ACC to form aragonite or calcite, and then (5) the cyclical iteration of steps
1 to 4. This study also presented an important factor governing the successful formation of
the artificial nacre, which is that mineral continuity across the porous organic layers should
be available to form a microstructure of the nacre [51]. Additionally, the porous organic in-
terlayer is substantial since it will allow the formation of bridges between mineral films that
grow and propagate across the organic layers, contributing to the mechanical stability of
the composite [51]. Therefore, a good control of layer periodicity through multilayer stacks
resulted in nacre’s iridescence [51]. Farhadi-Khouzani et al. [53] also successfully fabricated
an iridescent layer composite using CaCO3 and nanocellulose via sequential infiltration of
polymer-stabilized CaCO3 precursors into layers of pre-deposited nanocellulose films. The
functionalization of nanocellulose was performed using hydroxyl groups (Na-OH), which
provide good wettability for CaCO3 mineralization, which was optimized by adjusting the
ratio of the concentrations of calcium chloride and poly(aspartic acid) [53]. The functional-
ization of nanocellulose was also performed using carboxyl functional groups (Na-COOH),
which cannot be wetted in the absence of Mg2+ and unmineralized [53]. The layered of
unmineralized nanocellulose was alternated with mineralized layered of nanocellulose
repeatedly until the iridescent composite was formed [53]. This study is in agreement
with a previous study by Finnemore et al. [51], in which the existence of multiple uniform
layers produced the interference composite [53]. The layered composite can be fabricated
to produce 90 layers resulting in a hardness of 222.5 ± 23.6 MPa and a Young’s modulus
of 14.4 ± 1.7 GPa [53]. Table 1 provides the comparison of the synthesized composites’
mechanical properties from various synthesis methods.
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Figure 4. Layer-by-layer bottom-up assembly of multilayered Al2O3/GO−PVA artificial nacre.
(a) GO and PVA. (b) Mixing of PVA and GO nanosheets. (c) Spin coating one layer of GO−PVA
onto a glass substrate. (d) Assembling silane-modified Al2O3 microplatelets into a monolayer at
the air−water interface. (e) Transferring the assembled Al2O3 monolayer onto the GO−PVA layer.
(f) The obtained flexible, foldable artificial nacre after sequential repetition. Reproduced from ref. [29]
with permission of the American Chemical Society.

Table 1. List of mechanical properties of layered composite mimicking nacre.

Synthesis Method Materials

Mechanical Properties

ReferenceYield Strength
(MPa)

Hardness
(MJ/m3)

Young’s
Modulus (GPa)

Layer-by-layer Gold nanoparticle/PVA 122 - 8.5 [54]

Layer-by-layer Al2O3/GO/PVA 143 ± 13 9.2 ± 2.7 [29]

Cross-linking of alginate with
Ca ions MMT/CaCl2 280 7.2 [31]

Evaporation-induced
self-assembly Clay platelet/nanofibrillar cellulose/PVA 80–135 1.8 [55]

Spin-coating Zeolite/CdSe-zeolite/PVA 70 [28]

Vacuum-assisted self-assembly Noncovalent functionalized boron nitride
nanosheets/PVA 125.2 2.37 [56]

Continuous wet-spinning
assembly PVA-coated graphene 161 [57]

Film casting Reduced GO (rGO)/PVA/single-walled carbon
nanotubes (SWCNT) 62.8 0.55 [58]

Hot press and curing Ag-boron nitrite/epoxy 80.3 0.35 23.4 [59]

Combination of ball-milling
and hot-rolling Graphite nanosheets/Cu 660 170 [60]

Lanthanide ion coordination Sodium alginate biopolymers/lanthanide ions
(Nd3+, Gd3+, Ce3+, and Yb3+) 124.2 ± 5.2 8.2 ± 0.4 5.2 ± 0.2 [61]

Vacuum-assisted self-assembly GO/PVA 360.7 42.2 [62]

Waterborne dispersion
casting method Nanoclay/polyethylene oxide (PEO) 99.7 ± 10.3 24.3 ± 1.6 [39]
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Table 1. Cont.

Synthesis Method Materials

Mechanical Properties

ReferenceYield Strength
(MPa)

Hardness
(MJ/m3)

Young’s
Modulus (GPa)

Vacuum-assisted self-assembly
with ultrafiltration MMT/aramid nanofiber 126.5 [63]

Solution-casting and in situ
chemical reduction Graphene/polybenzimidazole (PBI) 77.7 6.33 [64]

Bottom-up assembly process
based on laminating

prefabricated two-dimensional
nacre-mimetic films

Brushite (CaHPO4·2H2O) platelets/SA 267 [46]

Film casting and cured Borate cross-linked galactomannan/GO 135.54 [65]

Film casting and cured MMT/poly(3-mercaptopropyl)methylsiloxane
(PMMS) 64–110 5–12 [27]

Vacuum-assisted self-assembly Boron nitride nanosheets (BNNSs) and
graphene oxide (GO) 16.3 6.5 [66]

Vacuum-assisted self-assembly GO/carboxyl functionalized SWCNT/konjac
glucomannan 311.4 ± 9.2 11.1 ± 0.5 [26]

Stirring and ultrasonic
treatment GO-CNT/thermoplastic polyurethane 209.8 5 [67]

Evaporation-based
self-assembly MMT/chitosan/genipin/NaOH 226 5.1 [23]

Filtration and cross-linking GO/p-diaminophenyl 142.9 ± 6.4 4.7 ± 0.36 [68]

Filtration and vacuum drying
Polydopamine-capped graphene oxide
(PDG)/2-ureido-4[1H]-pyrimidinone

hexamethylene isocyanate (UPy-NCO)
325.6 ± 17.8 11.1 [69]

Vacuum-assisted self-assembly Boron nitride nanosheets/gelatin 148.7 31 [70]

Modified bidirectional freezing
technique GO/PVA 150.9 8.5 [71]

LBL assembly and the VAF
method Polyurethane/aramid nanofibers 98.02 5.275 [33]

Wet-spinning MMT nanoplatelets/graphene 88–270 [72]

Multi-step powder
metallurgyroute and industrial
extrusion process followed by

laser shock peening

Graphene/aluminum alloy 343 79.8 [73]

Film casting Mg-amorphous calcium carbonate
(ACC)/chitosan 121.67 31.96 [30]

Vacuum-assisted self-assembly 1D 2,2,6,6-tetramethyl-1-piperidinyloxy
(TEMPO)-oxidized cellulose nanofibers/MXene 128.13 7 [74]

Vacuum-assisted self-assembly PVA/hydroxylfunctionalized black
phosphorus (BP-OH)/GO 74.3 ± 3.5 [75]

Vacuum-assisted resin infusion
molding process MMT-MWCNT/epoxy 750 36 [76]

3. Antifouling Coating for Artificial Nacre Inspired by Natural Nacre

The reduction in surface fouling in nacre M. edulis shell cannot be explained by
the active cleaning of the shell by the mussel’s foot, as this cleaning mechanism is only
effective for individuals shorter than 3 cm in length [77]. This explains other strategies for
antifouling in nacre M. edulis shell that served as accessories that can be used chemically
and enzymatically.

3.1. Chemical Antifouling Accessories

The antifouling capacity by crude extracts of M. edulis periostracum against representa-
tives of significant fouling groups, such as bacteria, diatoms, and barnacles, was effectively
investigated in the study by Bers [35]. Bers’ work used solvents of increasing polarity,
where six rough extracts of the periostracum of whole shells were synthesized. Lab-based
bioassays were performed, and these extracts were evaluated for their ability to inhibit
common fouling species. The diethyl ether fraction strongly inhibited the Balanus amphitrite
cyprid attachment, as well as the attachment of the marine bacteria Cobetia marina and
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Marinobacter hydrocarbonoclasticus at the specified dosages. The dichloromethane fraction
greatly decreased the diatom attachment of Amphora coffeaeformis, but the ethyl acetate and
diethyl ether fractions both inhibited the development of the benthic diatom [35].

3.2. Enzymatic Antifouling Accessories

Enzymatic antifouling can be explained by the studies of the live M. edulis which
reveal that they actively clean their shells and that the foot is anatomically suited to the
cleaning process. The mucous glands on the dorsal side of the foot make it easier for
the foot to slide over the shell when cleaning, and they may also produce a mucoprotein
that acts as a protective agent on the shell while cleaning [77]. This mucoprotein in M.
edulis digestive systems contains several enzymes, such as amylase [78,79], lysozyme [80],
protease, lipase [78], etc.

By mimicking this antifouling via an enzymatic process in the nacre surface, the
modification of the surface of membranes can be undertaken. Surface modification of
membranes has emerged as a major technique for their functionalization [81]. One method
of membrane modification is to decrease fouling, which may be accomplished via the
immobilization of α-amylase nanoparticles as an antifouling agent for carbohydrates. The
immobilized α-amylase is combined with lipase to provide self-cleaning properties for
carbohydrates, lipids, and proteins on polyvinylidene fluoride (PVDF) membranes [82]. In
the hydrolysis process of microbial macromolecules in bioreactors, immobilized amylase on
microfiltration membranes can reduce cake density and resistance [83]. Other modifications,
such as the use of polyethersulfone membrane with α-amylase, were proved to result in a
higher stability, a higher activity, and successful membrane regeneration [84].

The combination of α-amylase and lysozyme proves to not only improve membrane
surface anti-biofouling properties but also remove bacterial pathogen contamination [85].
A combination between protease and α-amylase immobilized on electrospun nanofibrous
materials also can degrade proteins and starch in solution [86]. Therefore, it is important
that the coating present on natural nacre is applied to artificial nacre in order to exhibit
self-cleaning properties. The initial part of the process of self-cleaning membranes (Figure 5)
is the immobilization of digesting enzymes on the membrane surface, which brings both
enzymes and fouling compounds adsorbed on the surface into contact. Finally, by activating
the digestive enzymes via modifying the surrounding circumstances, the fouling layer that
accumulates during filtering may then be eliminated enzymatically via hydrolysis.
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Other combinations of polyethersulfone membranes with α-amylase integrated in
chitosan-based polymeric micelles increase coating durability, which is attributed to the
surface-active characteristics of chitosan derivatives and electrostatic interaction [87,88].
The use of chitosan combined with catechol by using a one-step oxidant-induced ultrafast
co-deposition on a porous PVDF substrate was presented as a simple green method for the
production of an underwater superoleophobic microfiltration membrane. This technique
for oil–water separation showed outstanding anti-oil fouling and reusability. Its strong
performance was caused by the hydrophilic coating’s induction of the creation of an
interfacial hydration barrier within the porous structure. The mechanism attachment of
oil droplets to the membrane surface can be effectively avoided by this hydration layer.
However, due to the membrane’s attraction to water, water may quickly pass through the
membrane [88]. The pure PVDF membrane, on the other hand, had a great attraction to
oil droplets, which led to severe pore clogging and surface fouling, increasing the filtering
resistance [88].

Beside these approaches, the coating of membranes with organic or inorganic con-
stituents has proven to be effective to prevent fouling, by increasing the surface roughness
of the material. In a previous study by Wang et.al., when coating mesh with a combina-
tion of chitosan/kaolin/CaCO3, it was found that irregular micro/nanoparticles form on
the surface of the mesh, which reduce the fouling of the membrane significantly [89]. A
hierarchical micro/nanoscale structure was also presented in the study of Dai et.al., which
was shown to improve the surface hydrophilicity and reduce fouling [24]. However, if
fouling still occurs due to long operation time and build-up of oil, regeneration can take
place through hydraulic and catalytic cleaning. Hydraulic cleaning can be undertaken
through a backwashing membrane at a pressure of around 0.75 bar for several minutes [90],
while catalytic cleaning can be performed by using peroxymonosulfate, by generating
active species that have strong oxidation ability [90]. These active species can penetrate
the pores during the cleaning process and degrade the build-up through physicochemical
cleaning [90].

4. Oil–Water Separation
4.1. Hydrophilicity and Oleophobicity of Membranes

The oily wastewater can be generated from various sources, such as mining, petro-
chemical, metal/steel industries, or even oil spills [91]. The oily wastewater discharged
from the oil and gas industry usually originated from produced water. The typical oil
and grease content covers hydrocarbons, solid particles, heavy metals, and other toxic
materials [92]. The oil content to be safely discharged to seawater is usually in the range of
10–15 mg/L, since higher concentration can destroy ecosystems, crop production, and the
death of marine life [62]. Besides the produced water, oil spill incidents have caused a loss
of oil resources and huge costs in cleaning tons of oils.

Membranes have been recognized as one of the technologies that can effectively
remove oil from the aquatic environment due to their cost-effectiveness and reusability [61].
To effectively treat oily wastewater, the membrane should develop superhydrophilicity
and underwater superoleophobicity properties [25,63,64]. Until now, only a few studies
were published in applying artificial nacre or material inspired from mussels to treat oily
wastewater (Figure 6) [93–96]. However, the biomimetic concept offers many advantageous
properties to membrane applications, in which oil–water separation can serve as one of
the emerging applications. The superhydrophilicity and superoleophobicity properties,
as special wettability traits in the membrane, can be induced through coatings, surface
oxidation, and modification of the surface, which could govern the contact interfaces
of solid, water, and oil phases [97]. The superhydrophilic–underwater superoleophobic
membrane repels oil while allowing water to pass through the membrane, minimizing
the fouling of the membrane and developing a self-cleaning material [69]. In this type
of membrane, the oil repellence is due to the liquid barrier created by water attached
to the membrane surface; hence, pre-wetting of the membrane is an important step to
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do [68]. However, Cao et al. [66] used a different approach by creating a hydrophobic
and superoleophilic mussel-inspired layered material and were able to perform oil–water
separation. Polydopamine was conjugated with n-dodecyl mercaptan through a Michael
addition reaction, which was proven by the detection of sulfur element [66].
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The microstructure on the membrane surface might increase its roughness, which
amplified its hydrophilicity, and could be achieved by incorporating inorganic fillers in the
membrane matrix [68]. Dai et al. [13] used a GO-CaCO3/stainless steel mesh to produce
superhydrophilic–underwater superoleophobic membranes, in which GO regulates the
CaCO3 crystallization to form a brick-mortar structure (Figure 5). The formation of a
thin and wrinkled corrugation surface mimicking the lotus leaf was observed, which
is CaCO3 crystals wrapped by GO nanosheets [13]. The underwater oil contact angle
(UOCA) and water contact angle were around 155◦ and below 3◦, respectively, showing
underwater superoleophobicity and superhydrophilicity characteristics [13]. The separation
efficiency could reach more than 99%, with self-gravity as the only driving force [24]. The
membrane is also reusable, with a decrease in performance of only 0.17% after 30 cycles of
filtration [24]. In order to observe the stability of the membrane in a marine environment, it
was immersed in hyper-saline solutions for several days, and after immersion, the UOCA
was still maintained at 154.7◦ [24].

A previous study used MMT/poly(diallyldimethylammonium chloride) (PDDA) to
synthesize a layered material with low surface adhesion force towards oil [98]. The sand
abrasion test using sand grains with a diameter of 150–300 µm, which impinged the
membrane’s surface from a height of 15 cm, showed good membrane resistance since it
retained its underwater superoleophobicity [64]. Additionally, exposure of the membrane
in artificial seawater after several days demonstrated the membrane’s durability, where
the oil-repellant property could be maintained with UOCAs varying from 158.3◦ to 163.6◦

toward n-decane [98].
A study by Li et al. [67] used seeded mineralization of the CaCO3 technique to form a

prismatic-type mineral, which can be found in mollusk shell, and the micro/nanotexture
of overlayers on chitosan film. Chitosan as a base was prepared in thin-film form using
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spin coating, followed by the diffusion of CO2 in the presence of poly(acrylic acid sodium
salt) (PAA) to form a seed layer [67]. The overgrowth of calcitic prismatic layers was
performed using CaCl2 solutions with poly-L-γ-glutamic acid sodium salt (PGlu) [96].
By varying the concentration of organic constituents, such as PGlu, the morphology of
the calcitic overlayer can be controlled, which affects the surface contact angle [67]. The
repeated seeded mineralization process forms a hierarchical structure, which mimicked
the mollusk shell [96]. The formation of a continuous overlayer can be ascribed to pre-
adsorption of polymer additives on seed layers; hence, the polymer additive, in this
case chitosan, affects the hierarchical structure of the composite [96]. The utilization of a
columnar-shaped inorganic to produce the underwater superoleophobic membrane was
also performed by Guo et al. [93]. The columnar nacre was prepared by pouring the
solution of MMT/hydroxyethyl cellulose (HEC) in hexagonal silicon honeycomb as a
template, which contributes to the underwater low adhesion and superoleophobicity of the
composite [93]. The cross-linking of composites was proven to be effective. It contributes to
improving the tensile strength of the composite to around 129.3 MPa, which is comparable
to natural columnar nacre ranging from 80 to 135 MPa [63]. The stability of the columnar
structure on the surface of membranes was beneficial to tolerate the abrasion of sand grains
without visible loss the in oil-repellent capability [93]. The membrane was also tested by
submerging it in a complex seawater environment for several days, and the UOCA only
slightly changed to 159.2 ± 4.2◦–168.2 ± 4.8◦ from 168.3 ± 2.8◦ [93].

A study by Li et al. [65], inspired by mussels and lotus leaves, used a polyurethane
(PU) sponge which was covalently modified with polydopamine, silver nanoparticles,
and dodecyl mercaptan to produce a superhydrophobic/superoleophilic material. The
superhydrophobic property of the sponges was synthesized by modifying the sponge with
dodecyl mercaptan in ethanol to decrease the surface tension [94]. The modification of
sponges by polydopamine and silver caused the roughness to increase on its surface, which
repels water and can only be wetted by oil [94].

4.2. Performance of Membranes

The performance of membranes for oil–water separation is given in Table 2. The
materials show satisfying performance in oil and water separations, with more than 90% of
separation observed, generally through gravity-driven oil–water separation. Li et al. [64]
tested the sponge’s performance consisting of PU-polydopamine/Ag/dodecyl mercaptan
for oil absorption with a complete separation of n-octane/water [64]. The reusability of the
sponges was confirmed after five absorption/desorption cycles, in which the oil absorption
capacity of materials was still comparable to freshly coated samples [65]. The filtration
process using sponge was also tested for a mixture of n-octane and methylene blue (5 ppm),
which can be separated with oil penetrated through the sponge quickly, and methylene
blue can be collected on the surface [65]. The sponge shows excellent environmental and
chemical stability against acid, salt, and alkali solutions, UV irradiation at 200 to 400 nm,
and very high and low temperatures [94]. The layered membrane of polydopamine-n-
dodecyl mercaptan fabricated on top of a stainless-steel mesh showed stable performance
even after 30 rounds of filtration; the separation efficiency could be maintained above
99.5% [65]. The average intrusion pressure of membranes was measured at 2.18 ± 0.08 kPa,
which is an important factor in preventing water flow through membranes [65].
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Table 2. Comparison of performance of nacre-inspired materials for oil–water separation.

Synthesis Method Materials
Mechanical Properties

Performance ReferenceTensile Strength
(MPa)

Young’s
Modulus (GPa)

Vacuum-assisted
self-assembly Clay/PNIPAM 0.95 0.0147

Act as oil repellent and could separate
99.9% hexane/water and crude oil/water

completely. UOCA of 159◦ .
[34]

The mixture was shaken
at 50 ◦C to form sponges

PU-polydopamine/Ag/
dodecyl mercaptan 0.218 ± 0.021

Complete separation of n-octane/water.
Could absorb various types of organic

solutions with absorption capacity ranges
from 18–43 g/g. The highest absorption

capacity was for tetrachloromethane, while
the lowest is for crude oil. Water contact

angle of 155◦ and UOCA 0◦ , hence a
superhydrophobic and superoleophilic

material.

[94]

Layer-by-layer
self-assembly by

dipping and washing
GO/CaCO3 25.4 ± 2.6

Separation of solutions containing
cyclohexane, toluene, diesel, hexane, and
petroleum ether, with water flux reaches

179,640 Lm−2h−1 for cyclohexane and
120,000 Lm−2h−1 for diesel. UOCA of 155◦ .

[24]

Spin/dip coating-seed
mineralization Chitosan/CaCO3-Pglu 32.1 ± 9.0

Separation of solutions containing
cyclohexane, soybean oil, toluene, silicon
oil, and engine oil, with oil concentrations
after separation below 4 ppm for soybean
oil and below 2 ppm for the rest. UOCA of

145.3 ± 1.6◦ .

[96]

Film
casting-evaporation MMT/HEC 129.3 ± 6.7 6.3 ± 0.36 UOCA of various oils is higherthan 156.8◦

and adhesive force of less than 3.5 µN. [93]

Dip coating-wash
repeatedly MMT/PDDA 9.4 ± 2.4

UOCA of various oils are higher than 160◦
and adhesive force of less than 4.7 ± 2.7

µN.
[98]

Dip coating GO
Separation efficiency of around 98 and 90%

for light oil/water and heavy oil/water,
respectively. UOCA above 150◦ .

[99]

Michael addition
reaction

Polydopamine-n-dodecyl
mercaptan/stainless

steel mesh

Separation efficiency of 99.95% for
hexane/water mixture, above 99.7% for
petroleum ether and gasoline mixtures,

and 98.12 ± 0.31% for diesel/water
mixture. Water contact angle of 144◦ and
UOCA 0◦ , hence a superhydrophobic and

superoleophilic material.

[95]

Interfacial assembly and
cross-linking GO/sodium alginate/CaCl2 35.8 ± 4.9

Separation efficiency of 99.6% for
cyclohexane-water mixture with UOCA of

154 ± 1◦ .
[100]

Electrospinning Silica/nafion
Complete separation of carbon

tetrachloride and benzene from water.
Contact angle of 130◦ .

[101]

Solution casting
PAA/polyvinylidene

fluoride (PVDF)-graphene
nanosheet

92.10 ± 10.01 21.28 ± 2.86

UOCA of more than 150◦ . High
mechanical stability after 5 h immersion in

seawater (tensile strength and Young’s
modulus changed to 84.7 ± 9.07 MPa and

12.96 ± 2.48 GPa, respectively).

[102]

Vacuum-assisted
self-assembly

Polyethyleneimine
(PEI)-CNT 86 4.043

UOAC of around 169.1◦ , 160.8◦ , 173.4◦ ,
162.9◦ , and 168.9◦ for hexadecane, heptane,

soybean oil, pump oil, and silicone oil,
respectively. Oil–water separation

performance: flux reached 1427 Lm−2h−1

and flux recovery ratio of 81.7%.

[103]

Facile and green
layer-by-layer (LbL)

assembly

Chitosan/carboxymethyl
cellulose@CaCO3

UOAC of 152◦ , 154◦ , 151.5◦ , 150.5◦ , and
151◦ for methanol, ethanol, chloroform,

toluene, and n-hexane, respectively.
Oil–water separation performance: flux

reached 7532 Lm−2h−1 and efficiency can
be maintained at 97.8% after 64 times

usage.

[104]

Layer-by-layer
self-assembly by

dipping and rinsing
Chitosan/kaolin@CaCO3

UOAC of > 152.5◦ for gasoline and diesel.
Oil–water separation performance: the flux
reached 48,520 Lm−2h−1 and efficiency can

be maintained at 97.7% after 64 times
usage. Separation efficiency of >98.4% for
petroleum ether, kerosene, gasoline, diesel,

xylene, and cyclohexane.

[89]
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Wang et al. [70] fabricated an alginate/GO nacre mesh and tested it for the separa-
tion of various types of oils, such as toluene, cyclohexane, diesel, dichloromethane, and
1,2-dichloroethane, with more than 99% separation, and the highest water flux was found
for the cyclohexane–water mixture at 119,426 Lm−2h−1. The chemical stability of the nacre
mesh was performed at pH range from 3 to 9, and the contact angle only slightly decreased
at pH 2 from 154◦ to 153◦, and at pH 10–12 from 154◦ to 152◦. Therefore, the mesh showed
resistance towards acids and alkalis, which is promising for its application in complex oily
water systems.

4.3. Mechanical Properties

The mechanical stability of artificial nacre for oil–water separation is strongly in-
fluenced by its building blocks. For oil–water separation, MMT exhibited very high
mechanical properties at around 129.3 ± 6.7 MPa and 6.3 ± 0.36 GPa for tensile strength
and the Young’s modulus, respectively [93]. The orientation of MMT and cross-linking by
HEC are the main factors that contribute to the superior mechanical properties. The MMT
platelets have a high weight fraction and are oriented mainly along the plane direction,
and chemical cross-linking through glutaraldehyde can strengthen the columnar nacre-like
structure [63]. Additionally, the stiffness of the film’s surface microstructure is ensured by
the perpendicular orientation of MMT platelets in the column wall to the film plane [63].

The phenomenon of high nanofiller loading has emerged to provide the synthesized
materials with excellent properties, with one of them being excellent mechanical properties.
The unidirectional orientation of platelets might contribute to a high tensile strength, while
the strong interaction between the filler and polymer might contribute to the high modulus
of composites [76]. The ductility of the material can be achieved through synergetic
effects of covalent and noncovalent bonding, such as hydrogen bonding, π–π interaction,
etc. [105,106]. The fabrication method, such as the layer-by-layer method, self-assembly,
sol–gel techniques, etc., also influences the resulting mechanical properties of the materials.
These employed techniques could control a high-filler content through homogeneous
dispersion, as well as the interaction force between fillers and polymers [106]. A study by
Rashid et al. [78] emphasizes strong electrostatic and hydrogen bonding between PEI and
MMT. It enables the composite film to exhibit a modulus of ~65 GPa through a layer-by-
layer method of fabrication.

5. Interaction between Inorganic and Organic Constituents in the Membrane

The emulation of the mechanical strength of nacre is an important factor in the fabri-
cation of artificial nacre. Various methods have been employed to facilitate the formation
of bonds among the inorganic and organic components that are expected to improve the
mechanical properties and stability of materials (Figure 7). A study by Song et al. [28]
used SSEBS in intercalation through GO nanosheets’ layers. The interaction between the
poly(styrene) part in SSEBS and GO was found through π−π stacking, and hydrogen
bonding was formed between sulfoacid groups of SSEBS and oxygen-containing groups on
the surface of GO [28]. The interlocking of GO nanosheets through these bonds allows the
mutual slippage, which helps dissipate fracture energy and enhances tensile strength [28].

The cross-linking of inorganic and organic components has also been shown to ef-
fectively improve the artificial nacre’s mechanical properties. One of the cross-linking
strategies is through the dipping of sodium alginate-GO in a CaCl2 solution, which then
induces the formation of nanoscale Ca-alginate hydrogel particles between the interlayer of
GO nanosheets, to eventually facilitate the mechanical interlocking alongside the formed
hydrogen bonds between sodium alginate and GO [70]. Sung et al. [16] applied another
strategy using UV irradiation to facilitate an in situ thiol-ene click reaction between the
siloxane-based polymer and clay platelets. The thiol-ene click reaction induced the forma-
tion of gel-like deposits, which then form a cross-linked layered structured when dried [16].
The in situ reaction between the thiol groups of polymers and ethenyl groups of clay
platelets resulted in aggregation due to the high aspect ratio of clay; hence, the gel-like
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deposit could be formed [16]. Wang et al. [41] showed the importance of the cross-linker in
the layered composite, which could replace the weak van der Waals forces with chemical
interactions. High valence Al3+ ions were used to enhance the interlayer bonding strength
of the spin coating, indicated by the bonding of Al3+ with oxygen-containing functional
groups on GO nanosheets, which decreased the mixed dispersion’s zeta potential value [75].
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Previous studies have attempted the mass production of artificial nacre by fabricating
the following: 3D bulk layered material [46], a millimeter-thick artificial wooden nacre
by using a freeze-casting technique that can create a lightweight material [47], large-sized
nanocomposite paper through optimization of the interfacial interaction of the lamellar hy-
brid [107], bulk film though dry-spinning assembly [108], and transparent and tough bulk
composite using a vacuum-aided filtration technique [109]. To fabricate large-sized prod-
ucts, the fabrication techniques focus on the alignment of platelets and the creation of min-
eral bridges, which can be formed due to the diffusion of ions between glass platelets [109].
A similar agreement was shown in a previous study by Jia et.al., in which the scale-up
of artificial nacre could be performed through a laminating process to regulate interfacial
bonding, resulting in a high-performing hierarchical structure [108]. The improvement of
mechanical strength through the mineralization of lignocellulose has also been shown in
a previous study for the fabrication artificial wooden nacre [47]. Mineralization through
the coordination of Ca2+ to lignocellulose can close gaps and eliminate flaws within the
structure, which can otherwise cause water to reside, resulting in a diminished mechanical
strength of the material [47].

6. Conclusions and Outlook

Artificial nacre has been synthesized using various methods with the aim of pro-
ducing layered composite membranes with high mechanical properties. Among these,
self-assembly and layer-by-layer synthesis methods are the most widely used due to the
facile fabrication and ease of controlling the membrane’s dimension and surface morphol-
ogy. Vacuum filtration assisted-self-assembly is one of the facile methods used, in which
the dimension of membranes can be controlled by varying the volume of solution. How-
ever, a large-scale membrane is deemed challenging to be fabricated using this method.
Spin coating-assisted layer-by-layer assembly was proven to be able to fabricate various
dimensions of membranes, with the ability to control the thickness of each layer with
precision. However, this method is quite complex, with many repetitive steps that need
to be performed. The treatment of oily wastewater is one of the emerging applications
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for artificial nacre, which can effectively treat oil spills. The layered membrane or mussel-
inspired composite constituents comply with properties needed to separate the oil–water
mixture, especially for superhydrophilicity and underwater oleophobicity. The coating
present on natural nacre is applied to artificial membranes such as nacre to enable important
self-cleaning properties, in addition to the hydration layer for catechol/chitosan coating in
oil–water separation that can effectively separate oil without oil fouling occurring.

The composite membrane shows satisfactory performance in repelling oils, including
crude oil, cyclohexane, soybean oil, toluene, silicon oil, engine oil, and so on, with the UOCA
value usually being more than 160◦. The durability of membranes in seawater environments
gives promising results to treat the oil spills. So far, the published studies reveal the
potential of artificial nacre to separate oil and water in a lab-scale set-up. However, testing
the material for real oily wastewater in a pilot plant to has yet to be observed, and this can
be an interesting topic to be explored for future studies. Additionally, the enhancement of
physical and chemical interactions, such as cross-linking, hydrogen bonding, π–π stacking,
etc., among constituents that build the artificial nacre will be an exciting topic to explore
due to their contribution to a higher mechanical strength.
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