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Abstract: The influence of the chemical composition of natural waters on triclocarban (TCC) sorption
on pristine and irradiated multi-walled carbon nanotubes (MWCNTs) at different temperatures was
studied. Natural waters have been characterized in terms of the concentrations of cations and anions,
pH, and electric conductivity. The sorption process of TCC on MWCNTs is influenced by both the
chemical composition of natural waters and the variation of the temperature. The adsorption capacity
of TCC on pristine and irradiated MWCNTs in the studied natural waters increased by increasing
the temperature. The increase of the concentration of monovalent cations (Na+ and K+) in natural
waters determined a significant decrease of the adsorption capacity of TCC on both pristine and
irradiated MWCNTs while the increase of the bivalent cations (Ca2+ and Mg2+) determined an easy
increase adsorption capacity. Freundlich and Langmuir models were selected to describe the steady
adsorption of the TCC on the pristine and irradiated MWCNTs.
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1. Introduction

Triclocarban (TCC; 1-(4-chlorophenyl)-3-(3,4-dichlorophenyl) urea) is an antimicrobial
active substance that is used in detergents, cosmetics, and some pharmaceuticals and
personal care products at levels of 0.2–1.5% (w/w) [1,2]. Its use in disinfectants would be
the main source of environmental contamination due to its presence in wastewater [2] from
treatment plants. TCC is frequently detected in surface water, groundwater, seawater, sedi-
ment, and soil because in wastewater treatment plants it is not completely removed [3–7].
Concentrations of TCC in the environment are found at concentrations of parts per trillion
in surface waters and parts per million for biosolids. TCC was detected in surface waters in
concentrations between 0.05 and 6.75 ng/L mainly in China and the USA [1,8], correspond-
ing to the high use of personal and domestic hygiene and cosmetic products. Maximum
concentrations were detected in countries such as India and South Africa, respectively, at
concentrations of 1119 and 360 ng/L [9]. Few data are available for Europe, probably due
to the limitation of TCC on the market, but there are some published data for domestic
wastewaters where concentrations of 0.4–50 µg/L TCC were found [10,11].

Sediments are both sources of storage for hydrophobic pollutants and sources of pol-
lution for surface waters. High hydrophobicity, low solubility in the range of 0.11–1.6 mg/L,
and high values of log Kow of 4.2, facilitate the accumulation of TCC in higher
concentrations [11–13]. In sediments with a higher content of organic carbon, TCC is
found in higher concentration because organic carbon favours the adsorption of TCC.
In freshwater and biosolids, it accumulates in plants and animals due to its lipophilicity.
Accumulations of TCC have been reported in algae, worms, land snails [14,15], and fish [16]
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and due to the application of biosolids on agricultural lands, there were detected accumula-
tions of TCC in plants such as carrots, green peppers, tomatoes, and cucumbers [17,18].

By using hygiene products, TCC could enter the human body where it is metabolized
and further detected in urine in people from the USA, more commonly in that of adults in
comparison with the urine of the children [19]. TCC was also found in urine samples from
China, Canada, and Greece [20,21]. TCC residues in the environment have caused adverse
(serious) consequences for the entire ecosystem and food chain through the disruption of the
endocrine system, bioaccumulation, toxicity, and resistance to potential antibiotics [22,23].

The main studied methods to remove TCC from the environment were adsorption,
photolysis, and biodegradation. The predominant removal of TCC was in wastewater
treatment plants by sludge adsorption. Photolysis facilitates poor removal of TCC from nat-
ural surface waters while TCC degradation was insignificant [24]. In adsorption processes,
a contaminant adheres to the surfaces of an adsorbent, in our case multi-walled carbon
nanotubes (MWCNTs), due to the electrostatic and hydrophobic interaction between the
adsorbate and the adsorbent. The efficiency of removing micropollutants by adsorption on
powdered activated carbon (PAC) varies between 20 and 98% [25–27]. The increase in the
removal efficiency of micropollutants mentioned in previous research may be due to the
various experimental conditions, such as the amount of micropollutants and MWCNTs,
the contact time, the pH, and the type of water. The effects of environmental factors on the
removal efficiency of micropollutants, such as water temperature, pH, and DOM have not
been fully studied [28]. Both concentrations of micropollutants and adsorbents, as well,
the contact time give the micropollutants more possibilities to attach to the surface of the
MWCNTs [26,28]. The higher amount of MWCNTs can extend the adsorbable surface and
increasing of the contact time can lead to the establishment of a complete equilibrium of
the adsorption process. The adsorption of ionized micropollutants on the MWCNTs is
influenced by the variation of pH due to electrostatic interactions. Hydrophilic compounds
easily interact with water depending on pKa and pH in solution, but the adsorption of
hydrophobic micropollutants is not affected by pH variation [28]. The temperature of the
water where the adsorption of micropollutants takes place on the MWCNT surface signifi-
cantly affects the adsorption process. Reduced water temperature can stop the diffusion
of molecules, and their entry into the small surface pores of the carbon nanostructure [29]
influence the intermolecular contact [30–32]. Natural waters contain many dissolved or-
ganic compounds (DOM) which in adsorption experiments on MWCNTs can compete with
micropollutants. In some studies the incomplete removal of micropollutants by adsorption
on carbon nanostructures in natural waters samples has been reported [24,26,27,33].

MWCNTs have begun to be tested as sorbents and have proven that they can be used
in decontamination of soil and different types of water [34–36]. The large specific surface
area of MWCNTs and their aromatic structure favors the coupling of π-π electrons and
interaction with other aromatic structures [37,38]. By irradiating MWCNTs, functional
groups containing oxygen may be attached to the surface, causing changes of the adsorption
parameters for organic compounds that are present in environment waters [39]. The
hydrophobicity of TCC has an important role over its adsorption on activated charcoal. The
adsorption capacity can also be improved due to the π-π electrostatic interactions between
the MWCNTs surface and the aromatic nucleus of the TCC [40,41].

In this paper, the influence of the chemical composition of natural waters on the
adsorption of TCC on simple and irradiated MWCNTs was studied. Different natural
surface waters at different temperatures were used to carry out the study and the waters
were characterized in terms of some cations and anions content. The main objectives were:
the evaluation of the adsorption capacity of TCC by pristine and irradiated MWCNTs in
different natural surface waters, determination of the variation of thermodynamic sorption
parameters during the sorption process, and the influence of certain parameters of natural
surface waters on the sorption capacity. The novelty of this study consists of the application
of pristine and weathered MWCNTs as sorbents for a hydrophobic and often encountered
organic pollutants in natural waters.
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2. Materials and Methods
2.1. Materials

The carbon nanostructures that were used in this study were pristine and irradiated
MWCNTs. The pristine MWCNTs were purchased from Baywatch Germany and irradia-
tion was performed in the laboratory of RWTH Aachen, Germany [42]. MWCNTs were
characterized by various methods of analysis, presented in [26].

The TCC of purity > 99 % was purchased from Fluka/Sigma-Aldrich Chemical, Ger-
many. HPLC grade acetonitrile was purchased from Merck.

For the determination of cations by inductively coupled plasma optical emission spec-
trometry (ICP-OES), Certipur ICP multi-element standard solutions from Merck (Germany)
were used, with a concentration of 1000 mg/L, and Argon 5.0 of 99.999% purity from Linde
Gaz (Romania). The ultrapure water was produced in-house using the Milli Q instrument.

In the case of determination of anions by ion chromatography, Certipur multi-anion
standard solution of 1000 mg/L was used.

2.2. Characterization of Natural Surface Waters

The natural surface waters were characterized by determining the pH, electric con-
ductivity EC, cation content (Na+, K+, Ca2+, Mg2+, Fe2+/3+, and Mn2+), and anions (HCO3

-

and SO4
2−) [43,44]. The cation content was determined by ICP-OES and the anion content

by ion chromatography and the content of radionuclides were analyzed as in [45].

2.3. Chromatographic Analytical Conditions

For HPLC determinations, an Agilent 1100 Series HPLC instrument was used, equipped
with an autosampler, a degasser, a binary pump, an VWD detector, and Agilent Chemsta-
tion software for data acquisition. The chromatographic parameters were: injection volume
of 50 µL; 6 min analysis time; column temperature of 25 ◦C; column C18 (Zorbax Eclipse
Plus-Agilent), 3.5 µm, 100 × 4.6 mm i.d.; flow rate of 1 mL/min, isocratic conditions 80:20
A: B (v/v), where A = acetonitrile and B = ultrapure water [46].

Before each series of chromatographic separations, the analytical column is condi-
tioned for 30 min with acetonitrile and balanced with an acetonitrile mixture: water (80:20
v/v). The TCC monitoring is carried out at the wavelength of 265 nm using the VWD
detector. Identification is achieved by comparing the retention time with the retention time
(tR) of the standard solution [47].

2.4. Inductively Coupled Plasma-Optical Emission Spectrometry Method (ICP-OES)

To determine the cation content by the ICP-OES method, the Optima 2100 DV ICP-OES
System (Perkin Elmer) equipment was used, with dual view optical system—axial and
radial view of the plasma in a single working sequence, which works with an independent
transistorized radio frequency generator at a frequency of 40 MHz. The nebulization system
is equipped with a PEEK Mira Mist® nebulizer coupled to the spray chamber—Baffled
Cyclonic. The spectrometer has an optical module comprising an Echelle monochromator
with a CCD detector (charged coupled device), two-dimensional, the spectral range being
165–800 nm [48].

2.5. Ion Chromatography Method

To determine the anion content by the ion chromatography method, the 850 Profes-
sional IC AnCat-MCS equipment was used using the Metrohm Loop Partial Intelligent
(MiPT) technique with conductivity detector, the anionic separation columns A SUP 4;
self-regenerating SMARTPACK anionic suppression device with external source of ultra-
pure water; conductivity detector Metrohm 850 (0–15000 µS/cm); Dosino sampling and
dilution processor.
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2.6. Preparation of TCC Solution

The standard stock concentration of 100 mg/L TCC was prepared using acetonitrile as
a solvent and stored in the refrigerator at 2–6 ◦C for one week. The standard working solu-
tions were prepared daily by dilutions from the stock solution of 100 mg/L, in volumetric
flasks with acetonitrile of HPLC quality [35].

There were two calibration curves on the ranges 1–100 µg/L and 10–400 µg/L that
were used to quantify the TCC. The calibration curves were graphically built by represent-
ing the area of the TCC peak vs. TCC concentration in the working standards [47].

2.7. Preparation of Aqueous Suspensions of Pristine and Irradiated MWCNTs

The aqueous suspensions were prepared in a single mixing phase by adding 0.6 mg
MWCNTs, which was weighed on an analytical balance, with 150 mL of natural water. To
achieve dispersion, the suspensions were sonicated with the Sonics Vibra cell probe for
10 min in an ice bath. Samples of 25 mL from dispersed solution were transferred to 60 mL
volume brown bottles and the corresponding volumes of the 100 mg/L TCC stock solution
were added in order to obtain the desired concentrations.

2.8. The Adsorption Experiments

Adsorption experiments were performed for different TCC concentrations that were
obtained by adding the corresponding volumes of 100 mg/L TCC standard stock solution
in 25 mL solution containing 0.1 mg of dispersed MWCNT pristine and irradiated, prepared
according to 2.7. The mixtures that were thus obtained were introduced into the incubator at
25 ◦C and 5 ◦C, respectively, on a horizontal stirrer, for 4 h. The two chosen temperatures are
specific to the normal and cold seasons. Samples of 0.5 mL each were taken at intervals of
0.5, 1, 2, 3, and 4 h and filtered through polypropylene syringe filters with an RC membrane,
a diameter of 15 mm, and a pore size of 0.2 µm (Phenomenex) for nanomaterial removal.
Then, they were transferred to 2 mL glass ampoules (vials) and the concentration of TCC
was determined using an RP-HPLC/UV method at 265 nm. In these sorption experiments,
the effect of contact time and the effect of temperature at different concentrations of TCC
was studied.

The sorption capacity (mg/g) was calculated based on the Equation (1) [46]:

q =
C0 − Cx

m
× V (1)

where:

â q (mg/g) is the sorption capacity of TCC,
â C0 (mg/L) and Cx (mg/L) are the initial and steady-state concentrations of TCC in

solution,
â V (L) the volume of the solution, and m (g) the mass of the adsorbent, respectively.

3. Results and Discussion
3.1. Characterization of Natural Surface Waters

A total of three natural surface waters designated A1, A2, and A3 were chosen for the
adsorption experiments, characterized in terms of anion and cation content, according to
the data in Table 1.

Table 1. Characterization of natural surface waters.

Natural
Surface
Water

pH EC,
mS/cm

Na+,
mg/L

K+,
mg/L

Ca2+,
mg/L

Mg2+,
mg/L

Mn2+,
mg/L

Fe2+,
mg/L

HCO3
-,

mg/L
SO42−,
mg/L

A1 7.67 1.37 6.86 3.93 287 79.3 <0.01 8.60 1305 22.9
A2 7.33 1.19 180 8.22 130 28.7 0.07 7.37 1044 9.33
A3 8.21 1.00 59.3 3.46 192 48.7 <0.01 6.03 914 8.49
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3.2. TCC Adsorption Isotherms

Adsorption experiments on pristine and irradiated MWCNTs were performed in
natural surface waters for different concentrations of TCC.

This study used Langmuir and Freundlich isotherms to describe the equilibrium [49]
adsorption of TCC at the two temperatures according to Figures 1–3. The values of the Fre-
undlich and Langmuir adsorption parameters were obtained from the Equations (2) and (3)
and are presented in Tables 2 and 3.

Separations 2023, 10, x FOR PEER REVIEW 6 of 15 
 

 

 
(a) 

 
(b) 
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Figure 2. Langmuir and Freundlich non-linear adsorption isotherms in natural surface water A2 at
25 ◦C (a) and 5 ◦C (b).

Table 2. Parameters for the adsorption of TCC on MWCTs in natural surface waters at 5 ◦C.

Natural
Surface
Water

Langmuir Freundlich Langmuir Freundlich

KL,
L/mg

qm,
mg/g R2 KF n R2 KL,

L/mg
qm,

mg/g R2 KF n R2

Pristine MWCNTs Irradiated MWCNTs

A1 0.42 4.10 0.9963 1.26 1.98 0.9850 0.30 4.28 0.9975 1.08 1.89 0.9872
A2 0.55 3.12 0.9946 1.11 2.08 0.9813 0.41 3.16 0.9968 0.97 2.03 0.9857
A3 0.35 5.57 0.9938 1.47 1.89 0.9810 0.30 5.57 0.9948 1.36 1.87 0.9817
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Figure 3. Langmuir and Freundlich non-linear adsorption isotherms in natural surface water A3 at
25 ◦C (a) and 5 ◦C (b).

Table 3. Parameters for the adsorption of TCC on MWCTs in natural surface waters at 25 ◦C.

Natural
Surface
Water

Langmuir Freundlich Langmuir Freundlich

KL,
L/mg

qm,
mg/g R2 KF n R2 KL,

L/mg
qm,

mg/g R2 KF n R2

Pristine MWCNTs Irradiated MWCNTs

A1 0.25 11.7 0.9981 2.32 1.56 0.9916 0.20 11.12 0.9985 1.98 1.46 0.9945
A2 0.33 8.67 0.9966 2.38 2.09 0.9805 0.18 9.41 0.9978 1.75 1.84 0.9877
A3 0.95 8.42 0.9898 3.72 2.28 0.9696 1.09 7.48 0.9540 3.50 2.57 0.9540
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The non-linear equation of the Freundlich model is [50–52]:

qe = KFC1/n
e (2)

where:

â qe [mg/g] is the sorption capacity of the sorbent at equilibrium,
â Ce [mg/L is adsorbate concentration at equilibrium,
â KF [(mg/g)/(mg/L)1/n] is Freundlich affinity coefficient

The non-linear equation of the Langmuir model is [50,52]:

qe =
qmKLCe

1 + KLCe
(3)

where:

â qe [mg/g] is the sorption capacity of the sorbent at equilibrium,
â qm [mg/g] is the maximum adsorption capacity of the sorbent,
â Ce [mg/L} is adsorbate concentration at equilibrium,
â KL [L/mg] is the Langmuir equilibrium constant

On pristine MWCNTs, it is possible to have three adsorption zones, the interstitial
channel, the external surface, and the grooves [53]. The external surfaces usually have the
most important absorption sites [54], so that both the Langmuir and Freundlich models are
well suited to the studied experimental models.

3.3. Influence of Cations on the Adsorption Capacity of TCC on MWCNTs

The absorption process of TCC on MWCNTs is influenced in a complex way by both
the chemical composition of natural waters and the temperature variation. The equilibrium
adsorption capacities of the tested sorbents for the two temperatures of 25 and 5 ◦C are
shown in Table 4 and Figure 4.

Table 4. Influence of Na+, K+, Ca2+, and Mg2+ cations on TCC adsorption on MWCNTs at 5 ◦C and
25 ◦C.

Natural
Surface
Water

qe, mg/g

Na+, mg/L K+, mg/L Ca2+, mg/L Mg2+, mg/LPristine
MWCNTs,

5 ◦C

Pristine
MWCNTs,

25 ◦C

Irradiated
MWCNTs,

5 ◦C

Irradiated
MWCNTs,

25 ◦C

A1 3.1 6.5 2.9 6.4 6.86 3.93 287 79.3
A2 2.2 6.2 2.1 6.9 180 8.22 130 28.7
A3 3.9 6.8 3.8 6.6 59.3 3.46 192 48.7

The adsorption capacity values of TCC on pristine and irradiated MWCNTs show
the following variations: an increase for pristine MWCNTs compared with irradiated
MWCNTs and a decrease by decreasing the adsorption temperature. It can be seen that the
low surface water temperature of 5 ◦C significantly affects the adsorption. This decrease
in sorption capacities may be due to both the reduction in the diffusion of TCC molecules
into the surface pores of MWCNTs [29] and the decrease in TCC solubility by decreasing
temperature [47]. The decrease of sorption capacities on irradiated MWCNTs compared to
pristine MWCNTs may be due to the hydrophobicity of TCC which is rejected by oxygen-
containing functional groups on the surface of irradiated MWCNTs [55].

Based on the composition of the natural waters that were used in the adsorption
experiments (Table 4), the influence of Na+, K+, Ca2+, and Mg2+ cations on the adsorption
capacity of TCC on simple and irradiated MWCNTs was analyzed (Figure 5).
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Figure 5. Influence of chemical ionic species (cations) present in tested waters on the adsorption
capacity of TCC on MWCNTs at 5 ◦C and 25 ◦C: (a) Na+, (b) K+, (c) Ca2+, and (d) Mg2+; Conditions:
Ci = 100–400 µg/L TCC, m = 0.1 mg MWCNTs, pHA1 = 7.67; pHA2 = 7.33; pHA3 = 8.21; contact time
4 h.

The sorption capacity decreases by increasing concentrations of monovalent cations
(Na+ and K+), compared with divalent cations (Ca2+ and Mg2+), at temperatures of 5 ◦C
and 25 ◦C. When natural water has an average content of Na+ and Ca2+ (natural water
A3), it is observed that the TCC sorption on MWCNTs is the best, and the highest sorption
capacity is obtained. The greatest influence on the sorption capacity was the increase of
the concentration of the monovalent cations Na+ and K+ which determine its decrease
(natural water A2). A significant influence on the process of TCC adsorption on MWCNTs
in natural surface water plays a role in the solubility of TCC. A study of the influence of
water chemical composition on TCC solubility, previously published by us, shows that TCC
solubility varies in relation to the chemical composition of surface water and environmental
parameters. The solubility of TCC has a significant decrease by increasing the concentration
of bivalent cations compared to the increase of the concentrations of monovalent cations.
Seasonal temperature variation, between 5 and 40 ◦C, affects the solubility of TCC by
increasing it with the temperature [47].
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A scheme of the proposed sorption mechanism is based on the predominant electro-
static interactions of π-π type between the aromatic nucleus of TCC and the surface of
MWCNTs [40] and is presented in Figure 6. The literature shows that π-π interactions
could occur between MWCNTS surfaces and molecules containing C=C double bonds and
benzene rings and, therefore, π-π electrostatic interactions contribute to the adsorption of
TCC on MWCNTs. The chlorine (-Cl) that TCC contains in benzene rings as an electron
donor-acceptor, make the appearance of a donor-acceptor interaction between TCC and
MWCNTs possible [56]. In the case of irradiated MWCNTs, the decrease in sorption ca-
pacity could be due to functional groups that contain oxygen on their surface and reject
the hydrophobic TCC molecule. However, there may be some van der Waal interactions
between the oxygen-carrying groups on the surface of the MWCNTs and the benzene
ring in the TCC molecule [57,58]. An important role in adsorption is also played by the
hydrophobicity of the aromatic compound TCC.

Separations 2023, 10, x FOR PEER REVIEW 12 of 15 
 

 

A scheme of the proposed sorption mechanism is based on the predominant electro-

static interactions of π-π type between the aromatic nucleus of TCC and the surface of 

MWCNTs [40] and is presented in Figure 6. The literature shows that π-π interactions 

could occur between MWCNTS surfaces and molecules containing C=C double bonds and 

benzene rings and, therefore, π-π electrostatic interactions contribute to the adsorption of 

TCC on MWCNTs. The chlorine (-Cl) that TCC contains in benzene rings as an electron 

donor-acceptor, make the appearance of a donor-acceptor interaction between TCC and 

MWCNTs possible [56]. In the case of irradiated MWCNTs, the decrease in sorption 

capacity could be due to functional groups that contain oxygen on their surface and reject 

the hydrophobic TCC molecule. However, there may be some van der Waal interactions 

between the oxygen-carrying groups on the surface of the MWCNTs and the benzene ring 

in the TCC molecule [57,58]. An important role in adsorption is also played by the hydro-

phobicity of the aromatic compound TCC. 

 

Figure 6. Proposed mechanism for the adsorption of TCC on MWCNTs. 

4. Conclusions 

In this study, pristine and irradiated MWCNTs were evaluated as sorbents for TCC 

in different natural surface waters at different temperatures. The natural waters were 

characterized in terms of the chemical composition, especially the content of cations and 

anions. The adsorption capacity of TCC on pristine and irradiated MWCNTs in the stud-

ied natural surface waters varies as follows: it increases by increasing the temperature for 

Figure 6. Proposed mechanism for the adsorption of TCC on MWCNTs.

4. Conclusions

In this study, pristine and irradiated MWCNTs were evaluated as sorbents for TCC in
different natural surface waters at different temperatures. The natural waters were charac-
terized in terms of the chemical composition, especially the content of cations and anions.
The adsorption capacity of TCC on pristine and irradiated MWCNTs in the studied natural
surface waters varies as follows: it increases by increasing the temperature for natural sur-
face waters and it is higher in pristine MWCNTs in comparison with irradiated MWCNTs.
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The chemical composition of the natural water samples influences the sorption process
in a complex way. The increase of the concentration of monovalent cations (Na+ and K+) in
natural water determines the decrease of the adsorption capacity of TCC on both pristine
MWCNTs and irradiated ones. The increase of the concentrations of bivalent cations Ca2+

and Mg2+ does not have a significant influence on the sorption capacity. An important role
on the process of TCC adsorption on MWCNTs in natural surface waters is also played by
the solubility of TCC, as already shown by us in previous studies. The Langmuir model
is better suited to describe the process of TCC sorption on both types of nanostructures
studied, this aspect can be explained on the basis that adsorption occurs in monolayers.
From the proposed mechanism of sorption, it can be noticed that the sorption process is
also influenced by the chemical features of the TCC molecule and by the type of MWCNTs.
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