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Abstract: Walking requires attentional resources, and the studies using neuroimage techniques have
grown to understand the interaction between cortical activity and motor performance. Previous
studies reported a decline in gait performance and changes in the prefrontal cortex (PFC) activity
during a dual-task performance compared to walking only. Some lifestyle factors, such as sleep and
physical activity (PA) levels, can compromise walking performance and brain activity. Nonetheless,
the studies are scarce. This study aimed to assess gait speed and hemodynamic response in the PFC
during a cognitive dual-task (cog-DT) compared to walking only, and to analyze the correlation
between PA and sleep quality (SQ) with gait performance and hemodynamic response in the PFC
during a single task (ST) and cog-DT performance in young adults. A total of 18 healthy young
adults (mean age ± SD = 24.11 ± 4.11 years) participated in this study. They performed a single
motor task (mot-ST)—normal walking—and a cog-DT—walking while performing a cognitive task
on a smartphone. Gait speed was collected using a motion capture system coupled with two force
plates. The hemoglobin differences (Hb-diff), oxyhemoglobin ([oxy-Hb]) and deoxyhemoglobin
([deoxy-Hb]) concentrations in the PFC were obtained using functional near-infrared spectroscopy.
The SQ and PA were assessed through the Pittsburg Sleep Quality Index and International Physical
Activity Questionnaire-Short Form questionnaires, respectively. The results show a decrease in
gait speed (p < 0.05), a decrease in [deoxy-Hb] (p < 0.05), and an increase in Hb-diff (p < 0.05) and
[oxy-Hb] (p > 0.05) in the prefrontal cortex during the cog-DT compared to the single task. A positive
correlation between SQ and Hb-diff during the cog-DT performance was found. In conclusion, the
PFC’s hemodynamic response during the cog-DT suggests that young adults prioritize cognitive
tasks over motor performance. SQ only correlates with the Hb-diff during the cog-DT, showing
that poor sleep quality was associated with increased Hb-diff in the PFC. The gait performance and
hemodynamic response do not correlate with physical activity level.
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1. Introduction

It is common to perform two tasks simultaneously in everyday life, such as walk-
ing while playing a game on a smartphone, walking while talking to other people, or
maintaining a standing posture while reading a newspaper. The capacity to perform two
tasks concurrently is called the dual-task paradigm [1]. However, generally, when people
perform two tasks simultaneously, the attention is divided between both tasks, which can
result in a decline in the performance of one or both tasks due to the limited ability to share
attentional resources [2–4].
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Previous studies reported that walking requires attentional resources and is not just
an automated motor activity [2,5,6]. Thus, studies that assessed gait performance when
simultaneously performing cognitive or motor secondary tasks showed a decline in gait
performance in dual-task conditions. For example, a reduction in gait speed during walking
when performing a secondary task compared to normal walking was observed in young
adults [7–9], older adults [10,11], and in people with neurological diseases [12,13].

The prefrontal cortex plays an essential role in executive functions and gait con-
trol [14,15]. Furthermore, neuroimaging studies have grown to understand brain activity
resulting from the interaction between motor and cognitive task performance. Some neu-
roimaging techniques used to assess the cognitive resources and brain regions involved
in walking performance under dual-task conditions are functional magnetic resonance
imaging (fMRI) [16], positron-emission tomography (PET) [17], electroencephalography
(EEG) [18], and functional near-infrared spectroscopy (fNIRS) [19]. fNIR has advantages
over others because it is portable and can be used during motion and in natural environ-
ments [19,20]. In addition, it measures the changes in oxy and deoxyhemoglobin concentra-
tions associated with neural activity [21,22]. A systematic review showed that increased
brain activity could lead to more walking impairments due to the use of more attentional
resources during a dual-task, especially in older adults with neurological diseases [23].
Another study using fNIR concluded that walking while performing a cognitive task in-
creased brain activation in prefrontal regions and decreased gait performance compared to
normal walking in healthy young adults [7].

The attentional demands during walking while performing a secondary task [24] can
depend on the task’s type and complexity and the subjects’ age [6]. However, some lifestyles
can compromise walking performance and brain activity, such as sleep quality and physical
activity; nevertheless, studies are scarce. Existing studies suggest that the oxyhemoglobin
was higher after a whole night’s sleep than at the beginning of the night [25]. Others
reported that sleep plays an important role in the processes of learning and memory [26],
that physical activity benefits the executive function [27] and gait speed [28], and that
sedentarism [29], poor sleep quality [30], and more than 8 h of sleep duration [31] can be
associated with lower gait speed.

Gait speed is considered the sixth “vital sign” because it is easily measurable and
provides essential information about the functional status [32,33]. Moreover, gait speed
can be correlated with cognitive impairment and the risk of falls [34,35]. For that reason,
we consider it important to investigate gait speed and neural activity during dual-task
conditions in young adults to obtain more knowledge about the interaction between motor
and cognitive task performance, and its relationship with sleep quality and physical activity,
to detect early signs of impairments. Therefore, this study aims to assess the changes in gait
speed and hemodynamics response on the prefrontal cortex resulting from the addition of
a cognitive task during walking (cognitive dual-task) compared to normal walking (single
task). Furthermore, we also intend to determine the correlation between sleep quality and
physical activity level with gait performance and brain hemodynamics changes during the
dual-task. We hypothesized that: (i) the young adults would demonstrate a reduction in
gait speed and an increase in hemodynamics response in the prefrontal cortex during the
performance of a dual-task compared to a single task; (ii) sleep quality and physical activity
level would correlate with gait performance and brain hemodynamics changes during a
dual-task in young adults.

2. Materials and Methods
2.1. Participants

A total of 18 healthy young adults, aged between 18 and 35 years, voluntarily partici-
pated in this study and signed the informed consent form (sample characteristics are in
Table 1). They reported having no known history of cardiovascular, musculoskeletal, neu-
rological, vestibular, or cognitive disorders or of taking medications. The Ethics Committee
of the Polytechnic Institute of Coimbra approved the study (27_CEPC2/2019).
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Table 1. Sample’s socio-demographic characteristics.

Variables Sample n = 18

Age (years) 24.11 ± 4.11
Height (m) 1.74 ± 0.07

Body mass (Kg) 79.92 ± 14.24
Body Mass Index (Kg/m2) 26.36 ± 4.13

2.2. Procedure

We considered it important to use tasks similar to everyday life; therefore, as the
smartphone is a massively used electronic device that can modify gait behavior [36], in
this study, in the dual-task condition, the participants performed the cognitive task using a
smartphone while walking. Based on previous studies [19,37–40], the task protocol used in
this research is the following:

Single motor task (mot-ST)—The participants were instructed to walk at a self-selected
preferred walking speed and regularly pace back and forth along an 8 m walkway for 60 s.

Single cognitive task (cog-ST)—The participants performed a cognitive task on a
smartphone based on working memory tasks [2] and verbalized their responses while
sitting on a chair for 60 s.

Cognitive dual-task (cog-DT)—The participants were instructed to walk while simul-
taneously performing a cognitive task on a smartphone for 60 s.

The gait performance (gait speed) and hemodynamics changes in the prefrontal cortex
were collected during the single task and cognitive dual-task. The cognitive task perfor-
mance was measured through the percentage of correct answers collected during cognitive
single- and dual-task conditions. The motor task performance was determined through the
collection of gait speed and hemodynamics changes in the prefrontal cortex during normal
walking and the cognitive dual-task. Each task was performed for 60 s, twice with 45 s
rest. The young adults were not given any instructions regarding which task to prioritize
during the cog-DT and performed the tasks randomly to minimize the learning factor. To
maintain ecological validity, the participants performed the cognitive single- and dual-task
with their usual smartphone and held it with their preferred hand or both hands.

2.3. Instruments and Data Analysis

Gait speed data were collected with ten Oquos® Optoelectronic cameras of high speed
and a resolution of 1.3 to 12 megapixels, with a 200 Hz measurement frequency, coupled
with two force plates (Bertec Corporation, Columbus, OH 43229, USA; AMTI, Watertown,
MA, USA) using an optical motion capture system (Qualysis AB, Göteborg, Sweden) and
the Qualisys Track Manager v2.15 software (Qualisys AB, Götebor, Sweden). According
to Wilken et al. [41], 53 reflective markers on defined anatomical landmarks were placed
by one experienced researcher. Furthermore, marker clusters were placed on the thighs
and shanks to improve segment tracking quality. Gait speed data were filtered with a
6-Hz Butterworth low-pass filter and processed using the Visual 3D software (C-Motion,
Germantown, MD, USA).

The hemodynamic changes in the prefrontal cortex were recorded using fNIR100A-2
(Biopac System Inc., Goleta, CA, USA) equipment attached to the forehead. This fNIR
device has 16 recording channels with a source–detector separation of 2.5 cm and records at
a frequency of 2 Hz, detecting infrared light wavelengths at 730 nm and 850 nm. Cognitive
Optical Brain Imaging (COBI) was used for data acquisition, and the fNIRSoft professional
software for data processing (Biopac software). After a visual inspection to remove low-
quality channels, the raw signals were filtered using a low-pass finite impulse response
(FIR) filter, with an order of 20 Hamming, and a cutoff frequency of 0.1 Hz [42–44] to
eliminate confounding physiological noise. Next, the motion artifacts were removed
using a sliding-window motion artifact rejection (SMAR) algorithm [42]. The changes in
oxyhemoglobin ([oxy-Hb]) and deoxyhemoglobin ([deoxy-Hb]] concentrations relative
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to a 10 s baseline were recorded according to the modified Beer–Lambert Law [44]. The
hemoglobin difference (Hb-diff = [oxy-Hb] − [deoxy-Hb]) was also extracted for the
assessment of hemodynamics response in the prefrontal cortex.

Sleep quality was assessed using the Pittsburg Sleep Quality Index (PSQI). This self-
report questionnaire assesses sleep quality over the previous month. A global score above
5 indicates poor sleep quality. The global sleep quality score ranges from 0 to 21 [45]. The
Portuguese version of the PSQI presents adequate validity and reliability (Cronbach’s α of
0.70) for assessing sleep quality [46] such as other PSQI versions [47,48].

Physical activity level was assessed using a self-report questionnaire, the International
Physical Activity Questionnaire-Short Form (IPAQ-SF). It assesses the intensity of physical
activity in MET-min/week over the last seven days [49]. The physical activity score was
obtained according to the IPAQ instrument protocol [50].

2.4. Statistical Analysis

The descriptive variables, such as the sample’s socio-demographic characteristics, the
IPAQ-SF and PSQI total scores, were presented as mean and ± SD (standard deviation), and
the physical activity level was presented as frequencies. The Shapiro–Wilk test confirmed
the non-normality of the data. The Wilcoxon signed-rank test was used to compare gait
speed, cognitive task performance, [oxy-Hb], [deoxy-Hb] and Hb-diff between single- and
dual-task performance. The data were presented as the median and interquartile range
(IQR).

The Spearman’s rho test was used to correlate sleep quality and physical activity level
with gait performance and hemodynamics changes in the prefrontal cortex during motor
single-task and cognitive dual-task conditions.

All analyses were performed using IBM-SPSS 25.0 software and the significance level
was set at p < 0.05.

3. Results
3.1. Gait Speed and Hemodynamic Changes in the Prefrontal Cortex

The difference in walking performance and hemodynamics changes in the prefrontal
cortex between normal walking and the cognitive dual-task are represented in Table 2.

When we added a cognitive task to the motor task of walking, a decrease in gait speed,
a decrease in [deoxy-Hb], an increase in [oxy-Hb], and a higher Hb-diff in the prefrontal
cortex were found compared to normal walking. Only in the oxyhemoglobin concentration
were no differences found between normal walking and the cog-DT.

Table 2. Gait performance and hemodynamics changes in the prefrontal cortex between normal
walking and cognitive dual-task conditions.

Outcomes Single Motor Task Cog-DT p-Value 1

Gait speed (m/s) 1.05 (0.94–1.18) 0.95 (0.90–1.10) 0.006 *
[oxy-Hb] (µ mol/L) 0.18 (−0.41–0.73) 0.30 (−0.57–0.73) 0.501

[deoxy-Hb] (µ mol/L) −1.09 (−1.27–(−0.31)) −1.41 (−2.02–(−0.79)) 0.039 *
Hb-diff (µ mol/L) 0.92 (0.22–1.59) 1.27 (0.54–2.80) 0.039 *

[oxy-Hb], oxyhemoglobin concentration; [deoxy-Hb], deoxyhemoglobin concentration; Hb-diff, difference be-
tween oxy and deoxyhemoglobin concentrations; cog-DT, cognitive dual-task. * p < 0.05: Comparison between
single motor task and cognitive dual-task (1 Wilcoxon signed-rank test).

3.2. Cognitive Task Performance

There was an increase in cognitive task performance from the single cognitive task
(cognitive task on a smartphone in a seated position) to the cognitive dual-task (walking
while performing a cognitive task on a smartphone). The median percentage of correct
responses increased from the single cognitive task (58.33 (42.13–69.91)%) to the cognitive
dual-task (78.70 (64.35–96.30)%); this difference was significant (p < 0.001).
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3.3. Relationship between Physical Activity and Sleep Quality with Gait Performance and
Hemodynamics Response under Single- and Dual-Task Conditions

Young adults presented a total IPAQ-SF score of 3701.06 ± 3460.345 MET-min/week
and a total PSQI score of 5.18 ± 3.28. Concerning the physical activity level, according to
the IPAQ-SF, 41.2% have a high level of physical activity, 41.2% have a moderate physical
activity, and 17.6% have a low level of physical activity.

The analysis showed a moderate, positive, and significant correlation between the sleep
quality and the Hb-diff during cog-DT performance. However, there were no significant
relationships between the other outcomes analyzed (p > 0.05) (see Table 3).

Table 3. Relationship between total IPAQ-SF and PSQI scores with gait performance and hemody-
namics response under single- and dual-task conditions.

Outcomes IPAQ-SF Total Score PSQI Total Score
Spearman’s Rho p-Value Spearman’s Rho p-Value

cog-DT [oxy-Hb] 0.392 0.119 0.326 0.202
cog-DT [deoxy-Hb] −0.100 0.701 −0.258 0.318

cog-DT Hb-diff 0.235 0.363 0.522 0.032
mot-ST [oxy-Hb] 0.109 0.688 0.002 0.996

mot-ST [deoxy-Hb] 0.156 0.564 −0.294 0.269
mot-ST Hb-diff 0.085 0.753 0.253 0.344

Gait speed: cog-DT −0.243 0.348 0.301 0.241
Gait speed: mot-ST −0.191 0.462 0.133 0.610

IPAQ-SF, International Physical Activity Questionnaire-Short Form; PSQI, Pittsburg Sleep Quality Index; [oxy-Hb],
oxyhemoglobin concentration (µ mol/L); [deoxy-Hb], deoxyhemoglobin concentration (µ mol/L); Hb-diff, differ-
ence between oxy and deoxyhemoglobin concentrations (µ mol/L); cog-DT, cognitive dual-task; mot-ST, single
motor task. Spearman’s correlation test. Bold values with p < 0.05.

4. Discussion

This study investigated the influence of cognitive task on gait speed performance and
the hemodynamics response in the prefrontal cortex while walking (cognitive dual-task)
compared to normal walking, and the association between physical activity level and sleep
quality with gait performance and hemodynamics response in the prefrontal cortex under
normal walking and cognitive dual-task conditions in young adults.

Our results show that, when a cognitive task is added to walking, a decline in gait
speed and changes in prefrontal cortex activation are detected, suggesting that both tasks
share neural networks [14,15] and that more attentional resources to perform the tasks
are needed. Furthermore, the young adults showed that they allocated more attentional
recourses to perform the cognitive task to the detriment of walking performance, because
they demonstrated an improvement in the cognitive task performance from the cog-ST
to the cog-DT, verified by the increase in the percentage of correct answers. The hemody-
namics response increased in the prefrontal cortex from normal walking to the cognitive
dual-task, showing an increase in Hb-diff and a decrease in deoxyhemoglobin concentra-
tion. Although the oxyhemoglobin concentration also increased from the mot-ST to the
cog-DT, no differences were found between the two conditions, which may be related to the
fact that the participants verbalized their answers during the cognitive task performance.
The reduction in oxyhemoglobin can result from a decrease in cerebral blood flow and
cerebral oxygenation as a consequence of hypocapnia caused by verbalization [51].

Similar to our research, a decrease in gait speed and higher prefrontal activation from
normal walking to the cognitive dual-task was observed in other studies. For example,
a study using fNIR showed that young adults, when performing a cognitive dual-task,
decreased gait performance and increased activation in the prefrontal area than in normal
walking [7]. In addition, a review paper reported that most studies showed increased
prefrontal activity during dual-task performance compared to usual walking [52]. Another
systematic review reported that gait control requires cognitive resources, and there is gen-
erally a decline in gait performance when there is simultaneous involvement of cognitive
tasks while walking [24]. Concerning the tasks used in our study, a systematic review that
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analyzed the influence of tasks performed using a smartphone while walking showed a
decline in gait performance in dual-task conditions in most studies assessed [38].

Regarding the correlation analysis between physical activity and sleep quality, only
a correlation between sleep quality and the difference in hemoglobin during the cog-DT
was found. This correlation suggests that poor sleep quality is associated with a greater
difference in hemoglobin in prefrontal cortex activation in dual-task conditions. We suppose
that this may be due to a compensatory mechanism resulting from a higher mental effort
(amount of cognitive resources allocated to perform a task [53]) and consequent overload
in the recruitment of cognitive resources, leading to lower system efficiency caused by poor
sleep quality. In children, it appears that the worst dual-task performance is associated with
disrupted sleep, a higher quantity of REM (rapid eye-movement) sleep related to lower
gait variability, and a higher cognitive performance associated with a greater quantity of
slow-wave sleep [54]. Another study showed that poor sleep quality was related with
a slower normal walking speed in adults [31]. In addition, a decrease in gait speed and
higher gait variability were associated with a lower sleep efficiency during a dual-task but
not while performing a single task in older people [55].

Although no correlations were found in this study between physical activity and gait
performance and hemodynamics response, some studies report that moderate-to-vigorous-
intensity physical activity improves gait speed (over 50 years) [28]. In addition, another
study reported that moderate-to-high levels of physical exercise positively affect executive
functions in middle-aged and older individuals [27]. A study in young adults suggested
that good sleep quality was associated with higher gait speed in single-task conditions, but
did not investigate during dual-task conditions [30].

In this study, we used self-reported questionnaires to assess sleep quality and physical
activity, which may have conditioned our results in the correlation tests. Thus, we con-
sidered this a limitation of this study together with the small sample size. Therefore, we
recommended future studies that objectively measure these outcomes and correlate them
with gait performance and brain activity during performing tasks. Furthermore, in the
cognitive dual-task used in this study, most young adults reduced the swing movement of
their arms, and their field of vision decreased due to manipulating the smartphone, which
may have contributed to the decrease in gait speed. Therefore, in addition to the tasks
used in this study, we also suggest performing cognitive tasks without a smartphone to
better understand the influence of cognitive tasks on gait speed under dual-task conditions.
Another limitation was that we did not monitor blood pressure or breathing cycle, con-
sidering that these parameters can influence fNIR measurements [20,56]. Future studies
should consider these parameters.

Our study contributed to understanding the interaction between motor and cognitive
performance under dual-task conditions and how activity in the prefrontal cortex changes.
Moreover, it showed that sleep quality might interfere with hemodynamics response in
the prefrontal cortex during dual-task conditions. In this way, implementing strategies
to improve sleep quality can be helpful to the functioning of the prefrontal cortex. For
example, moderate physical activity can be a tool to enhance sleep quality [57]. Further-
more, facing the changes in motor and cognitive performance from normal walking to the
cognitive dual-task and the increased risk of injury due to smartphone use reported in
other research [58,59], dual-task training can be used to reduce the interference between
motor and cognitive performance, minimizing the risk of injuries or falls [60].

5. Conclusions

The hemodynamic response in the prefrontal cortex during a cog-DT suggests that
young adults prioritize cognitive tasks over motor performance and allocate more atten-
tional recourses in the cognitive task than gait performance. The gait speed decreases,
the hemoglobin difference in the prefrontal cortex increases, and the deoxyhemoglobin
concentration decreases during a cognitive dual-task compared to normal walking. Sleep
quality only correlates with the Hb-diff during the cog-DT, showing that poor sleep quality
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was associated with increased Hb-diff in the prefrontal cortex. The gait performance and
hemodynamics response do not correlate with the physical activity level. Future studies
that objectively assess physical activity and sleep quality are recommended to investigate
and clarify the correlation between these factors with gait speed performance and brain
activity. Implementing clinical practices that improve sleep quality and motor and cognitive
performance during dual-task conditions can help optimize the interaction between motor
and cognitive systems.
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