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Abstract: In recent years, high permeability membranes (HPMs) have attracted wide attention in
seawater reverse osmosis (SWRO) desalination. However, the limitation of hydrodynamics and mass
transfer characteristics for conventional spiral wound modules defeats the advantage of HPMs. Feed
spacer design is one of the effective ways to improve module performance by enhancing permeation
flux and mitigating membrane fouling. Herein, we propose a multiscale modeling framework that
integrates a three-dimensional multi-physics model with a permeable wall and an impermeable
wall, respectively, at a sub-millimeter scale and a system-level model at a meter scale. Using the
proposed solution framework, a thorough quantitative analysis at different scales is conducted and
it indicates that the average errors of the friction coefficient and the Sherwood number using the
impermeable wall model are less than 2% and 9%, respectively, for commercial SWRO membrane
(water permeability 1 L m−2 h−1 bar−1) and HPMs (3 L m−2 h−1 bar−1, 5 L m−2 h−1 bar−1 and
10 L m−2 h−1 bar−1) systems, compared to the predictions using the permeable wall model. Using
both the permeable and impermeable wall models, the system-level simulations, e.g., specific energy
consumption, average permeation flux, and the maximum concentration polarization factor at the
system inlet are basically the same (error < 2%), while the impermeable wall model has a significant
advantage in computational efficiency. The multiscale framework coupling the impermeable wall
model can be used to guide the efficient and accurate optimal spacer design and system design for
HPMs using, e.g., a machine learning approach.

Keywords: multiscale modeling; impermeable and permeable wall models; high permeability mem-
branes; feed spacer; reverse osmosis desalination

1. Introduction

Membrane-based separation technologies, such as micro- [1,2], ultra- [3,4], or nanofil-
tration (NF) [5,6], reverse osmosis (RO) [7,8], electrodialysis [9,10] and membrane distilla-
tion [11,12], have increasingly attracted extensive attention in industry and academia. Due
to its energy-saving and cost-competitiveness, RO is one of the most advanced membrane-
based technologies and has widespread applications in desalination [13,14], wastewater
treatment [15,16], pharmaceutical production [17,18], electronics industries [19,20] etc. Scal-
ing and fouling are common challenging problems in RO, especially in the condition of
high flux (e.g., more than 50 L m−2 h−1 [21]) with the use of a high permeability membrane
(HPM). Spacer design in spiral wound membrane (SWM) modules has wide application
prospects to mitigate membrane scaling and fouling and improve the performance of a
SWM module [22].

Lin et al. [23] summarized the research development on feed spacer in the last twenty
years and emphasized that it is critical for feed spacer design to balance the feed channel
pressure drop and mass transfer on the membrane surfaces. Among these works, the
computational fluid dynamics (CFD) simulation technology was widely applied to capture
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the local fluid flow and transport phenomena in membrane-based processes. The CFD
models in a spacer-filled channel are divided into a permeable wall model and an imper-
meable (or impermeable-dissolving) wall model [24], according to the type of boundary
conditions enforced on the membrane walls. For the permeable wall model, Anqi et al. [25]
adopted the three-dimensional (3D) CFD technology to estimate the effect of the angle
(α = 60◦, 90◦, 120◦) between the spacer filaments and the Reynolds numbers (100, 400,
800). The results indicate that increasing crossflow contributes to enhance mass transfer,
and reducing the angle α will decrease the friction loss. The experimental and simulation
results by Lin et al. [26] showed that the feed spacer geometries with non-uniform filament
have a significant effect on both anti-fouling performance and hydraulics. The study by
Foo et al. [27] showed that the mass transfer in the spacer-filled channel can be markedly
enhanced by an unsteady forced-slip combined with a spacer design. In this case, the
optimization of the geometrical parameters can greatly affect the resonant frequency and
thereby reduce the concentration polarization (CP). The study by Singh et al. [28] showed
that the feed spacer configurations with the higher water permeation are accompanied with
a higher flow resistance. Li et al. [29] proposed a hybrid model that couples a CFD model
at a small-scale and a system level model for brackish water RO (BWRO) desalination. The
simulated results fit well with the measurements from industry. Lin et al. [30] designed
a novel membrane module with a diagonal-flow feed channel. The CFD simulations and
experimental results indicate that the novel membrane module has better performance
(e.g., higher permeation flux and higher salt rejection) compared to the conventional mem-
brane module. This is because the former one has a higher average cross-flow in the feed
channel, which can reduce CP and mitigate membrane scaling. Apart from the RO process,
spacer design also has widespread applications in other membrane-based processes, such
membrane distillation [31].

However, the typical used permeable wall model is fully coupled and is computation-
ally expensive. Because the cross velocity is several orders of magnitude higher than the
permeation flux, the boundary condition on the membrane surface barely affects the fluid
flow and solute transport. Some researchers used impermeable wall boundary conditions
to obtain reasonable simulation results in their CFD simulations [32–37]. The impermeable
wall model is a one-way coupling that greatly reduces the nonlinear effect compared with
the commonly used permeable wall model. Geraldes and Afonso [38] proposed a general-
ized correction factor to correct the mass transfer coefficients at impermeable walls with an
average error of 3.6% compared with the CFD predictions with a permeable wall, which is
independent of the flow regime and feed spacer geometry. The predicted results using the
impermeable wall model are in good agreement with the experimental data [32,33] with
an error of approximately 10%. Toh et al. [37] presented a multi-scale model that couples
an impermeable wall model at a small-scale and a large-scale model for RO desalination.
The simulated results for BWRO and SWRO systems with the use of an advanced feed
spacer and HPMs showed that the significance of improving the spacer performance is
even greater than increasing the membrane permeability in terms of cost-effectiveness.
Luo et al. [39] proposed a heuristic optimization framework based on a field synergy prin-
ciple and a high throughput computing strategy for BWRO systems. Using the optimized
feed spacer, the axial pressure drop for the entire system is negligibly small compared to
a commercial feed spacer. Chen et al. [40] further developed several novel feed spacers
based on triply periodic minimal surfaces, and the average water permeation flux can
be enhanced by about 8.6% in comparison to a conventional feed spacer. Gu et al. [41]
used a multilayer artificial neural network to establish a surrogate pressure drop model
for spacer-filled channels in BWRO desalination that enables a quantitative description
between the axial pressure drop and design parameters, including feed spacer geometry
and inlet velocity magnitude. The surrogate model can be guided to the optimal design of
feed spacer. Recently, Luo et al. [42] further proposed a supercomputing-based machine
learning-driven multiscale optimization design framework for SWRO desalination systems
with HPMs. Using the optimization framework, the specific energy consumption (SEC) and
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the required membrane area for a designed two-stage SWRO system reduced by 27.5% (to
1.66 kWh m−3) and 37.2%, respectively, under typical conditions (feed salinity 35,000 ppm,
recovery rate 50%). By spacer optimization and system design, the CP at the system inlet
could be suppressed to no more than 1.20.

Although both the permeable and impermeable wall models have been widely applied
in membrane-based processes, the quantitative analyses at different scales for both models
were rarely reported, especially in the conditions of high flux with the use of HPMs. In this
paper, we establish a multiscale modeling framework that integrates the permeable and
impermeable wall models (Section 2.1), respectively, with a system-level model (Section 2.3)
by using relations of the friction factor and the Sherwood number with respect to various
Reynolds numbers (Section 2.2). A thorough quantitative analysis of the framework is
conducted for CFD simulations at a sub-millimeter scale (Section 3.1) and system-level
simulations at a meter scale (Section 3.2).

2. Mathematical Modeling

In spacer-filled RO channels, the “periodic fully-developed” transport phenomena
were confirmed in previous work [29,43] using CFD techniques, which makes it possible
to estimate the cell average mass transfer coefficient at different locations along the axis
of the SWM module by changing the average inlet velocity in the CFD model. Here, we
present a multiscale modeling framework that integrates the permeable wall model and
the impermeable wall model, respectively, as shown in Figure 1.
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wall model and the impermeable wall model.

2.1. The Permeable and Impermeable Wall Models at a Sub-Millimeter Scale
2.1.1. Problem Description

Both the permeable and impermeable wall models in the SWRO desalination consider
fluid flow and solute transport, which can be mathematically formulated below [42].

ρ(u·∇)u = ∇·
[
−PI + µ

(
∇u + (∇u)T

)]
, in Ω,

ρ∇·u = 0, in Ω,
Ds∇2c = u·∇c, in Ω,
uin = uout, (∇u)in = (∇u)out, u = U, on ΓI,
(∇P)in = (∇P)out, c = c0, on ΓI,
P = 0,−n·Ds∇c = 0, on ΓO,
JW = w = G1(LP, P, c), JS = G2(B, JW, c), on ΓU ∪ ΓB,
uL = uR, PL = PR, cL = cR, on ΓL ∪ ΓR,

(1)
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where the governing equations, the Navier–Stokes (N–S) equation, the continuity equation
under a laminar flow condition and the convection–diffusion equation are defined in a
3D computational domain (Ω), or a narrow spacer-filled channel (Figure 2). The variables
consist of the velocity vector u ≡ (u, v, w), hydraulic pressure (P) and molar concentration
(c). The density (ρ) and viscosity (µ) of fluid and the diffusivity (Ds) of salt are assumed as
constants [42].LP and B denote water permeability and salt permeability, respectively.
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2.1.2. Boundary and Initial Conditions

For the permeable wall model, the permeation flux of water, or water flux (JW), is pro-
portional to the difference (∆P−∆π) between the transmembrane pressure (∆P = ∆P0 − ∆Pc)
and transmembrane osmotic pressure (∆π). The specific value is LP. ∆π is the function
of the local concentration on the membrane surfaces. For the impermeable wall model,
the permeation flux of water is assumed as zero, and a constant concentration boundary
condition is applied on the membrane surfaces. Thus, JW can be expressed as

JW = G1(LP, P, c) =

{
LP[∆P0 − ∆Pc − ∆π(c)], f or permeable wall modeo
0, f or impermeable wall modeo

(2)

where ∆P0 is the inlet transmembrane pressure. The pressure drop (∆Pc) along the feed
direction (x-direction, see Figure 2b) is the difference of the average pressures at the inlet
(ΓI) and outlet (ΓO), respectively. In the convection–diffusion equation, the boundary
conditions for a permeable flux of salt (JS) and a constant concentration (cw,0) are enforced
on the membrane walls (ΓU ∪ ΓB) for the permeable wall model and impermeable wall
model, respectively, as below.{

G2(B, JW, c) = n · (−Ds∇c + cu) = JWcw(1− Rsalt), f or permeable wall model
cw = cw,0. f or impermeable wall model

(3)

cw is the concentration on the membrane walls. The salt rejection (Rsalt) is defined by

Rsalt =
JW

JW + B
. (4)
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A fully developed boundary condition with an average velocity magnitude and a
constant concentration boundary condition (c = c0) are applied at the inlet boundary (ΓI)
for both the permeable and impermeable wall models. The periodic boundary conditions
are applied at the lateral boundaries (ΓL ∪ ΓR), which are commonly used in numerical
simulation involving structural repeating units (see Figure 2a). For the impermeable wall
model, the N–S equation and continuity equation are solved first. The initial velocity and
pressure conditions are assumed as constants. The obtained velocity and pressure profiles
are used to further calculate the concentration profile by solving the convection– diffusion
equation. For the permeable wall model, the calculated velocity, pressure and concentration
profiles are solved simultaneously. The simulated results for Case 1 (Commercial SWRO
membrane: LP = 1 L m−2 h−1 bar−1) are considered as the appropriate initial results to
accelerate the solutions for Cases 2–4 (HPMs: LP = 3 L m−2 h−1 bar−1; 5 L m−2 h−1 bar−1;
10 L m−2 h−1 bar−1).

2.2. The Relations Coupling the CFD Model and System-Level Model

After solving Equations (1)–(4), the 3D velocity, pressure and concentration profiles in
the spacer-filled channel (Ω) can be estimated for both the permeable and impermeable
wall models. The relations of the friction factor ( f ), Sherwood number (Sh) and Reynolds
numbers (Re = DHuρ

µ ) are obtained by the fitting curves (f -Re, Sh-Re), namely,{
fper = k1Ret1 , f or permeable wall model
Shper = k2Ret2 , f or permeable wall model

(5)

and {
fimp = k′1Ret′1 , f or impermeable wall model
Shimp = k′2Ret′2 . f or impermeable wall model

(6)

The friction factor ( fi) and Sherwood number (Shi) are calculated by

fi = −
∆Pc, i

L
DH/

(
1
2

u2
)

, i = per, imp (7)

and

Shi =
km, iDH

DS
, i = per, imp (8)

respectively. For a given spacer geometry, the hydraulic diameter (DH) can be identified [29].
Then the pressure drop per unit length along the feed direction (x-direction, see Figure 2b
can be calculated by

− ∆Pc, i

L
=

P(x = 0)− P(x = L)
L

, i = per, imp (9)

P(x = L) and P(x = 0) denote the average pressure at the inlet (x = 0) and outlet (x = L).
The cell average mass transfer coefficient (km, i) is calculated by

km, i =

∫ L
0 dx

∫W
0 ( −Ds

cr−cw
· ∂c

∂z

∣∣∣z=H/2)dy∫ L
0 dx

∫W
0 dy

, i = per, imp (10)

L, W and H denote the length (x-direction), width (y-direction) and height (z-direction)
of the computational domain (Figure 2b). It should be pointed out that the estimated
Sherwood number using the impermeable wall model (km, imp) needs to be corrected using
the reported relations [38]

km, per = km, imp

[
ψ +

(
1 + 0.26ψ1.4

)−1.7
]

, (ψ < 20) (11)
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ψ =
JW

km, imp
, (12)

in which JW is calculated using the system-level model, Equations (13)–(15).

2.3. The System-Level Model for SWRO Desalination at a Meter Scale

Furthermore, we established a system-level model [36,37] that enables us to quantify
the effect of spacer geometry on the entire performance of RO desalination.

dQ
dX = −JW · Atot X = 0, Q = Q0,
d(∆P)

dX = − ρu2

2DH
f · (nmemlx) X = 0, ∆P = ∆P0,

dwb
dX = JW · Atot

Q
(
wb − wp

)
X = 0, wb = wb, 0,

JW = LP(∆P− σ · ϕRsaltww)

Q = NPVnspHlyεu,

(13)

where Q, ∆P and JW are the flow rate, transmembrane pressure and water flux, respectively.
NPV, nmem and nsp denote the number of pressure vessels, the number of membrane module
per pressure vessel and the number of feed spacers per membrane module, respectively. lx
and ly are the module length parallel to flow and the module length perpendicular to flow,
respectively. The porosity, ε is calculated by the formula in previous work [29]. In this paper,
the average inlet velocity (U0) is considered as a constant. wb, wp and ww denote bulk
salinity, permeate salinity and salinity on the membrane walls, respectively. These variables
change with respect to various dimensionless length, X = x

nmemlx
. The total membrane area,

Atot, is calculated by Atot = NPVnmem A0 (A0: membrane area per membrane module). σ
and ϕ denote the reflection coefficient and osmotic pressure coefficient, respectively. The
salinity on the membrane walls (ww) is calculated by

ww =
wp

1− Rsalt
, (14)

in which wp can be expressed by

wp = wb/

[
exp

(
ln

JW

B
− JW

km, per

)
+ 1

]
. (15)

A more detailed derivation for Equation (15) can be found in our latest work [42].

3. Results and Discussion
3.1. CFD Simulations

In this paper, the detailed geometry parameters of the feed spacer are listed in Table 1
that are referred to previous literature [44]. The spacer thickness is about 34 mil (863 µm).
The number of spatial discrete elements is 1,477,393 (Figure 3), which has comparable
precision compared with our previous work [39]. The detailed mesh independence analysis
was reported there. Based on the finite element method, Comsol Multiphysics was used
to establish and solve the CFD models in this paper. More detailed model parameters
can be found in our latest work [42]. The calculated velocity magnitude distributions
using the permeable wall model (Figure 4a) and impermeable wall model (Figure 4b)
demonstrate that the effect of the permeation flux of water (or water flux) on the cross
velocity in the spacer-filled channel is negligible. This is because the water flux (≈10−5 m/s,
see Figure 5a) is much smaller than the cross velocity in the feed channel (Figure 4a),
which is consistent with the reported literature [29]. Even for the HPMs systems (e.g.,
LP = 5 L m−2 h−1 bar−1, Figure 5b), this conclusion still holds true. Similarly, the calculated
pressure magnitude distribution is basically the same using the permeable wall model
(Figure 6a) and impermeable wall model (Figure 6b).
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Table 1. The detailed geometrical parameters of the CFD models [44].

Geometrical Parameters Value

Spacer unit

L1, A (µm) 234
L2, A (µm) 389
L3, A (µm) 500
L4, A (µm) 696
L5, A (µm) 566
L1, B (µm) 281
L2, B (µm) 535
L3, B (µm) 92
L4, B (µm) 878
L5, B (µm) 599
D1, A (µm) 422
D2, A (µm) 223
D1, B (µm) 445
D2, B (µm) 223
Dtot (µm) 863

α (◦) 90

Computational domain

Length, L (mm) 16.864
Width, W (mm) 3.3729
Height, H (mm) 0.853

Porosity, ε (-) 0.90
Hydraulic diameter, DH (mm) 1.058
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Using the permeable and impermeable wall models, the calculated friction coefficient
( f ) and Sherwood number (Sh) are shown in Figures 7a–d and 7e–h, respectively, with the
use of a commercial SWRO membrane (Case 1: Lp = 1 L m−2 h−1 bar−1) and HPMs (Case
2: Lp = 3 L m−2 h−1 bar−1; Case 3: Lp = 5 L m−2 h−1 bar−1); Case 4: Lp = 10 L m−2 h−1

bar−1). It should be noted that the calculated Sherwood number using the impermeable
wall model in Figure 7e–h is corrected using Equations (11)–(15). The average errors of the
calculated friction coefficient using the impermeable wall model are 0.12%, 0.44%, 0.69%
and 1.17%, respectively, for Cases 1–4 compared with that of using the permeable wall
model. Correspondingly, the average errors of the estimated Sherwood number are 6.47%,
7.96%, 7.39% and 8.46%, which basically coincide with the reported results in previous
work [38]. In an RO system, it is more likely that fouling will occur in the lead elements [45],
especially in the condition of high flux. Therefore, we further evaluated the Sherwood
number using the impermeable wall model at the system inlet with the errors of 4.25%,
0.27%, 3.49% and 9.51%, respectively. Overall, the accuracy of the impermeable wall model
is comparable and acceptable on the prediction of the friction coefficient and Sherwood
number versus the permeable wall model. In computational time, the latter one (77.8 h) for
each case is about three times than that of the former one (25.3 h). It should be emphasized
that the impermeable wall model is only associated with the spacer geometry and inlet
velocity, and is independent of other parameters, such as water permeability and operating
pressure. Therefore, the Sherwood number with respect to various water permeabilities
(Cases 1–4) can be directly calculated using Equations (11)–(15) based on the obtained
relations ( fimp −Re, Shimp −Re). However, the permeable wall model must be recalculated
to obtain the Sherwood number when the water permeability or the other conditions change.
Thus, the impermeable wall model has a significant advantage in computational efficiency
in comparison to the permeable wall model, which can greatly reduce the computational
cost, and can be used for the optimal design of the feed spacer.
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for Case 1 (a,e) (LP = 1 L m−2 h−1 bar−1), (b,f) Case 2 (LP = 3 L m−2 h−1 bar−1), (c,g) Case 3
(LP = 5 L m−2 h−1 bar−1) and (d,h) Case 4 (LP = 10 L m−2 h−1 bar−1).

3.2. Performance Evaluations at a System-Level

Using the system-level model, Equations (13)–(15) coupled with the permeable wall
model, Equations (1)–(5), (7)–(10) and the impermeable wall model, Equations (1)–(4), (6)–(12)
respectively, the effect of both CFD models on the RO system performance was evalu-
ated. The input parameters for the SWRO system model (Cases 1–4) are listed in Ta-
ble 2. The simulated transmembrane pressure (∆P), flow rate (Q), brine salinity (wb),
permeate salinity (wp), permeation flux of water (JW) and CPF along the dimensionless
length (X) (Inlet: X = 0; Outlet: X = 1) for Cases 1–4 are shown in Figure 8a–f, Figure 9a–f,
Figures 10a–f and 11a–f, respectively. Obviously, the simulated results at a system-level
based on the impermeable wall model are highly consistent with that of the permeable
wall model, even for the HPMs systems. Furthermore, the errors of the calculated av-
erage permeate salinity (wp), average permeation flux (Jw), maximum CP factor, (max
(CPF)), recovery rate (Rr), permeate rate (Qp) and SEC are all less than 2% using both
the permeable and impermeable wall models. More detailed results are listed in Table 3.
As the water permeability increases from 1 L m−2 h−1 bar−1 to 10 L m−2 h−1 bar−1, the
maximum CP factor at the system inlet can reach up to about 1.50, which will intensify the
membrane fouling. Therefore, it is crucial to enhance the mass transfer with a pressure
loss penalty when the SWRO system is operated at higher flux. To achieve this, the spacer
design and improvement of the cross velocity or unsteady-state shear technologies [46] are
alternative methods.
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Table 2. The input parameters for SWRO systems in Cases 1–4.

Input Parameters Value

Operating conditions Inlet transmembrane pressure, ∆P0 (bar) 60
Inlet average velocity magnitude, U0 (m s−1) 0.2

Properties of feed solute

Feed salinity,wb, 0 (ppm) 35,000
Density, ρ (kg m−3) 1021
Viscosity, µ (Pa s) 9.41 × 10−4

Diffusion coefficient, Ds (m2 s−1) 1.45 × 10−9

Reflection coefficient, σ (−) 1
Osmotic pressure coefficient, ϕ (bar) 805.1

Membrane properties Water permeability, LP (L m−2 h−1 bar−1) 1 (Case1); 3 (Case 2); 5 (Case 3); 10 (Case 4)
Salt permeability, B (L m−2 h−1) 0.05

Membrane module parameters

Module length parallel to flow, lx (m) 1
Module length perpendicular to flow, ly (m) 1
Number of feed spacers per element, nsp 23
Membrane area per membrane module, A0 (m2) 37.2

Module configurations
Number of membrane elements per pressure
vessel, nmem

8 (Case1); 5 (Case 2); 3 (Case 3); 2 (Case 4)

Number of pressure vessels, Npv 30

Efficiencies
Efficiency of high-pressure pump, ηpump (−) 0.85
Efficiency of energy recovery device, ηR (−) 0.95
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Figure 8. The simulated results at the system level using the impermeable and permeable wall models
with the feed salinity (wb, 0 = 35,000 ppm), water recovery (Rr, 0 = 50%), pump efficiency (0.85), energy
recovery device efficiency (0.95) and water permeability (Lp = 1 L m−2 h−1 bar−1). (a) Transmembrane
pressure, ∆P (bar), (b) Flow rate, Q (m3 h−1), (c) Brine salinity, wb (ppm), (d) Permeate salinity, wp

(ppm), (e) Permeation flux of water, JW (L m−2 h−1), (f) CP factor, CPF (−) along the dimensionless
length (X).
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Figure 9. The simulated results at the system level using the impermeable and permeable wall models
with the feed salinity (wb, 0 = 35,000 ppm), water recovery (Rr, 0 = 50%), pump efficiency (0.85), energy
recovery device efficiency (0.95) and water permeability (Lp = 3 L m−2 h−1 bar−1). (a) Transmembrane
pressure, ∆P (bar), (b) Flow rate, Q (m3 h−1), (c) Brine salinity, wb (ppm), (d) Permeate salinity, wp

(ppm), (e) Permeation flux of water, JW (L m−2 h−1), (f) CP factor, CPF (−) along the dimensionless
length (X).
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Figure 10. The simulated results at the system level using the impermeable and permeable wall
models with the feed salinity (wb, 0 = 35,000 ppm), water recovery (Rr, 0 = 50%), pump efficiency
(0.85), energy recovery device efficiency (0.95) and water permeability (Lp = 5 L m−2 h−1 bar−1).
(a) Transmembrane pressure,∆P (bar), (b) Flow rate, Q (m3 h−1), (c) Brine salinity, wb (ppm), (d) Per-
meate salinity, wp (ppm), (e) Permeation flux of water, JW (L m−2 h−1), (f) CP factor, CPF (−) along
the dimensionless length (X).
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Figure 11. The simulated results at the system level using the impermeable and permeable wall
models with the feed salinity (wb, 0 = 35,000 ppm), water recovery (Rr, 0 = 50%), pump efficiency
(0.85), energy recovery device efficiency (0.95) and water permeability (Lp = 10 L m−2 h−1 bar−1).
(a) Transmembrane pressure,∆P (bar), (b) Flow rate, Q ( m3 h−1), (c) Brine salinity, wb (ppm),
(d) Permeate salinity, wp (ppm), (e) Permeation flux of water, JW (L m−2 h−1), (f) CP factor, CPF (−)
along the dimensionless length (X).

Table 3. Output results and errors analysis at the system-level coupling with the impermeable wall
model (M2) compared with that of using the permeable wall model (M1) with respect to Case 1
(LP = 1 L m−2 h−1 bar−1), Case 2 (LP = 3 L m−2 h−1 bar−1), Case 3 (LP = 5 L m−2 h−1 bar−1) and
Case 4 (LP = 10 L m−2 h−1 bar−1).

Output Results

Value

Case 1 Case 2 Case 3 Case 4

M1 M2 Error M1 M2 Error M1 M2 Error M1 M2 Error

wp (ppm) 138 139 0.55% 88 89 0.79% 56 56 1.22% 40 40 1.47%
JW (L m−2 h−1) 18.4 18.3 0.38% 34.1 33.9 0.64% 54.5 54.0 0.99% 81.0 79.9 1.26%
max (CPF) (−) 1.08 1.08 0.32% 1.21 1.21 0.04% 1.32 1.31 0.65% 1.50 1.48 1.86%

Rr (−) 0.43 0.43 0.38% 0.50 0.49 0.64% 0.48 0.47 0.99% 0.47 0.47 1.26%
Qp (m3 h−1) 164 164 0.38% 190 189 0.64% 182 181 0.99% 181 178 1.26%

SEC (kWh m−3) 2.17 2.17 0.06% 2.11 2.11 0.08% 2.12 2.12 0.12% 2.11 2.12 0.14%

4. Conclusions and Outlook

In this paper, we propose a multiscale model framework that couples the CFD models
with a permeable wall and an impermeable wall, respectively, and the SWRO model at the
system level. The simulated results indicate that the CFD simulations (e.g., velocity, pres-
sure) and the system simulations (e.g., SEC, average permeation flux) using the permeable
and impermeable wall models are basic unanimous (error < 2%). The error of the estimated
Sherwood number at the system inlet using both models is smaller than 10%, even under
extremely high-flux conditions (≈200 L m−2 h−1 at system inlet). Furthermore, the imper-
meable wall model is one-way coupled, which can greatly reduce the computational time
compared to the fully coupled permeable wall model. The proposed multiscale framework
coupling the impermeable wall model enables the feed spacer design and system design
simultaneously for high permeability RO/NF membrane systems. Nevertheless, the im-
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permeable wall model still has some limitations. On the one hand, it cannot accurately
predict the local CP due to the assumed constant concentration boundary condition on
membrane walls. On the other hand, the correct relations from km, imp to km, per must satisfy
the condition of JW/km, imp < 20.
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